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Abstract

CLIP-seq methods allow the generation of genome-wide maps of RNA binding protein – RNA interaction sites.
However, due to differences between different CLIP-seq assays, existing computational approaches to analyze the
data can only be applied to a subset of assays. Here, we present a probabilistic model called omniCLIP that can detect
regulatory elements in RNAs from data of all CLIP-seq assays. omniCLIP jointly models data across replicates and can
integrate background information. Therefore, omniCLIP greatly simplifies the data analysis, increases the reliability of
results and paves the way for integrative studies based on data from different assays.
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Background
All RNA molecules are subject to post-transcriptional
gene regulation (PTGR)mechanisms, including sequence-
, structure- and RNA-modification-dependent modula-
tion of splicing, cleavage and polyadenylation, editing,
transport, stability, and translation. In the regulation of
PTGR RNA-binding proteins (RBPs) play an important
role. Many RBPs are required for constitutive processes,
such as pre-mRNA splicing, cleavage, and polyadenyla-
tion. Furthermore, cell-type specific RBPs and non-coding
RNAs can regulate the flow of genetic information in
more directed manners, e.g. by regulating mRNA stability
or translation. The complex orchestration of RBPs upon
their respective targets ultimately determines appropriate
protein expression.
The complexity and importance of PTGR is under-

scored by the large number of RBPs that have been
identified in recent genomics and proteomics studies [1],
as well as the wide range of diseases that result from
genetic alterations within RBPs and/or their mRNA tar-
gets [2, 3]. Despite this large number of human RBPs,
for the vast majority, neither their targets nor functions
are well understood. Uncovering the regulatory sequence
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elements and important RNA-RBP interactions will be
critical to interpret human genetic variation in regu-
latory RNA regions and in the noncoding transcripts
that are increasingly uncovered by genome-wide deep
sequencing [4, 5].
Deep sequencing technologies have enabled the devel-

opment of various new protocols for mapping interaction
sites between RBPs and their RNA target sites, as well
as for identifying RNA-modifications on a genome-wide
scale. Therefore, it is now possible to resolve interde-
pendencies and redundancies of binding of RBPs and
ribonucleoprotein particles (RNPs) to mRNA molecules
and evaluate the contribution of these interactions to
gene regulation in the context of cellular metabolism,
organismal development or normal and disease states
[6, 7]. Experimental approaches to study genome-wide
RNA-RBP interactions include different variants of cross-
linking and immunoprecipitation (CLIP) protocols: high-
throughput sequencing of RNA isolated by crosslinking
immunoprecipitation (HITS-CLIP) [8], photoactivatable
ribonucleoside enhanced cross-linking and immunopre-
cipitation (PAR-CLIP) [9], individual nucleotide resolu-
tion cross-linking and immunoprecipitation (iCLIP) [10],
individual-nucleotide resolution crosslinking and affinity
purification (iCLAP) [11], crosslinking and cDNA analy-
sis (CRAC) [12], enhanced CLIP (eCLIP) [13] and other
methods. Similar principles have alsomotivated the devel-
opment of protocols to study transcript modifications
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such as m6A-seq [14] or Pseudo-seq [15]. These protocols
all have in common that they enable sequencing of RNA-
fragments that were bound by a specific RBP or carry
a modification, via antibodies against the native protein,
modification or tagged transgenic RBPs.
Due to biochemical properties of RBP cross-linking, the

resulting reads contain conversions, deletions or trunca-
tions at or near the cross-linked sites. These so-called
diagnostic events are indicative of RNA-RBP interactions
or RNA modifications and thus enable nucleotide-level
identification of the binding sites. For PAR-CLIP the most
common diagnostic event type is a T-C conversion, for
iCLIP and eCLIP it is a truncation and for HITS-CLIP a
deletion. It should be noted, however, that there can be
also less abundant secondary diagnostic event types at the
interaction sites [16].
Similar to ChIP-seq [17], the resulting data from these

protocols exhibits pileups of reads (peaks) near interac-
tions sites. The height of peaks is influenced by factors
such as the strength of binding, interaction or competi-
tion with other RBPs, local biases induced by differences
in RNAse digestion efficiencies and PCR-biases [18]. A
fundamental difference to ChIP-seq, however, is that the
coverage at interactions sites, but to a smaller degree also
at non-binding sites, is strongly influenced by the wide
magnitude of RNA expression levels, i.e. the relative abun-
dance/availability of the transcript that was bound. The
extend of confounding of the peak height by factors apart
from the binding strength, can be estimated from input
or background libraries, which include most steps of the
CLIP protocols except the immunoprecipitation. Another
challenge of the data is that there are often spurious peaks
at locations that do not show the typical characteristics
of binding sites (e.g. motifs). In summary, the challenge
of CLIP data analysis includes the proper modelling of
peak height and the diagnostic events, while accounting
for confounding factors and modelling of technical and
biological variance.
Various methods have been proposed to recover the

interaction sites from sequencing data [19, 20]. PARalyzer
[21], the first dedicated tool for PAR-CLIP data analysis,
mapped sites via local maxima of kernel-smoothed pro-
files of T-C conversion events. WavCluster [22] models
the T-C conversions and sequencing errors using a bino-
mial distribution and estimates a background threshold
to identify peak boundaries. The binomial model of T-
C conversions is extended by BMIX [23]) to also model
sequence variants. Methods that do not model the diag-
nostic events include Piranha [24], which determines bins
of fixed size that have a higher number of read starts
than expected by chance. Piranha was the first method to
model the CLIP-reads using a Negative binomial distribu-
tion and principle also allows including covariates. Clip-
per [25] is another methods that does not uses diagnostic

events. It models background read-counts using a Poisson
distribution and identifies regions that are higher than
expected by chance. However, all these methods suffer
from at least one of the following shortcomings: (1) They
do not contain an explicit model for diagnostic events or
they can be only applied to a specific CLIP protocol as the
modelling of diagnostic events is restricted to only one of
the diagnostic event types. (2) They do not allow account-
ing for confounding factors, e.g. the gene expression. This
can lead to a high false positive rate of peaks in highly
expressed genes and at the same time a low true posi-
tive rate for peaks in lowly expressed genes. (3) As many
early datasets did not provide background or input control
libraries, many tools do not support integration of such
data.Most tools also cannot handle replicate data and thus
cannot account for biological variance, leading to poorly
calibrated methods.

Results
A novel approach for identification of RBP-RNA interaction
sites for all CLIP-seq assays
To address the shortcomings of existing methods, we
developed a new probabilistic method (omniCLIP) to
identify regulatory regions from all of the aforementioned
CLIP-seq protocols (see Fig. 1). The basic principle of our
model is to identify target sites via an unsupervised seg-
mentation of the genome. To this end, omniCLIP learns
the relevant diagnostic events directly from the data and
automatically uses them for peak calling. Furthermore, it
explicitly accounts for confounding factors as well as tech-
nical and biological variance. To achieve this, we employ
a Non-Homogeneous HiddenMarkovModel (NHMM) to
segment the genome into peaks and non-peaks. The emis-
sion probability of the NHMM is given by the product
of the joint probability of the coverage and the proba-
bility of the observed diagnostic event frequency in all
replicate CLIP and background libraries. To model cover-
age, we use a Negative Binomial based Generalized Linear
Model (GLM) that models both confounding by the gene
expression, confounding of local effects and also allows
to account for excess variance. The diagnostic events are
modeled using a Dirichlet-Multinomial mixture (DMM)
model. The transition probabilities of the model are based
on a logistic function that depends on the coverage. All
parameters of the model are learned from the data, mak-
ing it easily applicable to data from various protocols (see
Fig. 2 for an illustration of the omniCLIP components and
their application).

Evaluation of omniCLIP on PAR-CLIP data
To showcase the versatile abilities of omniCLIP, we
demonstrate its application across data from different
CLIP protocols, for RBPs that enable an independent eval-
uation of the quality of peak calls as well as on simulated
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Fig. 1 Illustration of omniCLIP peak calling. Shown on the (left) is peak calling for a lowly expressed genes with strong RNA binding protein (RBP)
RNA-binding and on the (right) a highly expressed gene with weak RBP RNA-binding. During peak calling, local background coverage is taken into
account to correct for confounding by local effects or biases. Furthermore, overall the RNA abundance is estimated and accounted for. This allows
better ranking peaks with identical local coverage by sharing of information along the transcript, as illustrated for the leftmost peaks in both genes

data. First, we assessed its performance on PAR-CLIP [9]
and eCLIP experiments for Pumilio 2 (PUM2), a RNA
binding factor with a known high sequence specificity. To
this end, we compared the predictions with those from
other PAR-CLIPmethods, including PARalyzer,WavClus-
ter, BMIX and a general peak caller Piranha. On this
PAR-CLIP dataset obtained from the human HEK293 cell
line, omniCLIP and PARalyzer called the highest number
of peaks (n = 13, 292 and n = 5, 602, respectively) fol-
lowed by BMix (n = 4, 501), WavCluster (n = 2, 473)
and Piranha (n = 678). As there is no matching PAR-
CLIP background dataset available for PUM2, we used
two HEK293 ribo-zero RNA-seq libraries as background
[7]. To evaluate the quality of the called peaks, we analyzed
the enrichment of high-scoring PUM2motifs in the peaks,
which we take as indicators of high-affinity binding sites.
As the number of peaks called by the different methods
varied by an order of magnitude due to different cut-offs
for peak calling, we compared the enrichment in the top
1,000 peaks of each method. For methods where no rank-
ing criterion for peaks was provided, we used a random
sub-selection of peaks (see Fig. 3a). The difference to the

other methods, was especially strong for peaks that had
a high motif score. All the enrichments are higher than
expected by chance (see Fig. 3a).
We, furthermore, investigated how different random

initialisations of our method affect the prediction. For
this, we applied omniCLIP with 100 different random
parameter initialisations. On average 98.6% of peaks over-
lapped between the runs, showing that omniCLIP fitting
is robust to different initialisations.

Evaluation of omniCLIP on eCLIP data
We then applied omniCLIP to a PUM2 eCLIP dataset
from the human K562 cell lines that we obtained from
ENCODE. Here, we compared omniCLIP with Clipper
and Piranha. We applied Piranha with and without pro-
viding it the background as a covariate. As eCLIP peaks
typically have longer tails than PAR-CLIP peaks, we used
for omniCLIP the central high confidence-parts of the
peaks. Applying Clipper results in on average 43,594 peaks
per replicates, whereas omniCLIP found 21,654 peaks
and Piranha 10,564 peaks, with omniCLIP exhibiting the
highest enrichment of high scoring motifs in the top 1,000
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Fig. 2 Illustration of omniCLIP application. a Shown is the read coverage of HES1 for two PAR-CLIP and two RNA-seq libraries as well as reads with
diagnostic events. Here, the T-C conversions are shown in (red). b Application of omniCLIP. First, the probability of each position and each state is
computed using the coverage profile model and the diagnostic event model. Next, the transition probabilities are computed based on the
coverage at each position. Finally, a Non-homogeneous Hidden Markov Model is applied to segment the sequence in to peak regions (P) and
non-peak regions (N, B1, B2)
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a) b)

c) d)

Fig. 3 Performance evaluation. a Sorted distribution the PUM2 motif scores of the top 1,000 called peaks for PARalyzer, Piranha, WavCluster, BMix
and omniCLIP on a HEK293 PUM2 PAR-CLIP dataset. Dashed lines indicate motif enrichments in a random control b PUM2 motif scores distribution
for the top 1,000 called peaks for omniCLIP, Clipper and Piranha on a HepG2 PUM2 eCLIP dataset. cMotif score distribution for the top 1,000 peaks
on the HepG2 PUM2 eCLIP dataset. Peaks are further classified by gene expression. d Precision recall curves for Clipper Piranha and omniCLIP on a
HepG2 SLBP dataset for discriminating histone genes and non-histone genes from peak scores

peaks (see Fig. 3b). Again the enrichment of high scores
in the top 1,000 peaks was not due to chance (see Fig. 3b).
To analyse how gene expression influences the quality of
the detected peaks, we binned the top 1,000 peaks based
on the expression level of the gene, in which they were
identified (see Fig. 3c). We found that for omniCLIP the
top 1,000 peaks were in genes that had a lower expression
than those genes in which the top 1,000 peaks of Clipper
and Piranha were found. Furthermore, we found for Clip-
per and Piranha a strong dependence of the motif score
of a peak and expression of the gene in which the peak
was located. In peaks within genes with less than 104 read
counts, omniCLIP, Piranha and Clipper 84% (827 of 985),
52% (430 of 824) and 44% (346 of 792) contained high
scoring motifs (x > 8.0), respectively. This was very dif-
ferent for peaks in genes with more than 10,000 counts:
Here, 50% (9 of 15), 6% (11 of 176) and 9% (18 of 208) of
omniCLIP, Piranha and Clipper peaks had high scoring

motifs. This suggests that omniCLIP has a better cali-
bration than Clipper and Piranha, especially for highly
expressed genes.
We further applied Clipper and omniCLIP to all other

eCLIP datasets for which motifs of length ≥ 6 from [26]
were available. In total, we identified 12 RBPs with both
eCLIP data as well as motifs (see Additional file 1: Sup-
plemental Table S1). On this data, we applied Clipper and
omniCLIP. For both methods, we determined for each
RBP the difference between the average motif score of the
top 1,000 peaks and the average motif score in a random
control. We found that there were two classes of RBPs
(see Fig. 4): Those for which the difference was small and
those for which it was large. For the first class of RBPs the
difference was comparable between Clipper and omni-
CLIP. For the class of RBP where the motif enrichment
was stronger than expected by chance, however, omni-
CLIP performed better than Clipper. This suggests that
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Fig. 4 eCLIP analysis. Shown is the mean average motif score of the
top 1,000 peaks over background for Clipper and omniCLIP for
selected eCLIP experiments

when the motif-score is a good evaluation criterion for
peak qualities, omniCLIP performs better than Clipper.
The two different classes of RBP could be due to several
biological or technical reasons: That for a subset of RBPs
the motif alone is not sufficient to characterise the bind-
ing sites, that themotif does not reflect the in-vivo binding
preference of the RBPs or that the CLIP-library qualities
were poor.
Available eCLIP data for SLBP allowed for another inde-

pendent validation of peak calls, as it is known to bind
specifically the 3’-ends of histone-gene mRNAs. Thus,
peaks in histone transcripts should have a higher score
than those found in other transcripts. Therefore, we com-
bined the scores of all peaks in a gene and measured via
the area under the precision-recall curve (auPRC), how
well the scores allow distinguishing of histone-genes from
other genes. Here, omniCLIP achieved an auPRC of 0.52,
Clipper an auPRC of 0.21, and Piranha an auPRC of 0.03
and 0.02 with and without using the background CLIP
data, respectively (see Fig. 3d).

Evaluation of omniCLIP on HITS-CLIP data
To demonstrate that omniCLIP can also be used to ana-
lyze HITS-CLIP data, we applied it on two libraries for
the Drosophila RBP CNBP (CG3800), which we have
previously identified as an unconventional RBP [27].
CNBP binds mainly to mature mRNA sequences in
Drosophila and human [27, 28]. Within these sequences,
CNBP shows a slight preference for binding of start
and stop codon proximal regions, relative to input (see
Fig. 5a) Both Drosophila CNBP HITS-CLIP replicates
come with size matched UV-crosslinked input control
of digested total RNA, collected prior to immunopre-
cipitation. Importantly, input RNA fragments undergo
a library cloning procedure very similar to HITS-CLIP
libraries, including RNA fragment size selection and

adapter ligation, resulting in highly accurate backgrounds.
Application of omniCLIP resulted in 34,224 peaks. The
peaks show increasing annotation to start and stop codon
categories with increasing peak scores (see Fig. 5b).
This is in agreement with human CNBP, which was
recently shown to bind preferentially to regions close to
start codons [28]. We identified the highly significant
GGAGGA motif relative to dinucleotide shuffled back-
ground (see Additional file 1: Supplemental Table S2)
in omniCLIP peaks annotated to be mature mRNA
sequences (see Fig. 5c). This confirms the reported k-mer
enrichment relative to input in concurrent in vitro and
in vivo studies of the human CNBP ortholog [28, 29].
Furthermore, we saw a strong connection of the motif
residing in proximity to the peaks summit (see Fig. 5d),
suggesting that omniCLIP can reliably resolve biologically
relevant interaction sites in HITS-CLIP data, even with
low frequencies of diagnostic events.

Evaluation of omniCLIP on iCLIP data
Finally, we applied omniCLIP to an iCLIP dataset for the
splice factor U2AF65 [30]. The RBP U2AF65 is known to
bind a polypyrimidine tracts motif 3’ of alternative exons
splice sites [30, 31]. When applying omniCLIP we recov-
ered both the reported binding preference and also the
reported motifs (see Fig. 6). This shows that omniCLIP
can also be applied to iCLIP data.

Evaluation of omniCLIP on simulated data
To demonstrate that omniCLIP can also be applied when
diagnostic events, other than T-C conversion, trunca-
tions or deletions, are present, we simulated CLIP-seq
libraries with A-T conversions at the crosslinking-site. To
this end, we simulated two biological replicates of PUM2
CLIP-seq libraries and two biological replicates of back-
ground libraries for chr1 of the human genome. We then
induced A-T conversion at the fourth position of the
PUM2 binding motif in the CLIP-seq libraries. On this
dataset we first applied omniCLIP and Piranha (with and
without background). Overall, omniCLIP found 333 peaks
whereas Piranha when using the background found 323
and when not using the background found only 108 peaks
(see Fig. 7a), showing that also on this dataset omniCLIP
compares favourably against other methods. We further
analysed the position of the site with the strongest diag-
nostic event score relative to the simulated cross-linking
site. Here, we found that 49.2% of the peak summits were
at the cross-linking site (see Fig. 7b). Finally, we com-
pared the estimate GLM expression parameters with the
simulated abundances per gene (see Additional file 1: Sup-
plemental Figure S3). We found that the estimated gene
expression correlated highly (Spearman r = 0.82) with
the ground truth expressions, showing that the parameter
estimation is robust.



Drewe-Boss et al. Genome Biology          (2018) 19:183 Page 7 of 14

a) b)

c) d)

Fig. 5 Binding preferences of CNBP. aMetaplot depicting the average Z-score transformed binned coverage across all genes (transcript with
highest RSEM isoform percentage selected) with omniCLIP peak. Median 5’UTR (8%), CDS (78%) and 3’UTR (14%) proportions were extracted from all
expressed genes in Drosophila S2 cells (TPM> 0) from regular total RNA-seq experiments. Shades around solid lines indicate the standard error. b
omniCLIP peak annotation grouped by strength into 10 peak SiteScore bins. (Left) Simplified annotation categories, to enable comparison to the
expected annotation distribution. Here, 5’UTR contains the start codon and 3’UTR the stop codon, respectively. The expected peak annotation
distribution was calculated according to the feature distribution shown in (a), for all peaks that are annotated as mature transcripts. Peaks classified as
‘other’ were ignored. (Right) Peak annotation categories grouped by peak score. Peaks annotated with start or stop codon do overlap such features.
c CNBP motif calculated using HOMER2 for all peaks annotated to mature transcripts (n = 29556), relative to 10x dinucleotide shuffled background
sequences. d Recovery of the CNBP motif and shuffled PWM relative to peak summit of all peaks used (n = 29,433). PWMmatch required 80%
similarity. Indicated percentages reflect peak sequences with motif hit. The next highest recovered random PWMs are variants of the identified motif

a) b)

Fig. 6 iCLIP U2AF65 analysis. a Shown is the average peak density around the 3’ splice site of exons from an iCLIP experiment of U2AF65. b Shows
are the top two discovered motifs in the U2AF65-peaks
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a) b)

Fig. 7 Simulated data analysis. a Shown is the sorted distribution of all PUM2 motif scores of the called peaks for omniCLIP and Piranha on a
simulated CLIP-seq dataset. b Shown is the fraction of peaks summits relative to the simulated A-T crosslink-site in the PUM2-motif

Discussion and conclusions
Understanding the mechanisms of RNA-processing and
their role in development or diseases requires understand-
ing RBP-RNA interactions and functional consequences
of these interactions. This depends on reliably identify-
ing RBP-RNA interaction sites. However, determining the
interaction sites from CLIP-seq data is challenging due to
the presence of many confounding factors.
Here, we present omniCLIP, a probabilistic approach to

identify regulatory elements from CLIP-data. Our model
presents a principled framework for the analysis of RNA
interaction assays and takes into account several impor-
tant new aspects. First, we jointly model the observed cov-
erage in all replicates. This allows for including replicate
information and also accounting for various confound-
ing factors. Additionally, we use an empirical Bayesian
approach to identify and model important diagnostic
events and sequencing errors. Finally, we take both bio-
logical and technical variance into account in our model.
Overall, jointly modelling all information and uncertain-
ties allows determining an accurate picture of the RNA-
RBP interaction landscape.
We show that omniCLIP can be applied to data from a

wide-range of CLIP-protocols, with superior performance
to existing methods. This shows that it can be easily
applied to new protocols, as all parameters were learned
from the data. Consequently, omniCLIP greatly simplifies
analysis of novel CLIP-seq assays. For instance, as CLIP-
seq protocols are conceptually similar to RNA modifica-
tion sequencing, omniCLIP should be easily applicable to
identify RNA modifications.
Another advantage of omniCLIP is that it models the

data in a principled way, i.e. each of its components has
a clear probabilistic interpretation. This enables an easy
integration of other probabilistic models in omniCLIP,
such as for binding motif, structure, for various biases or
explicit models of additional confounding factors.

In omniCLIP, the quantitative model of the read abun-
dances plays a crucial role in peak calling. It works best
if read-numbers in the foreground represent the number
of transcripts that were bound by the RBP of interest.
In cases where for example no random barcodes were
used, PCR-duplicates cannot be resolved, which effec-
tively leads to a higher variance of the peak heights (see
Additional file 1: Supplemental Figure S1). This might
explain why omniCLIP performs only slightly better than
PARalyzer, which draws most of its strength from diag-
nostic events, on the PUM2 PAR-CLIP datasets, as the
PUM2 PAR-CLIP libraries were generated without ran-
dom barcodes.
But also the data used for the background modelling

plays an important role in omniCLIP, as it is utilized to
estimate confounding by gene expression and local biases.
Furthermore, it is also used to calibrate the diagnostic
event model. Therefore, we recommend using an input as
a background dataset. Yet, in many, especially early pub-
lished CLIP studies, this data was not acquired. In this
situation, less specific data such as RNA-seq data can
serve as a substitute to some extent, but local biases are
not captured using this data (see Additional file 1: Sup-
plemental Figure S2 for example) and also the diagnostic
event model may be less accurate. In the case when a
specific background or input dataset is not available, we
recommend to trim reads prior, to alignment and tomatch
CLIP-seq read lengths in order to increase the similarity
to CLIP-data. To further minimize the technical variabil-
ity of the data, we suggest using a high quality alignment.
For this, we recommend to remove multi-mapping reads
and to use a stringent cut-off on the number of mis-
matches [32]. We recommend using simulated data to
guide parameter choice for read processing.
In summary, we have evaluated omniCLIP on various

datasets for which either high-quality motifs are available
or the target genes are known. In all of these scenarios, we
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show that the omniCLIP performance is at least compa-
rable or better than each method that we have compared
it against. This is insofar remarkable as most competitor
methods are tuned for specific protocols, and under-
lines omniCLIP’s potential for integrative transcriptome
studies on different CLIP-seq assays.

Methods
Model overview
We model the observed reads in all libraries using a
NHMM with four states: a state to model regions that are
peaks (P), two states to model regions where the back-
ground signal is as high as the CLIP-seq signal (B2) or
higher (B1) and a state that models regions with little or
no coverage in any library (N). The emission probability
of the NHMM is computed using a coverage profile model
and a diagnostic event model. The transition probabilities
depend of the local coverage. An overview of the model is
shown in Fig 8.

Fig. 8 Plate diagram of omniCLIP model. Grey shaded elements
indicate observed variable and unshaded elements indicate latent
variables. Here, Xi and Yi denote the observed coverage and
diagnostic events at position i respectively, Ci the probability of the
observed coverage, Di the probability of the diagnostic events and Si
the state. Furthermore, γ denotes the transition probability and β the
GLM parameters. Finally, K is the number of mixture components of
the diagnostic event model, μ and α the multinomial Dirichlet
mixture weights and parameters, respectively

Modelling of the spatial dependence
The transition probabilities between the states are mod-
elled using a logistic function of the coverage Xi at posi-
tion i in all replicates. This allows the model to be more or
less rigid, depending on the amount of data that is avail-
able at a given position. Specifically, the probability ps,t,i of
a transition from state s to state t at position i is given by:

ps,t,i =
{
f (Xi), ifs = t
1−f (Xi)

3 , otherwise
, (1)

where f is a logistic function. Here, the probability of
remaining in the same state is identical for all states.
The probability of transitioning to any other state is uni-
formly distributed. The parameters of f are learned using
stochastic gradient descent.

Coverage profile model
We jointlymodel the coverage in all replicates of the CLIP-
and background-dataset. In our model, we assume that
the coverage at each position of the genome follows a Neg-
ative Binomial (NB) distribution that is determined by the
library size, the gene expression, and whether the position
is a peak. We model this dependence using a generalized
linear model (GLM) in the following manner. Assume that
we have U CLIP and V background datasets and G genes.
Then, we assume that the expected coverage Xu

i in the
CLIP-library u for each position i in a gene g ∈ {1, . . . ,G}
depending on the state s is determined by:

log(Xu
i ) =

⎧⎪⎪⎨
⎪⎪⎩

lu + βg + βG+1, if s = P
lu + βg − βG+1, if s = B1
lu + βg , if s = B2
lu + β0, if s = N

(2)

Here, lu models the library size and is estimated median
of the mean coverage of all gene. The variable βG+1 mod-
els the genome-wide average enrichment of CLIP-signal
over backgrounds in peaks and is constrained to be pos-
itive, βg models the gene expression and β0 models read
abundance in regions with little coverage (e.g. intergenic
or intronic regions).
We model the coverage in the background libraries in

a similar way. Here, the expected coverage Xv
i in the

background-library v for each position i in a gene g is
determined by:

log(Xv
i ) =

⎧⎪⎪⎨
⎪⎪⎩

lv + βg − βG+1, if s = P
lv + βg + βG+1, if s = B1
lv + βg , if s = B2
lv + β0, if s = N

(3)

For the GLM, we further assume that the mean-variance
relationship of the negative binomial distribution is
described by:

σ 2(μ) = μ + cμ2, c ≥ 0 (4)
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Estimation of the parameters is performed
by alternately estimating the GLM-parameters
β = (β0,β1, . . . ,βG,βG+1) and the over-dispersion
parameter c using maximum-likelihood estimation. In
order to ensure an equally good fit of the GLM for all
states of the model, we weight the observations in each
state by the inverse of the total number of observations
in the state. Estimation of the GLM-parameters β is
performed using iteratively reweighted least-squares
(IRLS) [33]. In order to speed up the computation and
make the solution computable in memory, we derived an
implementation of IRLS, where all relevant components
are sparse. To his end, we formulated the design matrix
of the GLM such that the weighted pseudo-inverse has a
sparse LU-factorization during parameter updating. This
factorization in turn can be used to solve for the updated
parameters. Thereby, we can circumvent the computation
of the pseudo-inverse, which is in general non-sparse and
costly to compute. Furthermore, this speeds up fitting of
the GLM by orders of magnitude compared to standard
implementations.
Using the fitted model, we can compute the prob-

ability of Xw
i in library w and state s as p(Xw

i |s) =
NB(μs, σ 2(μs)), where μs is derived using the GLM
parameters. The joint probability of the coverage at posi-
tion i in all libraries p(Xi) is then given by:

p(Xi) =
∏
u∈U

p(Xu
i )

∏
v∈V

p(Xv
i ) (5)

Modelling the coverage jointly across libraries allows
accounting for the effect of local biases that affect the
CLIP as well as the background library.
To improve convergence of the estimated GLM parame-

ter for the background state β0, we set the gene expression
parameter βg in the computation of the emission proba-
bilities such that all states have a higher expression rate
than the background state. This is achieved by setting
βg = β0 + βG+1 + 10−5 if βg is smaller than β0. Adjusting
these parameters is typically only in the initial iterations
and only for genes with few reads necessary.

Diagnostic event model
To model diagnostic events and sequencing errors, we
assume that peaks are a mixture of several classes of posi-
tions that have distinct rates of diagnostic events. In our
model, we have found that 10 classes are typically enough.
For each of the classes, we model the counts using a
Multinomial-Dirichlet hierarchical model. In this model,
the diagnostic events in all replicates at a given position
are assumed to be distributed according to a multino-
mial distribution with parameter q. Here q models the
rate of diagnostic events. This parameter is at each posi-
tion identical in all replicates. To allow variation in the
rates between positions in the same class as well as for

excess variance, we model q to be drawn from a Dirich-
let distribution with parameter α. The resulting model is
described in the following. Denote by Ni

u the number of
reads covering a position i in replicate u ∈ {1, . . . ,U} of
the CLIP-libraries. Denote furthermore by Y i,u

1 , . . . ,Y i,u
M

the number of occurrences for each of the M diagnos-
tic events (all possible conversions, deletions of all bases
and reads ends) in the reads at position i in replicate u.
If we define Yu

i = (Y i,u
1 , . . . ,Y i,u

M ,Ni
u − ∑M

i=m Y i,u
m ), then

the probability of observing p(Y 1, . . . ,YU) in state s is
given by:

p(Y 1
i , . . . ,YU

i |s) =
10∑
s=1

μs

∫
p
(

U∏
u=1

M(Yu
j |q))D(q|αs) dq,

(6)

where the parameters αs ∈ R
M+1 and M and D denote

the multinomial and Dirichlet distribution, respectively.
For brevity, we denote p(Y 1

i , . . . ,YU
i ) with p(Yi) in the

remainder of the text. The parameters for the diagnos-
tic event model are learned by maximizing the likelihood.
Parameters for the peak state are fitted on the foreground
dataset on the peak positions whereas parameters for the
background states are fitted on the background dataset on
the peak positions. Positions that are in regions where two
or more genes overlap are ignored for learning the diag-
nostic event parameters, as diagnostic events are strand
specific and overlapping genes on the opposite strand
could dilute the learned signal. To speed up the fitting,
we estimate the parameter on a subset of 1,000,000 ran-
domly sampled positions with coverage. Furthermore, to
increase the stability of the fitting, we use four random
initializations from a uniform distribution and the solu-
tion of the previous iteration at each iteration of the
EM-algorithm.
Finally, the emission probability of a state s ∈

{P,B1,B2,N} in the NHMM at a position i is given by the
product of the probability for the coverage p(Xi|s) and the
observed diagnostic events p(Yi|s).

Read filtering
To make the modelling of diagnostic events more robust,
we discarded reads that had more than two mismatches.
We also only consider reads that map to the same strand
as the gene under consideration, if read strand informa-
tion is available. In order to prevent mis-mapping read-
ends from diluting diagnostic event profile estimation,
we ignore conversions that occur in the first or last two
bases of a read. Furthermore, we mask positions that are
likely to be SNPs for diagnostic event modelling. To this
end, we use information from the background dataset to
determine whether a position has a SNP. For positions
to be called a SNP, we require that they have at least 20



Drewe-Boss et al. Genome Biology          (2018) 19:183 Page 11 of 14

reads and that at least 20% have a conversion event in the
background.

Peak calling
Peaks are called by computing consecutive regions for
which the peak state is the most-likely state in the NHMM
using the Viterbi algorithm [34]. For computation of
eCLIP peaks, we added during determination of the peak
regions a penalty of −5 to the peak state in order to only
predict the central high-confidence parts of peaks. The
scores for a peak are computed as the log-likelihood ratio
of the peak state versus the other states in NHMM at the
peak location. P-values for a peak are computed in the fol-
lowing way. We first compute for each position of peak
the expected total coverage and variance of the CLIP-
reads. For this, we sum the expected mean and variance at
each position of the peak. We then compute based on the
cumulative distribution function of a negative binomial
with the computed mean and variance, the p-value of the
observed total coverage of the CLIP-reads. For our analy-
ses we only consider peaks that have Bonferroni corrected
p-value ≤ 0.05.

Random controls for peak scores
To quantify motif enrichments that are due to chance, we
randomly shuffled the peaks in the genes and computed
for each random peak region the maximal motif score.

Model fitting
We fit the parameters of the model using the EM-
algorithm. Specifically, we iterate between estimating the
parameters of the diagnostic event model, the expres-
sion modelling and the NHMM. For the analyses, this is
done for at least 5 iterations. The model was run until
full convergence was reached. As we observed that the
parameters only changed minimally after 10 iterations, we
stopped the model fitting after 10 iterations in order to
speed up the data processing.

Masking of miRNA genes
As a default option, we treat positions in genes that over-
lap annotated microRNA genes as if they had no coverage
or diagnostic events.

Motif discovery
For motif discovery we used RCAS [35] with the default
parameters.

Data acquisition
PAR-CLIP data for PUM2 was downloaded from SRA
(SRP002487) [9]. eCLIP, shRNA-seq and RNA-seq data
for the eCLIP analysis were downloaded from the
ENCODE website (https://www.encodeproject.org) [13],
HITS-CLIP data was obtained from SRA (SRP070745)

[27], Ribo-zero data for HEK293 was obtained from
SRA(SRP080811) [7] and iCLIP-data was obtained from
ArrayExpress (E-MTAB-1371) [30]. The RBFOX2 posi-
tion weight matrix (PWM) was obtained from [13] and
the PUM2-PWM from [32]. Motifs for the eCLIP analysis
were obtained from [26].

Read processing
Reads for PAR-CLIP analyses were processed using
PARpipe (Available from https://github.com/ohlerlab/
PARpipe). Reads and quantification (e.g. site calls) for
ENCODE eCLIP and shRNA-seq data were obtained
from the ENCODE website (https://www.encodeproject.
org). HITS-CLIP reads were quality-filtered using the
fastx toolkit with the parameters -q 10 -p 95 [36] and
trimmed adapters using cutadapt [37] with the parame-
ters -overlap=3 -m 24 discarding untrimmed reads.
Subsequently, reads were converted to fasta format and
collapsed still including the four randomized nucleotides
at both end of the reads. Randomized adapter ends got
trimmed after read collapsing and added to the read
identifier and treated as unique molecular identifiers
(UMIs). Reads for the HITS-CLIP dataset were aligned
using STAR (v.2.4.2a) [38]. Reads were first aligned and
removed against the rRNA genome parts using the follow-
ing parameters for D.melanogaster: -alignEndsType
EndToEnd -outFilterMultimapNmax
10 -outFilterIntronMotifs
RemoveNoncanonical -outReadsUnmapped
Fastx -alignSJoverhangMin
12 -outFilterMatchNmin 15
-outFilterMismatchNmax 1
-outFilterMismatchNoverLmax 0.05
-outFilterMultimapScoreRange 3
-alignIntronMax 20000
-seedMultimapNmax 200000
-seedPerReadNmax 30000.
The reads that did not align to the rRNA were
then aligned against the D. melanogaster genome
BDGP6 (Ensembl v81) using STAR with the follow-
ing parameters: -alignEndsType EndToEnd
-outFilterMultimapNmax 10
-outFilterIntronMotifs
RemoveNoncanonical -alignSJoverhangMin
12
-outFilterMatchNmin 15
-outFilterMismatchNmax 1
-outFilterMismatchNoverLmax 0.05
-outFilterMultimapScoreRange 3
-alignIntronMax 20000 -seedMultimapNmax
200000
-seedPerReadNmax 30000 Reads with mismatches
within the first and last two nucleotides were filtered out.
Next, we removed reads with mismatches relative to the

https://www.encodeproject.org
https://github.com/ohlerlab/PARpipe
https://github.com/ohlerlab/PARpipe
https://www.encodeproject.org
https://www.encodeproject.org
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genome reference, which were likely introduced during
sequencing and thus represent sequencing errors and not
diagnostic events. To this end, we grouped alignments
based on genomic coordinates (Chr, start, end, strand)
and their UMIs. In case alignments overlapped entirely
and shared the same UMI, while differing from each other
and/or the reference sequence, we sorted by copy number
(retained from read collapsing) and removed reads with
relative lower copy number and a hamming distance one
to the higher copy number reference read. For alignment
of RNA-seq reads to the human genome, reads were
aligned against the human genome GRCh37 using STAR
with the following parameters: -alignEndsType
EndToEnd -chimSegmentMin 40
-chimJunctionOverhangMin 40
-outFilterMultimapNmax 2
-outFilterIntronMotifs
RemoveNoncanonical -alignSJoverhangMin
16
-outFilterMatchNmin 30
-outFilterMismatchNmax 2
-outFilterMultimapScoreRange 0
-alignIntronMax 20000 PAR-CLIP reads for PUM2
were aligned against the human genome GRCh37 using
Bowtie [39] with the following parameters:-v 1 -m 10
-all -best -strata -p 4 -S iCLIP reads were
aligned to human genome GRCh37 using STAR with the
same parameters as the HITS-CLIP reads. Removal of
PCR-duplicates was performed using UMI-tools [40].
To remove reads mapping to multiple locations in our

analysis, we only kept the best alignment of a read if the
second best alignment hadmore than one mismatch more
than the best alignment. Furthermore, we discarded reads
that had more than two mismatches.

Application of methods for PAR-CLIP analysis
We called peaks with PARalyzer (v1.5), Wav-
Cluster (downloaded from https://github.com/
FedericoComoglio/wavClusteR), Piranha(v.1.2.1) and
BMIX (downloaded from https://github.com/cbg-ethz/
BMix) using default parameters. For PAR-CLIP, peak
calling with Piranha data yielded less than 10 peaks. Thus,
we applied it without using a background dataset.

Motif prediction
We predict motifs using biopython [41] using the pssm
scoring scheme. For the motif calling a threshold score of
3.0 was used and only the forward strand was considered.
Additionally a small pseudo count of 5 ∗ 10−5 was added
to remove potential zeros in the PWM.

De novomotif discovery and visualization
For de novo motiv discovery all peaks (n = 29556)
that can be annotated by mature mRNA annotation

categories (3’utr, 3’utr-intron, 5’utr, 5’utr-coding, 5’utr-
intron, coding, coding-3’utr ,coding-5’utr, coding-intron,
intron-3’utr, intron-5’utr, intron-coding, start-codon,
stop-codon) were selected. For this analysis, the expressed
transcripts per gene with highest RSEM isoform percent-
age from two total RNA-seq experiments in Drosophila
S2 cells (personal communications Hans-Hermann Wes-
sels) were selected. Subsequently HOMER2 (v.4.9.1) [42]
was applied for de novo discovery using dinucleotide
shuffled background sequences. For HOMER2 the fol-
lowing parameters were used: len 6 -strand +
-p 4. The shuffled background was generated using
uShuffle (v.0.2) [43] using the following parameters:
-k 2 -n 10 -r 10004. To plot the motif position
relative to peak summits, we used the Bioconductor
package GenomicRanges (v.1.22.4) [44] to center in a + -
50nt window around the peak summit and searched for
the motif PWM using the patternMatrix function from
Genomation (v.1.2.2) [45] using the following parameters
min.score=0.8, prior.params = c(A=0.25,
C=0.25, G=0.25, T=0.25). To obtain a suitable
background, we shuffled the PWM posterior prob-
ability from the retrieved GGAGGA motif for each
nucleotide position randomly, but left the individual
values unchanged to keep the overall PWM positional
preference.

Scoring for gene-based analyses
To combine peaks in for a gene we proceeded as follows.
For omniCLIP we summed the scores. For Clipper and
Piranha we summed the log p-values from peaks in both
replicates for each gene.

Data simulation
For simulating reads for a CLIP-seq experiment as well
as a matching background, we proceeded as follows. First
we drew the base gene expressions gi for each gene i on
chromosome 1 from the distribution exp(N (10, 4)). Next,
we chose for each gene randomly a representative isoform
and sampled its expression for six replicates from a Nega-
tive binomial distribution with mean gi and variance gi +
0.1×g2i . We then used the sampled transcript abundances
to simulate reads using Flux-Simulator (v.1.2.1) [46]. This
resulted in six libraries, each having ∼ 15 × 106 reads.
The first two libraries were used as background libraries.
The next two libraries were used to simulate CLIP-seq
data. To this end, we only kept reads that overlapped pre-
dicted PUM2 motifs and introduced a A-T conversion
at the fourth position of the motif in 50% of the reads.
To mimic the effect of stronger CLIP-signal for motifs
that have a higher motif score, we sampled of each read
a value p uniformly between the minimal and the max-
imal motif score Subsequently, we discarded the read if
p was lower than the maximal motif score in the read.

https://github.com/FedericoComoglio/wavClusteR
https://github.com/FedericoComoglio/wavClusteR
https://github.com/cbg-ethz/BMix
https://github.com/cbg-ethz/BMix
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To simulate non-specific binding in the CLIP-libraries we
added 10% from the remaining two libraries to the CLIP-
seq libraries. Finally, we aligned the reads with STAR, as
described above.

Software availability
The software for omniCLIP can be obtained from: https://
github.com/philippdre/omniCLIP under the GNU GPL
license (v3). The version of source code used in this
manuscript has been deposited at: https://doi.org/10.
5281/zenodo.1320207.
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