
Materials & Methods 1 

Patient cohort 2 

All samples from participants in the cohort are publicly available (see database below), with the 3 

exception of samples listed in Suppl. Table 8. These samples were obtained from a Heidelberg 4 

centered cohort within the my.microbes project (my.microbes.eu), as described in greater detail 5 

in [1]. The study was approved by the EMBL Bioethics Internal Advisory Board and adheres to 6 

the WMA Declaration of Helsinki. Fecal samples were collected and conserved under anaerobic 7 

conditions and kept for long term storage at -80°C, after a brief short-term storage period at -8 

20°C. Patient HD.S1 was undergoing bowel cleansing on day 630 for a routine colonoscopy 9 

unrelated to the study. 10 

Furthermore, patient HD.S1 was treated twice with antibiotics, first on days 370-374 with 2g/day 11 

intravenous ceftriaxone. The last injection with ceftriaxone occurred approximately ~12-24 hours 12 

before HD.S1.374 fecal sample collection. The patient was being treated for a bacterial infection 13 

after a kidney stone operation. We assume that at the time of collection of sample “HD.S1.374”, 14 

there were still significant concentrations of ceftriaxone (12-25% of treatment dose) in the 15 

patient’s urine and feces. This assumption is based on the elimination half-life of ceftriaxone 16 

being 5.8-8.7 hrs, and 12 hrs for patients with renal impairment 17 

(https://www.drugs.com/pro/ceftriaxone.html, subject HD.S1 had a kidney stone operation). The 18 

second antibiotic treatment lasted six days, starting on day 875, with CefuHEXAL® 500 mg, 2 19 

oral tablets per day.  20 

 21 

Sequencing of fecal samples 22 

Genomic DNA was extracted from frozen fecal samples as previously described [1] using the 23 

GNOME© DNA Isolation Kit (MP Biomedicals). Library generation and random shotgun 24 

sequencing of fecal samples was carried out on the Illumina HiSeq 2000/2500 (Illumina, San 25 

Diego, CA, USA) platform. All samples were paired-end sequenced with 100 bp read lengths at 26 

the Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, to an 27 

approximated sequencing depth of 5 Gbp per sample. Further, sample HD.S1.377 was 28 

sequenced to greater depth and with longer reads using the Illumina MiSeq platform, obtaining 29 

2x250 bp paired end reads. In addition to this, sample HD.S1.377 was sequenced with mate 30 

pair sequencing using Illumina Nextera Mate Pair Library Prep Kit to assist genomic assemblies 31 

of UB. ceftriaxensis and P. distasonis. 32 



 33 

Attempted culturing of UB. ceftriaxensis 34 

The RAST annotation of UB. ceftriaxensis served as basis to create a metabolic profile to guide 35 

the selection of carbohydrates for isolating this species (Suppl. Table 1). The faecal samples 36 

(~0.25g) at day 375 containing ~60% and day 374 containing ~90% of the novel species were 37 

dissolved in 5ml PBS/20% Glycerol under anaerobic conditions. The basic media was CPYC 38 

(CP medium [2] with an addition of Yeast extract 2.5g/l Casitone 10g/l). The additional 39 

carbohydrates were added to 25mM end concentration. The carbohydrates used were either 40 

Rhamnose, Trehalose, Raffinose, Ribose, Lactose, Sucrose, Maltose, Glycerol, Xylose, Xylan, 41 

Mannose, Galactose and a mix of all carbohydrates together. Apart from liquid cultures solid 42 

media was also used to attempt isolation of the species. The plates contained BHI or CPYC 43 

supplemented with the above mentioned carbon sources. All bottles were inoculated with 44 

~100ul of fecal sample/PBS/Glycerol. Plates were streaked and incubated at 37oC. 45 

After incubation the liquid cultures were inoculated in new bottles with their carbohydrate and 46 

anaerobically plated on BHI with their selective carbon for isolation. This process was repeated 47 

until pure cultures or single colonies were apparent. Additionally, 16S specific primers based on 48 

the UB. ceftriaxensis 16S were designed (Suppl. Table 2) with NCBI Primer Blast1 for screening 49 

the obtained enrichments. Using these primers on the culture media, we were able to detect the 50 

species in ribose- and rhamnose-supplemented media. Subsequently, the 16S rRNA gene of 51 

the isolates was sequenced using the Sanger method to confirm the isolate’s identity. However 52 

we did not retrieve identical 16S sequences to TEC-2, instead recovering (based on 16S 53 

similarity >= 98%) Eggerthella lenta, Tetragenococcus koreensis, Lactobacillus rhamnosus and 54 

Intestinibacter bartlettii. 55 

 56 

Fluorescence in situ hybridization to detect UB. ceftriaxensis in fecal samples 57 

Oligonucleotide probes specific for UB. ceftriaxensis 16S rRNA were designed using the probe 58 

design tool implemented in ARB (SILVA Release 132 [3]). Specific hybridization conditions were 59 

predicted in silico using mathFISH (http://mathfish.cee.wisc.edu) and were experimentally 60 

validated by CLONE-FISH against the target region heterologously transcribed in Escherichia coli 61 

as detailed in [4]. Probe TEC483 (5’-CGA GGC TTG CTA TTG GGA TAC CG-3’) was chosen for 62 

FISH experiments and was synthesized double Cy3 labelled at 5‘- and 3‘- ends (Sigma-Aldrich, 63 

Steinheim, Germany). Fecal samples were suspended in 1% paraformaldehyde: dPBS, fixed 64 

                                                
1  https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome 



overnight at 4°C and stored in 50% EtOH:dPBS at -20°C until further processing. Cell 65 

preparations were heat fixed on glass slides and hybridized for 2 hours in 30% formamide 66 

hybridization buffer as described in [4].  67 

 68 

Bacterial cell counting using flow cytometry  69 

To analyze the density of bacteria cells, 100 µL of frozen stools were suspended in 0.9% saline 70 

solution and diluted 1:100. Samples were homogenized by vortexing with sterile Rattler™ Platting 71 

Beads (Zymo Research). To remove all remaining big particles, the suspension was filtrated by 72 

gravity flow through a 40 µm Cell Strainer (Falcon®). Samples were further diluted to 1:1000 000 73 

and stained using a modified protocol for Bacteria Counting Kit (Invitrogen™). Briefly, 1 μL of 74 

SYTO® BC bacteria stain was added to 1.0 mL of diluted cells and incubated in darkness at 37°C, 75 

for 30 min. Bacteria were centrifuged at 10,000 rpm for 15 min and the pellet was re-suspended 76 

in 500 µL of 4% paraformaldehyde and incubated for 30 min at RT. Fixed cells were washed and 77 

re-suspended in 1 mL of saline solution. 10 μL of the Bacteria Counting Kit (Invitrogen™) 78 

microsphere standard suspension were added and cells were analysed using LSRFortessa™ 79 

(BD) with excitation 488 nm and emission at 530/30 nm. The number of bacterial cells per number 80 

of microspheres was used to calculate the density of bacteria in 1 mL of stool sample in triplicate. 81 

The mean of the triplicate value was then used to determine cell density per sample. 82 

 83 

Assessing of beta-lactamase activity and antibiotic resistance 84 

Both beta-lactamase genes found in UB. ceftriaxensis were placed under the control of the amp 85 

promoter into the pMK-RQ backbone (kanR). The CTX-M 15 beta-lactamase encoded on the 86 

pEC499 plasmid was used as a positive control (Woodford et al. 2009). All constructs were 87 

ordered ready to use from GeneArt AG and transformed into E. coli (strain DH5α) for 88 

constitutive beta-lactamase expression. 89 

Antibiotic resistance was assessed on LB-amp and LB-ceftriaxone plates at antibiotic 90 

concentrations of 100 mg/l and 159 mg/l, respectively. Beta-lactamase activity was tested using 91 

nitrocefin disks (Sigma) that change color from yellow to red when beta-lactamase activity is 92 

detected.  93 

 94 

Read filtering 95 

Reads obtained from the shotgun metagenomic sequencing of the 129 metagenomic samples 96 

from the focused dataset were quality-filtered by removing reads shorter than 70% of the 97 

maximum expected read length (100 bp, 250 bp for miSeq data, 150 bp for mate pair reads), 98 



with an observed accumulated error >2 or an estimated accumulated error >2.5 with a 99 

probability of ≥0.01 [5], or >1 ambiguous position. Reads were trimmed if base quality dropped 100 

below 20 in a window of 15 bases at the 3’ end, or if the accumulated error exceeded 2 using 101 

the sdm read filtering software [6]. Human reads were removed from the metagenomic data by 102 

classifying raw reads with kraken [7] against a custom database containing solely the human 103 

reference genome. Unclassified reads were further used in downstream analysis. 104 

 105 

Estimating abundance of genomes 106 

To estimate if a genome was present, we first mapped reads from all samples against the 107 

reference genomes obtained from NCBI with the same mapping procedure and depth 108 

estimation as described above. From these mappings we estimated the horizontal coverage 109 

across the genome and the total number of reads mapping to a reference. Because these 110 

genomes could be extremely low abundant in the timeseries data, often having a horizontal 111 

coverage < 25%, we instead used the following formula to estimate the expected coverage 112 

(Ecov), following [8], with GL being genome length, n the number of mapped reads and RL being 113 

the read length: 114 

𝐸𝑐𝑜𝑣 = 1 − 𝐺𝐿 ∗ 𝑒𝑥𝑝⁡(
−𝑛 ∗ 𝑅𝐿

𝐺𝐿
) 115 

 116 

Since the mapping was prone to attracting short reads to conserved or mobile genes, that is 117 

genomic regions with extreme coverage, we used a standard MD filter [9] to remove obviously 118 

overrepresented genomic regions prior to calculating the expected coverage,. 119 

Comparing the observed coverage (Ocov) and expected horizontal coverage, we only accepted 120 

genomes as being present, if 0.5 < Ecov /Ocov < 2 (arbitrarily chosen). The ratio of Ecov /Ocov as 121 

well as Ocov is reported in (Fig. 5) 122 

 123 

Metagenomic assembly and gene catalog 124 

Only sdm [6] filtered paired reads were used in the assembly, with the same read filtering 125 

parameters as described above. In total 10,865,401,856 reads were assembled using Spades 126 

3.7-0 (development version obtained from the authors) [10] in metagenomic mode with the 127 

parameters “--only-assembler -m 500 --meta -k 21,33,67,111,127”. The samples were 128 

assembled separately for each biological sample, to decrease the chances for chimeric contigs, 129 

but technical replicates were pooled. The assembled contig had an average N50 of 14,041 bp, 130 

scaffold average N50 was 17,128 bp and a total size of 31,782 Mbp. Using prodigal [11] in 131 



metagenomic mode, 38,943,896 genes were predicted on the contigs. Only genes with >100 bp 132 

length were selected and split into 15,558,517 complete genes and 47,076,247 incomplete 133 

genes. The average complete gene length was 897 ± 65 bp. 134 

 135 

 136 

In a first step, the complete genes were clustered at 95% nucleotide identity, a commonly used 137 

cutoff in constructing gene catalogues (Sunagawa, Coelho, Chaffron, Kultima, Labadie, Salazar, 138 

et al. 2015). For sequence clustering CD-HIT v4.6.1 [12] was used in est mode, employing 139 

parameters adapted to full length genes: “-n 9 -G 1 -aS 0.95 -aL 0.6 -d 0 -c 0.95 -g 0”. This 140 

resulted in 3,257,016 clustered full length genes, onto which the incomplete genes were 141 

mapped with bowtie2 [13]. Incomplete genes mapping with at least 95% nucleotide identity were 142 

directly integrated into the initial clustering of complete genes. The remaining sequences were 143 

clustered as before with CD-HIT, but changing alignment length parameters to “-aL 0.3 -aS 0.8” 144 

to account for incomplete genes, resulting in 2,466,595 additional gene clusters. Additionally, 145 

genes belonging to the 40 conserved marker genes were clustered separately, using clustering 146 

identity thresholds as described in [14]. Merging marker gene clusters, incomplete and complete 147 

clustered genes resulted in the gene catalogue, with a total of 5,790,967 non-redundant genes 148 

at 95% nucleotide identity cut-off. The gene catalogue nucleotide and amino acid sequences 149 

are available at http://vm-lux.embl.de/~hildebra/Bcef_GC. 150 

 151 

Estimating species abundances in metagenomes 152 

To estimate the species abundance per sample and at the same time also infer the species not 153 

in our database, we used the 40 single copy ubiquitously present marker genes (MGs) that can 154 

be predicted using specI [14] in the gene catalog. Since hidden markov models trained on the 155 

tree of life are used for this prediction, we can assume that the MGs of unknown classes, 156 

families, genera will be detected in this approach. From this set of marker genes, we used a 157 

similarity based approach to identify species within these, mapping all predicted MGs with 158 

lambda 1.9.3 [15] onto MGs clustered to specI’s in the proGenomes database [16] and using a 159 

MG specific similarity cutoff [14]. Hits were immediately accepted, if a metagenomic MG was 160 

hitting a single proGenomes specI at the required similarity threshold. However, since several 161 

metagenomic MGs had valid hits to multiple proGenomes MGs, we supplemented the 162 

identification of a species using a coabundance approach, in concept similar to [17]. Briefly, first 163 

for established specI’s we calculated the average profile across all MGs. If the MG showed 164 

similarity to a given specI, i.e. was a candidate, the remaining MGs that were not uniquely 165 



assigned to a specI were correlated to existing specI profiles. Here we also used species and 166 

genus taxonomic assignments, to allow for mismatches in nucleotide sequence. MG’s with a 167 

spearman correlation coefficient > 0.9 to a candidate specI were immediately added to a given 168 

specI.  169 

Additionally, at different phases in the clustering algorithm, within each specI, MGs were 170 

checked to correlate with the average profile (spearman) < 0.9, or were removed as false 171 

positive assignments and iteratively tried to be added to different specI’s, as described above. 172 

Mapping reads against references 173 

To estimate the abundance of genes in each assembly, the reads from a sample were mapped 174 

against the assembly of these. Furthermore, in specific cases also all reads were mapped 175 

against reference genomes (to estimate genome presence) or reference genome + decoy set 176 

(see below) to map reads against a reference genome in order to call genetic variants. For 177 

these use cases, all unfiltered reads were used in the mapping, irrespective of quality. This was 178 

important as we were interested in very low abundant species and quality filtered reads were in 179 

this project important to ensure a clean assembly; if reads were mapping at a good quality 180 

against this assembly it was assumed that their quality was sufficient. To ensure good matches, 181 

bowtie2 [13] was used with the options “--no-unal --end-to-end --score-min L,-0.6,-0.6” and 182 

additionally “-X 10000” in the case of mate pair libraries. The resulting bam files were sorted, 183 

duplicates removed and indexed using samtools 1.3.1 [18]. From these depth profiles were 184 

created using bedtools which were translated with a custom C++ program “rdCov” 185 

(https://github.com/hildebra/rdCover) into average coverage in a 50 bp window, per contig or per 186 

gene predicted on each contig. 187 

 188 

Functional annotations of protein sequences 189 

Translated amino acid sequences of either complete genomes, gene catalogs or contigs were 190 

predicted with prodigal [11] in normal mode, or metagenomic mode for the latter two cases. 191 

These amino acid sequences were mapped to functional reference databases using diamond 192 

[19] in blastp mode using options “-k 5 -e 1e-5 –sensitive”. The reported mapping were further 193 

filtered using customized Perl scripts, with filtering parameters set according on simulations 194 

reported previously (Bahram et al. 2018). In general, we required for each database that hits 195 

had >25% AA identity, >30% gene coverage, >60 bit score, >60 AA acid alignment length and 196 

an e-value <1e-7. The highest scoring hit was then accepted. 197 

The following databases were used for functional assignments: Cazyme genes 198 

(http://www.cazy.org, accessed 22.11.2015)[20], KEGG [21], antibiotic resistance genes 199 



(ARG’s) curated in CARD [22] and eggNOG 4.5 database of functional orthologs [23] genes. 200 

For ARG, only hits scoring better than the CARD curated cutoffs [22] were accepted.  201 

Further, we created from PATRIC [24] a virulence factor specific database. The gene, protein 202 

and genome sequences of the PATRIC database, along with the sets of 'specialty genes' 203 

assignments made by its curators, was downloaded in November, 2017. From this dataset was 204 

parsed assignments to the PATRIC virulence factor classifications, with genes not assigned to a 205 

virulence factor considered a true negative given the denseness of the database. The VF gene 206 

symbols and classes together with the sequences were considered as input data for further 207 

steps annotating metagenome-derived entities with virulence factor information. 208 

To facilitate interpretation of the results, the relative abundance of CAZyme genes were summed 209 

based on the substrates for each gene family. Substrate utilization information for CAZyme 210 

families was obtained from [25,26] as well as CAZypedia (http://www.cazypedia.org/). SEED 211 

functional annotations were obtained from the web interface of RAST [24]. Based on the KEGG 212 

Ortholog (KO) abundance matrices we further calculated KEGG and GMM (Darzi et al. 2016) 213 

module abundances using a custom C++ implementation available on 214 

www.github.com/hildebra/Rarefaction, similar to the protocol described in [27]. 215 

Functional abundance matrices were normalized by total number of reads used in mapping. This 216 

normalization considers differences in library size and includes the fraction of unmapped (that is 217 

functionally unclassified) reads. Replication times of assembled genomes were estimated using 218 

[28]. 219 

 220 

Genome binning 221 

Genomes were de novo binned for UB. ceftriaxensis and P. distasonis. This was based on 222 

binning samples HD.S1.374 and HD.S1.377, respectively, with MaxBin [29] and a data set wide 223 

binning via Canopy clustering [17]. MaxBin was run with default options, except for the changed 224 

option “-min_contig_length 400”.  225 

Canopy clustering was run with options to optimize for rare, highly abundant species: “-p TC  --226 

die_on_kill --stop_criteria 250000 --cag_filter_min_sample_obs 5 --227 

cag_filter_max_top3_sample_contribution 1 --filter_max_top3_sample_contribution 1” on a gene 228 

abundance matrix that was normalized by sum using rtk [30]. The gene bins of both binning 229 

methods were combined and the abundance profiles of the respective genes further analyzed in 230 

R.  231 

For each species, a pearson correlation matrix for the candidate gene profiles were created, 232 

and the inverse of correlation coefficient was used to hierarchically cluster these (R function 233 



hclust, method = complete). The hierachical cluster was iteratively subdivided, until all 40 234 

marker genes were in the same cluster (illustrated in Suppl. Fig. 16 for UB. ceftriaxensis). Based 235 

on this clustering, the metagenomic assembly was selected combining most target genes in the 236 

fewest scaffolds. In a last step the scaffolds based on HiSeq paired end reads were further 237 

scaffolded with mate pair reads (insert size = 5000) from sample HD.S1.377. The mate pair 238 

reads were mapped onto the selected species contigs using bowtie2 [13]. Based on these 239 

mappings, scaffolds were calculated using BESST [31] using default parameters with the 240 

exception of “-z 5000”. In the case of UB. ceftriaxensis, this decreased the number of scaffolds in 241 

the primary Spades assembly from 20 to 8 scaffolds. Genome completeness was estimated 242 

using CheckM [32] and MiGA [33]. 243 

 244 

Phylogeny of UB. ceftriaxensis 245 

From the proGenomes database [16], we selected a random subset representing each 246 

Firmicutes family within the database with at least one genome, but where available 247 

representing each genera in the database. Further, this tree was supplemented in August 2017 248 

with marker gene based searches in NCBI for complete genomes that had a high similarity to 249 

the UB. Ceftriaxensis marker genes. Further, we also included 3 genomes based on 250 

metagenomic binning [17] (CAGs, co-abundance groups), because the marker genes of UB. 251 

ceftriaxensis showed similarities to these genomes, when searching NCBI NR.  252 

For all genomes in this database (n=242) two sets of marker genes were extracted. First the 253 

16S rRNA gene was obtained from each genome with RNAmmer [34], which reduced the 254 

species set to 236 genomes since the CAG’s did not have a detectable 16S rRNA gene and 3 255 

further genomes no reference 16S gene could be found. The 16S sequences were aligned with 256 

Clustal Omega [35] with default options and inspected by hand. Subsequently a maximum 257 

likelihood tree was constructed with IQ-TREE[36] using ModelFinder [37] to find the best 258 

substitution model and calculating 100 bootstrapped trees and using booster [38] to calculate 259 

the bootstrap support. 260 

Second, a phylogenetic tree was constructed from 40 single copy universally present marker 261 

genes. These were obtained with fetchMG [14]. The genes were translated into amino acid 262 

sequences and aligned separately for each of the 40 orthologues gene groups with Clustal 263 

Omega [35] (default options). Subsequently, the multiple sequence alignments were quality 264 

controlled with trimal (options -keepheader -ignorestopcodon -gt 0.1 -cons 60) and merged. The 265 

phylogenetic tree was reconstructed from this amino acid alignment of 40 orthologues from 242 266 

genomes using IQ-TREE, as described above to obtain phylogenetic trees with bootstrap 267 



support. Both maximum likelihood trees were visualized using iTOL [39]. The nucleotide and 268 

amino acid identity between sequences was calculated from either multiple sequence 269 

alignment, using custom Perl scripts (included in MATAFILER). 270 

 271 

Global distribution UB. ceftriaxensis 272 

The abundance of UB. ceftriaxensis was measured in our global (n=3,692) sample set, using the 273 

mOTU approach [40] and including custom marker genes derived from the genome assembly. 274 

Our reference database contained 70 internal German samples [1,41], 368+156 Chinese cancer 275 

samples [42,43], 1209 American HMP samples [44], 194 German colorectal cancer samples 276 

[45], 387 Danish samples [27], 145 Swedish Samples [46]. This was complemented by non-277 

human samples, consisting of 295 pig gut, 191 mouse gut, 124 cat gut and 129 dog gut [47,48] 278 

samples. Further, we included environmental metagenomes from 243 Tara Oceans samples 279 

[49] as well as 189 global topsoil samples [50]. From the non-normalized mOTU abundance 280 

tables, we estimated what percentage of inserts was representative of UB. ceftriaxensis.  281 

For the discovery dataset, samples from the above mentioned dataset were included, with the 282 

addition from twelve antibiotic treated human gut microbial samples [51]. We report for this 283 

focused dataset the 129 samples with their accession and sample IDs in Suppl. Table 8. 284 

 285 

Decoy mapping of reads 286 

In human variant calling, the reference genome (e.g. hs37d5) contains often a so-called decoy 287 

contigs, that cover recurrently (but rarely) assembled regions that are not part of the primary 288 

assembly of the human genome [9]. In order to decrease the rate of false positive read 289 

mappings in the much more complex metagenome with many species that are sometimes 290 

closely related, we used a similar principle. However, instead of adding new reference genomes 291 

we took the inverse approach relying on our metagenomic assembly, which should contain the 292 

best matching references to any reads from a given sample (see section metagenomic 293 

assembly). From this assembly contigs similar to the mapping target were first removed. To do 294 

this, the metagenomic assembly was mapped on the target sequences using blat [52] with the 295 

following parameters: -t=dna -q=dna -minIdentity=95 -minScore=100. These identified matching 296 

contigs were removed from the assembly, and the remaining assembled contigs and the 297 

reference genome were used as new database to map the metagenomic reads against. In our 298 

parameter tests, this procedure increased average mapping scores at variant calls (data not 299 



shown) and was therefore used for all SNP calls. The script to create decoy mappings is 300 

available in the MATAFILER pipeline. 301 

 302 

Estimating dominant strain and its genetic variation 303 

First reads from a given sample were mapped against the reference genome, using the above 304 

described decoy mapping procedure. From these, nucleotide variants were called using 305 

freebayes ver. 1.1.0 [53] with the following options -m 30 -q 30 -u -i -C 1 -F 0.1 -k -X --pooled-306 

continuous --report-monomorphic  --min-repeat-entropy 1 --use-best-n-alleles 2 -G 1. Freebayes 307 

is a variant caller that corrects for misalignments using a local realignment among other 308 

features, adapted to SNV calling in highly heterologous cancer genomes. The output vcf file was 309 

filtered with a custom Perl script (vcf2cons.pl, available as part of the MATAFILER pipeline), that 310 

created a consensus sequence from the reference allele, unless the alternative allele 311 

frequencies was >0.501. The minimum coverage was set to 2 alleles. The 0.501 threshold 312 

serves to avoid introducing a reference bias in the consensus sequence and to filter reads 313 

assignments at a depth of 2, that have a 50% allele frequency.  314 

Further, using the 50% allele frequency cutoff circumvents the possibility of several strains 315 

being present in the same host, by only estimating the genome of this strain. If a second strain 316 

would in another time point arise to become the dominant strain, this would be immediately 317 

inferable from the within host diversity and flagged as a strain exchange (which happened in two 318 

hosts for P. distasonis). 319 

 320 

Estimating gene copy numbers on assembled genomes 321 

Gene copies on a genome can severely influence SNV calling, as two similar copies of a gene 322 

may accumulate mutations over time. These fixed mutations differing between the two genes 323 

will be called as high confidence SNVs at 50% abundance, thus appearing as majority allele 324 

based on a random process in underlying reads covering the duplicated genes. For this we 325 

developed our own R scripts to use the coverage estimation across the species contigs in a 50 326 

bp window (described above). Coverage across a contig is often not linear, due to growth of 327 

bacteria and a coverage gradient between the origin and terminus of replications [54]. 328 

Therefore, we first used a robust linear model (function rlm in R) to find a linear fit between 329 

coverage and genomic position. We corrected the genome coverage, using the residual of this 330 

linear model to obtain genome coverage estimates unobstructed by growth rate coverage 331 

dynamics. Within this fit, we identified positions using the arbitrary threshold > 1.7 (corrected) 332 



average genome coverage for more than 4 consecutive 50 bp windows, to ensure that spurious 333 

variation in genome coverage was not flagged as SNVs. 334 

 335 

Phylogenies estimated from consensus genomes per sample 336 

The consensus genome per sample (as described above) was first further masked, at the 337 

beginning and end of contigs (200bp) and regions that were estimated to be copy number 338 

variations (see above). Samples were excluded if the amount of undefined genomic positions 339 

exceeded 60% of the total genome length. Further, for the non-synonymous trees, all sites 340 

except those at tRNA, rRNA or 0-fold sites within genes were removed from the alignment. For 341 

the synonymous trees only sites at 4-fold degenerate codon sites were included and the others 342 

removed from the alignment. From these consensus genomes a phylogenetic tree was built 343 

using the “buildTree4.pl” script from the MATAFILER pipeline. Briefly, for all sites we used 344 

gubbins [55] to remove recombining regions and reconstruct a phylogeny as implemented in the 345 

pipeline with the following command line options: “--filter_percentage 50 --tree_builder hybrid”. 346 

For the non- and synonymous trees, we used IQ-TREE ver. 1.6.3.a [36] and ModelFinder [37] 347 

(option “-m TEST”) to automatically determine the optimal nucleotide substitution model. To 348 

further validate our mutation rate estimates, we also constructed bootstrapped trees for non- 349 

and synonymous trees, using the option “--fast" to obtain 100 phylogenetic trees that were 350 

subsequently used to determine confidence intervals. 351 

 352 

Statistical analysis 353 

All statistical analysis was conducted in R 3.3.4 unless otherwise noted. Composition matrices 354 

such as species of ARG abundance matrices were normalized by sum, unless otherwise noted. 355 

Ordinations were visualized with non-metric multidimensional scaling (NMDS), as implemented 356 

in the vegan function “metaMDS”, engine “monoMDS”, using between sample Bray-Curtis 357 

distances, and restricted to two dimensions, unless otherwise noted. Ordination via principal 358 

coordinate analysis (PCoA) was calculated via the capscale function, as implemented in vegan. 359 

Differences between univariate variables such as taxonomic abundance or taxa richness were 360 

tested using a non-parametric Wilcoxon rank-sum test, with Benjamini-Hochberg multiple testing 361 

correction. Post-hoc statistical testing for significant differences between all combinations of 362 

three or more groups was conducted only for taxa with p<0.2 in the Kruskal-Wallis test. For this, 363 

wilcoxon rank-sum tests were calculated for all possible group combinations and corrected for 364 

multiple testing using Benjamini-Hochberg multiple testing correction. 365 



Species richness was calculated using rtk [30], rarefying the species abundance matrix to 1200 366 

species counts per sample, unless otherwise noted. Species nestedness and turnover was 367 

calculated using betapart 3.4.4 [56], from the species abundance matrix rarefied to 1200 counts 368 

per sample. 369 

 370 

Species association network 371 

The species association network was built from the normalized species abundance matrix, 372 

excluding species occurring in less than two samples. From this abundance matrix, a 373 

cooccurrence network was constructed using the meinshausen-buhlmann's neighborhood 374 

selection implemented in the R pipeline Spiec-Easi 0.1.4 [57], that relies on sparse 375 

neighborhoods and inverse covariance selection to construct its association network, to avoid 376 

detection of indirect associations. From the inferred network, we used igraph library version 377 

1.2.1 [58] to remove loops and visualize the network. As edge weights, we used spearman 378 

correlations between single species.  379 

 380 

Data availability. All metagenomics and metabarcoding sequences have been deposited in the European 381 

Bioinformatics Institute-Sequence Read Archive database, under accession number PRJEB28730.  382 

 383 

Code availability. The C++ program to rarefy matrices is available under 384 

https://github.com/hildebra/Rarefaction. The pipeline to process metabarcoding sampels is 385 

available under http://psbweb05.psb.ugent.be/lotus/. The pipeline to process shotgun 386 

metagenomic samples is available under https://github.com/hildebra/MATAFILER .The C++ 387 

program to calculate read depth windows is available under https://github.com/hildebra/rdCover. 388 

Supplemental Text 389 

Genome binning assisted by different sequencing technologies and algorithms 390 

UB. ceftriaxensis appears to be a common rare member of the human gut microbiota, also found 391 

in other human associated environments. Since all culturing attempts failed (see section 392 

Methods), we had to reconstruct its genome from metagenomes in order improve our 393 

understanding of the species’ biology. A subset of metagenomic samples that had a relative 394 

abundance of UB. ceftriaxensis >= 0.2% were selected and used in all subsequent metagenomic 395 

analysis (132 samples total, Suppl. Table 8), although even in this subset UB. ceftriaxensis was 396 

https://github.com/hildebra/Rarefaction
http://psbweb05.psb.ugent.be/lotus/
https://github.com/hildebra/MATAFILER


often just above the metagenomic detection threshold (Suppl. Fig. 1b), demonstrating its 397 

rareness. These 132 metagenomes were de novo assembled and a novel gene catalog was 398 

constructed at a 95% gene identity threshold, totaling 5,790,967 non-redundant genes (see 399 

Methods). Through an initial draft genome binning of sample HD.S1.374, four species bins were 400 

recovered (Fig. 1a), consisting of UB. ceftriaxensis, as well as Lactobacillus casei, 401 

Streptococcus thermophilus and Propionibacterium freudenreichii. The GC vs abundance plots 402 

for days 347, 376, 377, 378 and 380 illustrating these species are show in Suppl. Fig. 17. 403 

 The assembly quality of the three latter species was low, and those bins were therefore not 404 

used in further analysis (data not shown). Further, we recovered an initial binning of P. 405 

distasonis for sample HD.S1.377. Since the genomes were instable when rarefying to different 406 

sequencing depths, we used additionally canopy clustering and identified the bins representing 407 

these five species (Nielsen et al. 2014). Since predicted bins often differed by hundreds of 408 

genes (Suppl. Fig. 16c), a custom binning method starting from these two bins (Suppl. Fig. 409 

16a,b, see Methods) was combined with a mate-pair sequencing library generated from sample 410 

HD.S1.380 (1.3% relative UB. ceftriaxensis abundance). Based on this, a draft genome for both 411 

UB. ceftriaxensis and P. distasonis was obtained that were used for further analysis unless 412 

otherwise mentioned. The UB. ceftriaxensis genome consisted of 8 scaffolds (10 contigs) with a 413 

N50 of 1,925,355 bp and a total length of 2,608,799 bp (see Suppl. Table 3). The genome 414 

contains 2,386 predicted genes, one SSU rRNA, two LSU rRNA and 45 tRNA genes as well as 415 

all 40 essential and conserved marker genes [14]. The 16S rRNA gene predicted in these 416 

contigs classified the species as part of the Firmicutes phylum, as detailed later. Within the set 417 

of NCBI unclassified environmental nucleotide sequences, we found a >99% identical sequence 418 

16S rRNA gene sequence published in 2006, sequenced from fecal human samples [59]. This 419 

independently derived 16S rRNA gene sequence from stool samples gives an initial indication 420 

that the species does exist in other samples and is widely spread. 421 

 422 

The UB. ceftriaxensis genome assembly was 94.6% complete based on the MiGA algorithm [33] 423 

containing 105/111 essential marker genes, of which two were potential duplicates (1.8% 424 

contamination). These estimates were reproducible with the CheckM algorithm [32] (94.8% 425 

completeness, contamination rate of 2.45%). The three most closely related genomes (see also 426 

Suppl. Fig. 5) in public databases were MGS (metagenomic species) based on metagenomic 427 

binning approaches [17]. Their binning quality appeared to be worse with an average genome 428 

completeness of 92% and a contamination of 1.04% (CheckM, Suppl. Table 4), which is still a 429 

fairly high quality for metagenomic assembled genomes [60]. Overall, the genome quality of the 430 



new species can be considered as “high-quality-draft”, based on criteria put forward in [61], by 431 

far outranking the quality criteria proposed for draft genomes used to describe novel species 432 

(80% completeness, < 5% contamination)[60]. To investigate this further, a reference database 433 

of Firmicutes genomes was built, containing one randomly selected genome from most known 434 

Firmicutes species (total of 243 high quality genomes) referred to in the following as Firmicutes 435 

database. The genome quality of UB. ceftriaxensis is within the range of these reference 436 

genomes (genome completeness: 98.2± 4%, contamination 1.3±6.4%, mean ± sd for cultured 437 

Firmicutes species, Suppl. Table 4). The assembled genome of P. distasonis is of even higher 438 

quality (completeness 99.42%, contamination 0.38%, based on checkM). 439 

 440 

Functional annotation indicates an anaerobic spore forming fermenter of a wide array of 441 

carbohydrates 442 

Metabolism & Genetics 443 

Functional annotation indicates that UB. ceftriaxensi is anaerobe with fermentative metabolism 444 

and able to utilize a wide range of sugars (detailed listing in Suppl. Table 6, see also Suppl. Fig. 445 

2 for an overview). The carbohydrate-active enzyme (CAZyme) profile of UB. ceftriaxensi is 446 

dominated by enzymes acting on plant carbohydrates (60 genes), followed by animal 447 

derived/prevalent carbohydrates (24 genes). The low ratio of detectable signal peptides in 448 

CAZymes (28 of 269) indicates the limmited capacity of UB. ceftriaxensi processing dietary 449 

polysaccharides, which requires export of carbohydrate-active enzymes to the external milieu 450 

[58]. The CAZymes translocated by UB. ceftriaxensi that are related to dietary polysaccharides 451 

include glucosidades (GH13, GH3), fructofuranosidases (GH32) and galactosidades (GH36). UB. 452 

ceftriaxensi encodes components of ABC transporters for mono and oligosaccharides (103 453 

genes). Their encoding proteins were annotated to participate in the uptake of multiple sugars, 454 

raffinose, stachyose, melibiose, N-acetylglucosamine, arabinogalactan oligomer and ribose. The 455 

preference for mono- and dissaccarides is supported by the presence of enzymes for the 456 

metabolism of alpha-L-fucoside, alpha-L-rhamnoside, alpha-trehalose, beta-glucoside, 457 

cellobiose, fructan, galactoside, L-arabinose, maltose, mannosides and mannose, sucrose, and 458 

xylan. Many of these sugars are directed to the glycolysis pathway (Embden-Meyerhof-Parnas), 459 

with exception of xylose and L-arabinose, which are directed to the Pentose Phosphate pathway 460 

(PPP). Genes of the oxidative part of pentose phosphate pathway (conversion of β-D-glucose 6-461 

phosphate to D-ribulose 5-phosphate) were not detected. On the other hand, the non-oxidative 462 

part is almost complete, lacking only the transaldolase (EC: 2.2.1.2). This is indicative that 463 

fructose 6-phosphate and Glyceraldehyde 3-phosphate, but not glucose 6-phosphate, are the 464 



connecting metabolites between glycolysis and PPP. As a central point in fermentative 465 

metabolism, pyruvate can be converted to ethanol and lactate. Pyruvate can also be converted 466 

to acetyl-coenzyme-A (acetyl-CoACoA), which is branching point for lipid synthesis and synthesis 467 

of TCA components, available for further anaplerotic reactions.  This conversion is carried out by 468 

formate C-acetyltransferase, of which reversible reaction requires CoA and produces additionally 469 

formate. Considering the absence of genes encoding for formate hydrogenlyase, that 470 

disproportionates formate to CO2 and H2 [62], formate is likely incorporated into the one carbon 471 

pool by formate-tetrahydrofolate ligase or secreted [63]. Acetate can be converted to acetyl-CoA, 472 

via acetyl-CoA synthetase. Acetate consumption and production can be switched depending on 473 

the rate of acetate-producing substrates and acetates in the environment [64]. This could indicate 474 

a mixed acid fermentation. 475 

It has been proposed a net of cross-feeding interactions for anaerobic conversion of dietary insoluble 476 

carbohydrates [65]. In this context, UB. ceftriaxensi would benefit from the extracellular degradation 477 

of polysaccharides by primary degraders and polysaccharide utilizers. In return, the products of 478 

fermentation of UB. ceftriaxensi would fuel the metabolism of other microbiome members, such as 479 

those that ferment lactate to butyrate [66]. In support of this scenario, 250 of the genes were 480 

involved in transport functions, including 182 genes coding for components of ABC transporters. 481 

In addition to genes encoding for carbohydrate transporters (described in the previous 482 

paragraph), UB. ceftriaxensi encodes transporter genes involved in the transport of vitamins, e.g. 483 

vitamin B12, minerals, drugs, phosphate and other compounds. Besides drug efflux transporters, 484 

Tec2 encodes 10 additional genes involved in drug resistance, including genes with putative beta-485 

lactamase domains. 486 

UB. ceftriaxensis encodes two ATPases, a F-type and a V/A-type. Because of the absence 487 

of genes for oxidative phosphorylation proteins, it is likely that the F-type ATPase hydrolyses ATP 488 

to transport protons or sodium [67]. Therefore, both F-type and V/A-type, as V/A-type ATPase 489 

which is a proton or sodium pump, may function in pH homeostasis of the cell [68].  490 

Interestingly, the UB. ceftriaxensi genome encodes proteins similar to structural components of 491 

microcompartments. Bacterial microcompartments are protein-bound organelles that confine 492 

cytotoxic intermediates [69] or enzymatic reactions compromised by oxygen [70]. As known for 493 

Salmonella typhimurium [71], it is likely that UB. ceftriaxensi microcompartments are involved in 494 

the utilization of 1,2 propanediol, which is a product of the fermentation of the sugars rhamnose 495 

and fucose, both naturally occurring in plants and other organism. Although the key enzyme of 496 

1,2 propanediol utilization was not annotated in the genome, i.e. adenosylcobalamin-dependent 497 

diol dehydratase [72], the colocalization and co-orientation of microcompartments genes with 498 



genes encoding rhamnose and fucose degrading enzymes supports the use of 1,2 propanediol 499 

in UB. ceftriaxensi. Specifically, co-localized genes include L-fuculose-phosphate aldolase and 500 

rhamnulokinase which are part of enzymatic reactions chains that produce (S)-lactaldehyde, that 501 

is reduced to 1,2 propanediol. This genomic arrangement is similar to what is found in other 502 

bacteria, where bacterial microcompartment (BMC) genes are colocalized with genes encoding 503 

for auxiliary functions, including, transporters and auxiliary genes [66]. Propanol and propionate 504 

are products of 1,2-propanediol utilization in bacteria [71,73]. 505 

UB. ceftriaxensi is very likely a spore former, as it encodes 40 genes related to several stages of 506 

sporulation, including genes related to the stages II, III, IV and V. The species seems to be 507 

competent, i.e. recombination competent, as part of machinery required for competence (PilB, 508 

PilC, ComEC and ComFC) is present in the genome [74]. Beyond this competence, we find 509 

several genes associated to the defense against foreign DNA, such as restriction type I and 5-510 

methylcytosine-specific restriction enzyme B.  511 

 512 

Resistances and Pathogenicity 513 

Although the metabolism of UB. ceftriaxensi seems to function anaerobic, it’s possible that it can 514 

tolerate some degree of oxygenation, as we can find defense genes against reactive oxygen 515 

species (ROS), like rubrerythrin and thioredoxin. However, this could also be related to defense 516 

against white blood cells, that can use ROS to control bacteria [75].  517 

We could assign 359 genes to either the Virulence Factor database (VFDB) [76] or a custom 518 

virulence factor subset from PATRIC [24]. However, most of these assignments do refer to parts 519 

of the bacterial metabolism. Several endotoxins seem to be present (lipopolysaccharide and 520 

lipooligosaccharides), genes involved in biofilm formation, O2 resistance and genes involved in 521 

antiphagocytosis. Several genes are putatively involved in iron, copper and zinc uptake. Of note 522 

is further Haemolysin and corresponding transporters, required to lyse eukaryotic cells. 523 

Comparing to the expected distribution given other Firmicutes bacteria, we observed a n.s. 524 

enrichment in the putative virulence categories Autophagy, Phosphate uptake, Escape from 525 

phagosome and Chaperone (data not shown). 526 

 527 

Resistance of UB. ceftriaxensis to beta-lactam antibiotics  528 

UB. ceftriaxensis encodes genes related to drug resistance, such as genes coding for mate 529 

efflux family proteins, putative beta-lactamases and phosphinothricin acetyltransferase, which 530 

confer resistance to herbicides in Streptomyces hygroscopicus [77].  531 



We further tested the two putative beta-lactamases experimentally, that had a low similarity to 532 

known beta-lactamases (33% and 31% AA identity, respectively to NCBI NR hypothetical beta-533 

lactamases). Both candidate genes seem to be part of the core genome (peg.343, peg.1661, 534 

Suppl. Table 6), as they were assembled into the largest contig. 535 

To determine the beta-lactamase activity of these genes, they were expressed in E. coli  and 536 

beta-lactamase activity was tested on nitrocefin disks (Sigma). The disks changed color when 537 

they had contact with the CTX-M 15 beta-lactamase expressing colony used as positive control 538 

indicating strong beta-lactamase activity. A weaker, but clearly positive reaction was observed 539 

for UB. ceftriaxensis fig|6666666.214148.peg.343 (Suppl. Table 6). E. coli expressing UB. 540 

ceftriaxensis fig|6666666.214148.peg.2120 revealed no such activity (data not shown).  541 

However, while the CTX-M 15 beta-lactamase led to ampicillin and ceftriaxone resistance in E. 542 

coli, none of the two potential UB. ceftriaxensis beta-lactamases was functional enough to 543 

support growth in presence of ampicillin or ceftriaxone. 544 

 545 

Survival of UB. ceftriaxensis upon antibiotics treatment 546 

Ceftriaxone disrupts the peptidoglycan synthesis in the bacterial cell wall, inhibiting essential 547 

penicillin binding proteins (pbp’s). Bacterial resistance to beta-lactam antibiotics can be 548 

conferred either through resistant forms of pbp’s, beta lactamases or through spore formation 549 

that survive the antibiotic treatment. UB. ceftriaxensis had two putative beta lactamases, but 550 

both showed no or insufficient activity against ceftriaxone experimentally (see above). 551 

Alternatively, UB. ceftriaxensis might survive as dormant persistor cells or spores, such as C. 552 

difficile [78], as supported by high abundance of genes related to spore formation.  553 

However, spore formation, that is persistence without growth, also seems unlikely as sole 554 

explanation, since UB. ceftriaxensis absolute cell numbers were >1,100x increased compared to 555 

baseline levels on the first day after antibiotic treatment. One would still expect a remaining 556 

ceftriaxone concentration of 12-25% in the gut at this time point (see Methods). Thus, a direct 557 

cephalosporine resistance of UB. ceftriaxensis seems likely, and this resistance is in gram 558 

positive bacteria often conferred through resistant pbp’ that are inherently resistance to beta-559 

lactams [79]. The UB. ceftriaxensis genome encodes two class 5/6 pbp’s, a class that has been 560 

linked to confer cephalopsporin resistance in Enterococci and Listeria [80,81]. Before, it has 561 

been shown to confer specifically ceftriaxone resistance [82]. While there are no molecular tools 562 

to test the resistance of this pbp by transfer of the gene into another species, it seems most 563 

plausible that UB. ceftriaxensis is resistant to ceftriaxone and that this resistance might be 564 

intrinsically conferred through a combination of resistant pbp’s and surviving as spores. 565 



 566 

Detection of UB. ceftriaxensis in public samples 567 

To investigate the prevalence of UB. ceftriaxensis in diverse environments we screened 3,692 568 

public metagenomic datasets from human associated and other environments (see Methods). 569 

The overall prevalence of UB. ceftriaxensis was 20.1% over all samples (Suppl. Table 7), being 570 

most prevalent in gut samples from 3 continents (30.1% of 1,801) but entirely absent in ocean 571 

samples (n=243). Exploring different human body sites, it is detectable in 8 out of 18 non-gut 572 

sites. However, in non-gut samples detection rate was spurious (2.6% of 952 non-gut human 573 

associated samples). We further analyzed 1,163 metagenomes balanced among animal guts 574 

(mouse, pig, cat and dog), as well as ocean and soil, but did not detect this species in any of 575 

these. 576 

 577 

Density of bacterial cells in stool samples 578 

Cell numbers are relatively stable within and between patients, ranging from 0.11 - 1.03 e12 579 

cells/ml stool. This seems realistic, although slightly higher than the average reported in a 580 

metanalysis of several studies (0.92e11 cells/ml stool, [83]). Since our cell counts were 581 

restricted to 19 samples total, we had no overlapping time point between pre-antibiotic UB. 582 

ceftriaxensis detection and cell counts. To still infer absolute ratio change in UB. ceftriaxensis 583 

bloom at day 374 compared to previous samples, we used the relative abundance of the deeply 584 

sequenced day 7 and the mean abundance of all samples with cell counts before day 374, 585 

namely day 0 and 60 to approximate the absolute abundance of UB. ceftriaxensis before day 586 

374. 587 

 588 

P. distasonis patient specific association 589 

P. distasonis was associated to an antibiotic induced monodominance and therefore we wanted 590 

to investigate if P. distasonis was replaced by another strain of the same species during the 591 

antibiotic treatment. This analysis showed that P. distasonis remained stable over time in 592 

subject HD.S1, but also most other subjects in the discovery dataset, with the exception of two 593 

subjects that showed a clear change of P. distasonis genotypes (Suppl. Fig. 10a). Furthermore, 594 

we found that P. distasonis strains were nearly identical strains (<100 nt differences genome 595 



wide) in subjects (HD.S1 + HD.S4, HD.S8 + HD.S9). We note that HD.S1+HD.S4, as well as 596 

HD.S8+HD.S9 are each family members and a within family strain transfer seems to be the 597 

most likely scenario explaining this similarity (Suppl. Fig. 10a).  598 

Between patients, we found an average inter-sample evolutionary distance of 99.1±0.5% 599 

(corresponding to 45,840 nt average genomewide differences, Suppl. Fig. 10b). This indicates 600 

that this species could be represented by a single ecotype within the 31 subjects analyzed here.  601 

 602 

Functional changes upon antibiotics treatment 603 

We hypothesized that functional potential of the microbiome should be changed after the 604 

antibiotic treatment. Indeed, putative pathogenicity genes (PPGs) were increased in the first and 605 

decreased in the second stage, relative to states after >30 days of treatment, while for antibiotic 606 

resistance genes (ARG) the opposite was true (Fig. 4c, p<0.05, Suppl. Table 12): the second 607 

stage was significantly enriched in ARGs, specifically beta-lactamases (Suppl. Table 13), that 608 

confer a resistance to both antibiotics used. PPGs were enriched in the first stage. In the 609 

second stage overall CAZy potential was increased (p=0.0028), while it was decreased in the 610 

first stage (Fig. 4c). CAZymes categories specific to food derived (plants, animals) 611 

carbohydrates were increased during both second stages, especially after Cefuroxime treatment 612 

(Suppl. Fig. 13a), in contrast to decreased CAZYmes specific to microbial substrates (bacterial, 613 

fungal) (Suppl. Fig. 13b). This could be interpreted as predatory species being decreased in the 614 

first stage of community rebuilding. 615 

Monodominance occurrence in the human microbiome 616 

While monodominance can be considered an unnatural state of the healthy human microbiome 617 

by our current knowledge, the occurrence of monodominance could be higher than currently 618 

published studies would imply. Conversely we argue, that monodominance states might have 619 

been overlooked so far, as (i) temporal sampling is usually much sparser than our study; (ii) 16S 620 

sequencing might underestimate the true abundance of monodominant species due to PCR 621 

biases and 16S copy number variations [84,85]; (iii) only few microbial studies have included 622 

patients treated with intravenous antibiotics [86] [87]; (iv) samples might have been discarded 623 

from analysis due to “contamination” with a single unknown organism, which standard 624 

metagenomics methods will often fail to detect [40,88] and (v) such dramatic community 625 

restructuring can remain unnoticed as subject HD.S1 did not report any phenotypic effects 626 

during monodominant phases. 627 



 628 

Proposed changes to firmicutes taxonomy and placement of UB. ceftriaxensis- 629 

supporting information 630 

In the high resolution phylogeny for Firmicutes taxa, most families appear monophyletic, but a 631 

few notable deviations can be observed in the phylogeny based on 40 marker genes (Fig. 3) or 632 

in the 16S based phylogeny (Suppl. Fig. 6). For example, Eubacterium rectale is clearly in the 633 

same clade as Lachnospiraceae and not Eubacteriaceae as proposed in the NCBI taxonomy 634 

and therefore recently proposed to be reclassified to family Lachnospiraceae, based on 635 

genomic as well as cellular features [89], as also in our phylogeny. Heliobacterium 636 

modesticaldum seems to either be part of Peptococcaceae, several species currently classified 637 

as Peptococcaceae are a new family, based on both 40 MG and 16S phylogeny. We have 638 

proposed several suggested changes to the Firmicutes taxonomy in Suppl. Table 10. Indeed, a 639 

recent work describing most bacterial genomes available publicly proposed very similar 640 

changes [90]. Of note are Thermoacaerobacteraceae and Peptococcaceae, that appear 641 

intermixed based on the 40 MGs phylogeny (Fig. 3), though this is only to a lesser degree 642 

supported by the 16S rRNA gene phylogeny. 643 

The family Ruminococcaceae is especially interesting in our analysis, as UB. ceftriaxensis could 644 

be part of this clade. Notably, Ruminococcaceae is paraphyletic based on our analysis, and we 645 

propose to split this family into three families: there is a distinct “core” group including genera 646 

such as Faecalibacterium and the type genus Ruminococcus, that are monophyletic in all 647 

phylogenetic analysis. However, other Ruminococcaceae can be separated into two clusters: 648 

Clostridium cellulyticum, Clostridium josui, Pseudobacteroides cellulosolvens, Ruminiclostridium 649 

thermocellum and Acidothermus cellulyticus form an outgroup that is well supported by 650 

bootstrap values and always separated from the core Ruminococcaceae clade, by either the 651 

family Eubacteriaceae (Fig. 3) or the family Oscillospiraceae (Suppl. Fig. 6). Intriguingly, R. 652 

thermocellum was recently renamed from Clostridium to genus Ruminiclostridium, with the 653 

authors already noting its uncertain phylogenetic position in family Ruminococcaceae [91]. The 654 

third Ruminococcaceae clade consists of Mageeibacillus indolicus, recently isolated from 655 

human vaginal samples [92], Ruminococcaceae bacterium AB4001 and Ruminococcaceae 656 

bacterium AE2021, both part of the Hungate 1000 project 2 culturing cow rumen bacteria. To 657 

resolve the observed polyphyletic branching of Ruminococcaceae, we propose that the two 658 

discussed clades should form two new taxonomic families by themselves (Suppl. Table 10), 659 

                                                
2  http://www.rmgnetwork.org/hungate1000.html 



named Erisaceae fam. nov. and Discordiaceae., fam. nov., named after the greek and latin 660 

goddess of discord, Eris and Discordia. It is of note that AB4001 and AE2021 fall only within the 661 

Discordiaceae family in the 40 MG tree, while their 16S seems to place them within 662 

Lachnospiraceae (Suppl. Fig. 6).  663 

This grouping is further supported by distance-based analysis: In our phylogenetic analysis we 664 

argue that the polyphyletic Ruminococcaceae family represents multiple clades, based on 665 

phylogenetic maximum likelihood trees (16S, marker genes). We propose to divide 666 

Ruminococcaceae into different families with UB. Ceftriaxensis placed as a new separate family.  667 

 668 

The proposed phylogenetic structure was further tested based on the similarity (percent identity) 669 

of the 40 marker genes nucleotide sequences, amino acid sequences and 16S sequences. As a 670 

reference, the minimum and the median percent identities from genomes of our Firmicutes 671 

reference database were calculated on different taxonomic levels, restricted to species that 672 

represent monophyletic clades in the amino acid tree. We compared the genomic similarity of 673 

Ruminococcaceae species to each other and to within family genetic similarities of other 674 

Firmicutes families (Suppl. Table. 9). First, we note that the median amino acid as well as 16S 675 

nucleotide similarity of all members of the originally annotated Ruminococcaceae family is very 676 

low (60.7% and 88.8%) compared to the average among all other Firmicutes families (70.9% 677 

and 91.6%), actually even lower or comparable to the average within class level (62.1% and 678 

88.2%) strongly indicating that species currently annotated as Ruminococcaceae should be 679 

represented by multiple families, or even classes. This agrees with our phylogenetic analysis 680 

(see above), where we identified three distinct clusters of Ruminococcaceae: the core cluster 681 

composed of seven species and Ruminococcus sp., the three species of Discordiaceae fam. 682 

nov. and Eriseae fam. nov.. While the Eriseae family clearly represents one family (71.7% 683 

median amino acid identity), the members of the Ruminococcaceae main cluster and the 684 

Discordieae cluster are both less similar (65.4% and 63.3% median amino acid identity, 685 

respectively), thus potentially still representing more than one family, given 70.9% being on 686 

average the median AA similarity typically found among members of Firmicutes families (Suppl. 687 

Table 9, Suppl. Fig. 5). 688 

 689 

Further, our analysis strongly indicates that UB. ceftriaxensis represents a new separate family 690 

including three MGS, binned genomes from gut metagenomic samples (Nielsen et al. 2014). 691 

This clade is in our analysis distinct from Ruminococcaceae, Discordieae and Eriseae, 692 

given median genetic similarities (Suppl. Fig. 5) and phylogeny (Fig. 3). Instead family 693 



Catabacteriaceae is the most similar family, represented by type species Catabacter 694 

hongkongensis.  695 

 696 
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