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KEY PO INT S

l FOXO1 is recurrently
mutated in BL.

l Nuclear FOXO1
promotes
proliferation and
survival in BL.

Forkhead box class O1 (FOXO1) acts as a tumor suppressor in solid tumors. The oncogenic
phosphoinositide-3-kinase (PI3K) pathway suppresses FOXO1 transcriptional activity by
enforcing its nuclear exclusion upon AKT-mediated phosphorylation. We show here
abundant nuclear expression of FOXO1 in Burkitt lymphoma (BL), a germinal center (GC)
B-cell–derived lymphomawhose pathogenesis is linked to PI3K activation. Recurrent FOXO1
mutations, which prevent AKT targeting and lock the transcription factor in the nucleus, are
used by BL to circumvent mutual exclusivity between PI3K and FOXO1 activation. Using
genome editing in human and mouse lymphomas in which MYC and PI3K cooperate
synergistically in tumor development, we demonstrate proproliferative and antiapoptotic

activity of FOXO1 in BL and identify its nuclear localization as an oncogenic event in GC B-cell–derived lymphoma-
genesis. (Blood. 2018;132(25):2670-2683)

Introduction
In T-cell–dependent antigen responses, B cells undergo pro-
liferation and selection in germinal centers (GCs) of peripheral
lymphoid tissues. Here, the entry and exit of B cells in the GC’s
dark zone (DZ) and light zone (LZ) guide the fate of the activated
cells,1 which mutate and switch their immunoglobulin genes.2

Both processes require DNA modifications that accidently lead
to mutation or translocation of tumor-promoting genes, the
major cause of (post) GC B-cell lymphomas.3 Burkitt lymphoma
(BL) is a GC B-cell–derived tumor characterized by a c-MYC
(MYC) translocation into the immunoglobulin locus.4 Although
aberrant MYC expression promotes malignancies by induction
of proliferation and other means, it also evokes increased ap-
optosis.5 Recently, we and others have identified phosphoino-
sitide-3-kinase (PI3K) signaling as a potent prosurvival signal in
BL pathogenesis.6,7

Alterations of this pathway are frequently detected in cancer,8 and
a prominent mediator of the PI3K-signaling cascade is the con-
served forkhead box class O (FOXO) gene family of transcription
factors. In mammals, FOXO1, FOXO3, and FOXO4 are ubiqui-
tously expressed and regulate their activity by posttranslational
modifications.9 FOXO1 is critical for B-cell development,10 and in
the GC reaction it instructs the transcriptional program of the
DZ.11,12 As a general rule, PI3K activation and nuclear FOXO1 are
mutually exclusive: PI3K-mediated AKT activation results in the
phosphorylation of FOXO1 (at residues threonine 24 [T24], and

serine 256 [S256] and 319 [S319]), mediating its interaction with
14-3-3 protein and the nuclear export of the complex.13,14 FOXO
proteins regulate proapoptotic and antiproliferative genes, as well
as antioxidant and DNA repair pathways.15,16 Thus, FOXO1 has
tumor-suppressor function in various solid tumors and B-cell
lymphomas,17-21 including Hodgkin lymphoma (HL).22 Contradic-
tory to these inhibitory effects are recent reports linking high
FOXO expression to poor prognosis and tumor-promoting ac-
tivity in intestinal, neuronal, and hematological malignancies.23-29

The emerging concept of context-specific functions of FOXO
proteins in cancer is substantially supported and extended in
a breast cancer study in which FOXO activation needs optimal
balance in order to promote cancer progression.30

In GC B-cell–derived non-HLs, nonsynonymous FOXO1 muta-
tions, which disrupt theN-terminal AKT recognitionmotif around
T24, are recurrent. Approximately 10% of diffuse large B-cell
lymphoma patients carry heterozygous FOXO1 mutations, al-
most half of which (12 of 26) favor the nuclear localization of the
transcription factor.31,32 In BL, similar incidences were described
by Schmitz and colleagues analyzing primary tumors and cell
lines7 and our mouse model of BL pathogenesis confirmed the
acquisition of FOXO1 mutations (2 of 5 lymphomas) during
tumorigenesis.6 Inferior treatment response rates were linked
to mutant (mt) FOXO1 in diffuse large B-cell lymphoma and
follicular lymphomas, demonstrating the clinical relevance of
FOXO1 mutations.32,33
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Figure 1. Nuclear FOXO1 and PI3K activity coexist in BL cells. (A) Immunofluorescence analysis of human BL cell lines using FOXO1 antibody (red). Cell nuclei were
counterstained with DAPI (blue; scale bar, 5 mm). (B) Western blot analysis of FOXO1 expression in subcellular fractions of human BL cells. The purity of the cytoplasmic and
nuclear fraction was determined by actin (ACTB) and histone H3 (H3) antibodies, respectively. Data are representative of at least 2 experiments. (C) Immunofluorescence analysis
of FOXO1 in mouse BL cell lines as shown in panel A. (D) Western blot analysis of phospho-AKT (pAKT [S473]), AKT, phospho-FOXO1 (pFOXO1 [T24]), and FOXO1 expression in
human BL cell lines. Cells were treated either with the PI3K inhibitor wortmannin (1) or dimethyl sulfoxide (DMSO) (2) 1 hour prior to protein extraction. ACTB served as loading
control. Data are representative of 2 experiments. (E) Detection of pAKT(S473) in mouse BL-like cell lines by intracellular FACS analysis. After fixation and permeabilization,
lymphoma cells were incubated with pAKT(S473) antibody (5 antibody) or the antibody plus pAKT(S473) blocking peptide (5 blocking peptide). Data are representative of
2 experiments. C, cytoplasmic fraction; KO, FOXO1 knockout cell; N, nuclear fraction; W, whole-cell lysate.
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Figure 2.Mutations impairing T24 phosphorylation lock FOXO1 in the cell nucleus. (A) Pie charts indicating the incidence of nonsynonymous FOXO1mutations in humanBL
cell lines (left) and mouse BL-like tumors (right). The bar diagrams show the percentage of FOXO1 mutations involving the AKT-dependent phosphorylation site at T24 (T24) or
other positions (others) in human and mouse BL. (B) Design of FOXO1 gRNAs used for CRISPR/Cas9 experiments in human and mouse BL cells. CRISPR/Cas9 target sequences
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To clarify the impact of FOXO1 in B-cell tumorigenesis, we took
advantage of newly generated and established mouse and
human BL cell lines and genetically engineered the FOXO1
locus in these cells. Here, we report that nuclear FOXO1 and
PI3K activity coexist in BL cells and that nuclear FOXO1 pro-
motes tumor growth in murine and human lymphomas. More-
over, we provide evidence that FOXO1 mt BL cells are addicted
in their proliferation and survival to the expression of nuclear
FOXO1, thus highlighting FOXO1-dependent signaling path-
ways as attractive candidates for developing tumor-specific
therapeutic approaches.

Methods
Cell lines
The lymphoma cell lines DG75, BL41, BL2, CA46, Namalwa,
Ramos, Raji, L1236, KM-H2, and HDLM2were obtained from the
German Collection of Microorganisms and Cell Cultures (DSMZ)
or ATCC. BL60 and LY47 were provided by G. M. Lenoir (In-
ternational Agency for Research on Cancer, Lyon, France); Salina
and Seraphine were provided by A. Rickinson (University of
Birmingham, Birmingham, United Kingdom). Cell lines were
authenticated by multiplex cell authentication (Multiplexion).
Mouse cell lines were generated from BL-like tumors in Cg1-cre,
R26StopFLMYC,R26StopFLP110* animals.6

Immunofluorescence analysis
Cells were stained with a-FOXO1 antibody (Cell Signaling)
and goat-anti rabbit immunoglobulin G–Alexa 568 (Invi-
trogen) as previously described.11 Nuclei were stained with
49,6-diamidino-2-phenylindole (DAPI) and Leica-SP8 inverted
confocal or KEYENCE microscopes were used for image
acquisition.

Immunoprecipitation and western blot analysis
Cell lysate (500 mg) was immunoprecipitated using a-FOXO1 or
a-acetylated lysine (both Cell Signaling) antibodies and protein
A magnetic Dynabeads (Invitrogen) as previously described.34

For detection of posttranslational modifications, we treated the
cells with inhibitors and extracted protein according to pub-
lished protocols.35,36

For western blot analysis, radioimmunoprecipitation assay (RIPA)
buffer extracts were fractionated on 10% sodium dodecyl sulfate
polyacrylamide gels, electroblotted to polyvinylidene difluoride
membranes, and reacted with a-phosphorylated AKT (pAKT;
S473), a-AKT, a-phosphorylated FOXO1 (pFOXO1; T24 or S256
or S319), a-FOXO1, a-O-GlcNAc, a-Histone 3, a-14-3-3 (pan)
(all Cell Signaling) and a-b-actin (Sigma-Aldrich) antibodies.
Immunoreactivity was determined using ECL substrate buffer

(Thermo Fisher). Nuclear and cytoplasmic extracts were pre-
pared as previously published.32

Microarray analysis
Gene-expression profiling was performed on Affymetrix Gen-
eChip Mouse Genome 430 2.0 arrays following the manu-
facturer’s recommendations (Affymetrix). Affymetrix GeneChip
array data were preprocessed using Affymetrix Expression
Console and normalized through the robust multiarray average
(RMA) implementation in the Expression Console.

Results
Nuclear FOXO1 expression and PI3K activity
coexist in BL cells
In BL, the reported PI3K activation is expected to ablate FOXO1
by AKT-mediated nuclear export and subsequent degradation
of the transcription factor. However, in a panel of human BL cell
lines, we determined high FOXO1 expression at the transcript
and protein level in comparison with HL cell lines (supplemental
Figure 1A-B, available on the BloodWeb site). Strikingly, FOXO1
was located both in the cytoplasm and the nucleus of the cells
(Figure 1A-B; supplemental Figure 1C-D). Reproducibly, FOXO1
appeared less abundant in cytoplasmic and nuclear extracts
compared with total cell lysates in western blot analyses. Further
experiments excluded FOXO1 loss during protein fractionation
and sample loading, thus antibody detection might be ham-
pered by epitope masking in the samples. In lymphomas arising
from our BL mouse model and thus exhibiting constitutive PI3K
pathway activation due to P110* transgene expression,6,37

FOXO1 localization defined 2 distinct lymphoma groups: ma-
lignancies where the transcription factor was predominantly
nuclear and others defined by cytoplasmic FOXO1 (Figure 1C).

As PI3K pathway activity is a major determinant of FOXO1’s
subcellular localization, we determined phosphorylation of AKT
at S473 in human and mouse lymphoma cells. By this criterion,
human BL cells exhibited PI3K activity, albeit at variable in-
tensity, and pAKT levels positively correlated with FOXO1
phosphorylation at T24 (Figure 1D; supplemental Figure 1E).
PI3K inhibition by wortmannin efficiently prevented AKT and
FOXO1 phosphorylation in the lymphoma cells, confirming an
intact PI3K-AKT-FOXO1 axis (Figure 1D). In the mouse BL-like
tumors expressing P110*, PI3K was uniformly active as indicated
by AKT S473 phosphorylation (Figure 1E).

Recurrent FOXO1 mutations lock the transcription
factor in the nucleus
Sanger sequencing of genomic DNA isolated from 11 human BL
cell lines and 14 murine BL-like tumors verified nonsynonymous

Figure 2 (continued) are given in blue (protospacer) and red (PAM). In themouse FOXO1 locus the nucleotide affected by the T24mutation ismarked in yellow. (C) Experimental
scheme for the generation of isogenic cell line clones analyzed in panels D-F. After electroporation and transient coexpression of gRNA, Cas9 and mCherry individual reporter-
positive cells were FACS-based sorted and expanded for analysis. (D) Immunofluorescence analysis of FOXO1 (red) in CRISPR/Cas9-modified human and mouse BL cells.
Parental cell lines (BL2 andmouse BL#19) carrying heterozygous FOXO1 T24 mutations (wt1/mt1) and isogenic cell line clones in which the mt alleles were ablated (wt1/mt2) are
shown. Cell nuclei were counterstained with DAPI (blue; scale bar, 5 mm). (E) Western blot analysis of FOXO1 expression in subcellular fractions of mouse BL#19 cells (wt1/mt1)
and isogenic cell line clones in which the wt (wt2/mt1) or themt Foxo1 allele (wt1/mt2) was specifically ablated. The purity of the cytoplasmic and nuclear fraction was determined
by actin (ACTB) and histoneH3 (H3) antibodies, respectively. In addition, pFOXO1 (T24), pAKT (S473), and AKT expressionwere detected by the appropriate antibodies. Data are
representative of 2 experiments. (F) Western blot analysis of 14-3-3 protein expression after immunoprecipitation with FOXO1 antibody in isogenic mouse BL cell lines (as
described in panel D). Per genotype, 3 individual cell line clones were analyzed. The membrane was also incubated with anti-FOXO1 antibody to verify precipitation of the
transcription factor. Data are representative of 2 experiments. C, cytoplasmic fraction; N, nuclear fraction.
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FOXO1 mutations in both tumors (Figure 2A; supplemental
Figure 2A). Six human cell lines carried nonsynonymous and het-
erozygous FOXO1 mutations. In 4 of these lines, the mutations
targeted AKT-dependent phosphorylation at the N-terminus of the
protein: the mt allele encoded aberrant FOXO1 in which either the
AKT-recognition motif was disrupted (R21H and T24I) or deleted
(M1V).32 Because of their functional redundancy, cell lines carrying
these mutations will be classified as “mt T24” throughout the paper.

In the mouse lymphomas, we identified heterozygous Foxo1
mutations in altogether 4 of 14 cases, 2 of which affected the
T24 AKT-phosphorylation site. The somatic origin of the
mutations was confirmed by tail DNA analysis and, in both
mouse and human tumor cells, we detected mt FOXO1 at the
transcript level, confirming its expression (data not shown).

To evaluate the impact of FOXO1 in BL cells, we genetically
modified human and mouse lymphoma cells through clustered
regularly interspaced short palindromic repeats (CRISPR)/CRISPR-
associated protein 9 (Cas9) mutagenesis. Various guide RNAs
(gRNAs) targeting the FOXO1 locus were designed (Figure 2B): in
human cells, the gRNA edited FOXO1 at its mt and wild-type (wt)
allele (gRNA_a). In mouse tumor cells, multiple gRNAs (gRNA_b-d)
with different targeting efficiencies were available (supplemental
Figure 2B and data not shown). Only in mouse BL#19 cells did
the replacement of threonine to proline at position 24 create a
unique protospacer adjacent motif (PAM) sequence, allowing us
to target this mt allele specifically (gRNA_e).

To prove a causative link between nuclear FOXO1 expression
and T24 phosphorylation site disruption, FOXO1mt lymphoma
cells were transfected to transiently express FOXO1 gRNA and
Cas9. Cas9 expression was coupled to an mCherry reporter via
a self-cleaving peptide sequence (T2A) allowing fluorescence-
activated cell sorter (FACS)-based isolation of Cas9-expressing
cells before individual cell clone expansion. Immunofluores-
cence analysis revealed cytoplasmic FOXO1 staining in iso-
genic human and mouse cell line clones where the mt locus was
selectively inactivated (wt1/mt2) (Figure 2D; supplemental
Figure 2C). Western blot analysis of mouse cells, in which either
mt (wt1/mt2) or wt (wt2/mt1) FOXO1 was ablated, confirmed the
nuclear predominance of mt FOXO1 in the lymphoma cells
(Figure 2E; supplemental Figure 2D). Impaired interaction be-
tween 14-3-3 and T24 mt FOXO1 could explain this finding
(Figure 2F).

FOXO1 ablation impairs BL growth
The counterintuitive finding of abundant nuclear FOXO1 ex-
pression in BL compared with HL cells led us to evaluate the
effects of FOXO1 ablation on lymphoma growth by transiently
coexpressing Cas9, a gRNA targeting wt and mt FOXO1 alleles
and the reporter mCherry in mouse BL-like cells. Two days after

electroporation, successfully transfected cells were sorted and
the bulk of mCherry-positive cells was analyzed at the indicated
time points after sorting (Figure 3A).

Genome editing of the Foxo1 locus in mouse cells that express
nuclear FOXO1 due to a T24 mutation (mouse BL#19 and #82)
resulted in growth retardation (Figure 3B): in the T7EI assay,
which is sensitive for CRISPR/Cas9-induced DNA mismatches,
the proportion of Cas9-targeted cells decreased over time in-
dicating that these cells were outcompeted by their counterparts
with intact Foxo1 loci. In contrast, the detrimental effect of
FOXO1 targeting was absent in mouse lymphoma cells ex-
clusively expressing wt and thus cytoplasmic FOXO1 (mouse
BL#81 and #88) (Figure 3B). In T24 mt mouse cells exposed to
Foxo1 editing, Sanger sequencing of the Foxo1 locus in the
bulk population of transfected cells confirmed this finding
(Figure 3C; supplemental Figure 3A): although wt and mt
Foxo1 alleles were initially modified by Cas9 with similar
efficiency in all cell lines, targeted mt Foxo1 rapidly dis-
appeared over time in the cultures, in contrast to the targeted
wt allele.

For the human BL cells, where transient transfection was
highly inefficient in most cell lines, we chose viral infection to
stably apply CRISPR/Cas9 technology (Figure 3D). Cells
were lentivirally infected to express Cas9 and mCherry re-
porter via a T2A sequence. After FACS-based selection of
mCherry-positive cells, single clones were expanded and
transduced by another lentivirus encoding the FOXO1
gRNA and a blue fluorescent protein (BFP) reporter gene.
Cas9- and gRNA-positive cells by mCherry and BFP coex-
pression were bulk sorted prior to analysis.

Because human BL cells expressed nuclear FOXO1 regardless of
its mutation status, we sequenced FOXO1 in T24 mt (Namalwa
and BL2) and wt (CA46) lymphoma cells (Figure 3E; supple-
mental Figure 3B). In all cases, the proportion of cells carrying
out-of-frame FOXO1 mutations after Cas9 editing dropped over
time, indicating selection for FOXO1 protein–expressing cells.
Moreover, T24 mt lymphoma cells predominantly preserved
FOXO1 expression from the mt allele, as out-of-frame changes
in the wt allele outnumbered the ones detected in the mt allele
(Figure 3E). To analyze both FOXO1 alleles in individual tumor
cells, we isolated single mCherry- and BFP-coexpressing cells
and performed FOXO1 Sanger sequencing after clonal ex-
pansion. In the isolated clones, in-frame editing in at least 1 of
the FOXO1 alleles was detectable (data not shown), demon-
strating the dependency of the lymphoma cells on FOXO1
expression.

In contrast to the adverse effects of nuclear FOXO1 ablation in BL
were our results in HL cells (supplemental Figure 3C): throughout

Figure 3 (continued) at indicated time points after FACS-based sorting. Pie charts depict the distribution of CRISPR edited (targeted) vs untargeted sequences. The total
number of sequences analyzed is given in the center of the chart. (D) Experimental setup for stable FOXO1 ablation in human BL cells. Cas9 coupled with anmCherry fluorescent
reporter was introduced to the cells by lentiviral infection. Single mCherry-positive cells were FACS-based sorted, and stable expressing Cas9 clones were further expanded. In
a second step, Cas9-positive clones were infectedwith a lentiviral construct encoding FOXO1gRNA coupled to a BFP fluorescent reporter. mCherry- and BFP-coexpressing cells
were sorted and Sanger sequencing was performed in genomic DNA extracted from the bulk of tumor cells at indicated time points. The protospacer (PAM) sequence is given in
blue (red) as in panel A. (E) FOXO1 sequence analysis after CRISPR/Cas9 editing in human BL cell lines (Namalwa, BL2, and CA46) at indicated time points after FACS-based
sorting. CRISPR-edited sequences were analyzed and the distribution of “out-of-frame” vs “in-frame“ sequences is shown in the pie charts. The total number of sequences
analyzed is given in the center of the chart.
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Figure 4. Nuclear FOXO1 induces proliferation and survival in mouse BL cell lines. (A) Growth curves of mouse BL cell lines and their isogenic Foxo1 KO clones. Cells
characterized by a heterozygous T24 mutation (mouse BL #82) or cell lines exclusively expressing wt FOXO1 (mouse BL#81 and #88) were analyzed. Individual clones
of the parental cell lines (CT) and FOXO1-ablated clones (KO) were analyzed over time. The graph summarizes data of 3 experiments. Bars indicate the standard deviation.
****P , .0001 (Wilcoxon–Mann-Whitney test). (B) Representative FACS analysis of 5-bromo-29-deoxyuridine (BrdU) and 7-aminoactinomycin D (7-AAD) staining in parental
and Foxo1 KO cells. For each cell line, a single clone per condition (CT and KO) is shown. The gating strategy for dead (R1) and living (R2) cells is depicted. Numbers indicate the
gate frequency (in percent). (C) Quantification of dead cells (R1 in panel B) and proliferating cells (G0/G1; S; G2/M in panel B) in cell line clones as analyzed in panel A. Bars
indicate the standard deviation. *P , .05; **P , .01; ***P , .001; ****P , .0001 (Wilcoxon–Mann-Whitney test). ns, not significant.
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the analysis, a large proportion of sequences was modified by out-
of-frame mutations after CRISPR/Cas9 editing in 2 individual cell
lines. Because of the constant or even increased ratio of out-of-
frame/in-frame mutations over time, we concluded that HL cells
expanded indefinitely after FOXO1 inactivation.

NuclearFOXO1 inducesproliferationandsurvival inBL
In Foxo1 knockout (KO) clones from T24 mt (mouse BL#82) or wt
(mouse BL#81 and #88) BL cells, we studied lymphoma cell
growth after FOXO1 ablation (Figure 4A). In accordance with our
previous data, KO clones generated from the T24 mt cell line
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Figure 5. Cytoplasmic FOXO1 is not required for survival
and proliferation of T24 mt mouse cells. (A) Immunofluores-
cence analysis of mouse BL cells using FOXO1 antibody (red).
Parental cells (mouse BL#19) characterized by a heterozygous
T24mutation (wt1/mt1) and isogenic cell line clones in which the
wt (wt2/mt1) or the mt Foxo1 allele (wt1/mt2) was ablated are
shown. Foxo1 KO cells (wt2/mt2) complete the analysis. Cell
nuclei were counterstained with DAPI (blue; scale bar, 5 mm). (B)
Growth curves of parental cell line clones (wt1/mt1) and isogenic
cell line clones that express mt (wt2/mt1) or wt FOXO1 (wt1/mt2).
Foxo1 KO cells (wt2/mt2) complete the analysis. The graph sum-
marizes data of 3 experiments. Bars indicate the standard devia-
tion. **P , .01; ***P , .001 (Wilcoxon–Mann-Whitney test). (C)
Quantification of dead cells and proliferating cells in cell line
clones as analyzed in panel B. FACS analysis of BrdU and
7-AAD staining was used to determine the cellular phenotype.
Bars indicate the standard deviation. *P , .05; ***P , .001;
****P , .0001 (Wilcoxon–Mann-Whitney test).

FOXO1 IN BL blood® 20 DECEMBER 2018 | VOLUME 132, NUMBER 25 2677

D
ow

nloaded from
 http://ashpublications.org/blood/article-pdf/132/25/2670/1746818/blood856203.pdf by guest on 02 M

ay 2023



scarcely expanded over time, in contrast to control (CT) clones
with intact Foxo1 alleles. This effect was specific for murine
lymphoma cells expressing mt FOXO1 as the adverse phe-
notype of FOXO1 ablation was absent in clones arising from
Foxo1 wt cell lines. Sanger sequencing and western blot
analysis confirmed Foxo1 inactivation in all cases (supple-
mental Figure 4A-B). Cell death and cell cycle analyses
revealed an increase of dead cells and a decrease of cells in the
S phase of the cell cycle after Foxo1 deletion in T24 mt cells
(Figure 4B-C).

To link the detrimental effects of FOXO1 ablation to its nuclear
absence, we evaluated the growth characteristics of isogenic
cell line clones of mouse BL#19 in which we individually targeted

the mt or wt Foxo1 allele, helped by the mutation-specific
PAM sequence in this mouse lymphoma. Immunofluorescence
stainings for FOXO1 expression showed strong nuclear FOXO1
in clones where mt Foxo1 allele was intact (wt1/mt1 and wt2/mt1)
(Figure 5A). In contrast, isogenic cells in which FOXO1 ex-
pression was restricted to the wt allele (wt1/mt2) displayed
cytoplasmic FOXO1 expression. Ablation of nuclear FOXO1 by
editing of themt allele negatively impacted on tumor cell growth
(Figure 5B): wt1/mt2 and wt2/mt2 cell line clones did not expand
as their mt Foxo1-proficient counterparts (wt1/mt1 and wt2/mt1)
over time. Consistently, loss of the mt allele increased the
number of dead cells and resulted in impaired cell cycle pro-
gression, whereas loss of the cytoplasmic form had no detect-
able effect (Figure 5C).
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To test whether the effects of nuclear FOXO1 on lymphoma
growth were independent of PI3K activation, we applied ge-
nome editing in mouse BL#19 cells at the Rosa 26 locus where
the P110* transgene was inserted in 1 of the alleles. In stably
Cas9-expressing cells, we retrovirally expressed various gRNAs
targeting P110*, MYC, and the wt Rosa 26 (R26) locus. In contrast
to control cells in which P110* was not targeted (empty vector;
gRNA_R26), cells expressing a P110* gRNA were as rapidly
outcompeted by their noninfected counterparts as cells in which
MYC was modified (supplemental Figure 5A). To confirm the
requirement for PI3K activity in these cells, we transiently
expressed Cas9 and gRNA_P110* in mouse BL#19 cells and
sorted transfected cells either in bulk or as single cells. Se-
quencing analysis at an early and late time point after trans-
fection showed strong selection for in-framemutations over time
(supplemental Figure 5B), indicating dependency of the mt
FOXO1-expressing tumor cells on PI3K signaling.

Insights into the function of nuclear FOXO1 were gained from
global gene expression profiles in cell line clones after Foxo1
locus editing. Principal component analysis (PCA) and analysis of
variance–based variance analysis resolved the genotypes into
distinct clusters (Figure 6A; supplemental Figure 5C): mt Foxo1-
proficient samples (wt1/mt1 and wt2/mt1) grouped together,
whereas wt Foxo1-proficient (wt1/mt2) and KO (wt2/mt2) sam-
ples formed independent nonoverlapping clusters.

Although Foxo1 KO samples were most different in comparison
with the others, gene-expression changes in mt Foxo1-proficient
samples (wt1/mt1 and wt2/mt1) were closely related, suggesting
a dominant effect of mt FOXO1 on the transcriptome. To identify
target genes of mt FOXO1 in BL, we compared the transcript-
level changes in the following groups: FOXO1 KO (wt2/mt2),
FOXO1 WT (wt1/mt2), and FOXO1 MT (wt2/mt1 and wt1/mt1).
Of 20 000 transcripts that were present (absolute value. 100) in
at least 1 of the groups, 1500 genes exhibited a false discovery
rate q value, 0.05 and were defined as differentially expressed
(Figure 6B). Hierarchical clustering of these genes showed not
only a large set of genes being coregulated in FOXO1 MT and
FOXO1WT samples, but also genes exclusively regulated by the
presence of the mt Foxo1 allele (Figure 6B). Gene-ontology
enrichment analysis connected mt Foxo1-specific upregulated
genes with processes related to cell cycle, cell division, and
proliferation whereas downregulated genes contained regu-
lators of apoptosis and metabolism (Figure 6C; supplemental
Table 1). Although these results could be partially attributable to
the different proliferative capacities of the samples (see
Figure 5), tumor-promoting genes were significantly enriched in
the mt FOXO1-specific gene set.

In GC B cells, the DZ transcriptional program is highly enriched
in FOXO1-regulated genes.11 Thus, we determined the en-
richment of FOXO1-controlled DZ genes in our BL cell line
clones after FOXO1 editing. A list of potential FOXO1 target
genes was generated by intercrossing genes differentially
expressed in DZ/LZ cells with the ones from the compari-
son of FOXO1-proficient vs -deficient GC B cells (for details,
see Sander et al11). Gene-set enrichment analysis revealed
downregulation of FOXO1-induced DZ genes (Sander_DZ_up)
in Foxo1 KO tumor samples (wt2/mt2; and upregulation of
Sander_DZ_down genes), thereby suggesting shared FOXO1

target genes in nonmalignant and malignant GC B cells
(supplemental Figure 5D).

Nuclear wt FOXO1 can substitute for mt FOXO1
We confirmed that the single-nucleotide change inmt FOXO1was
responsible for its tumor-promoting effects when we repaired the
endogenous Foxo1 locus in T24 mt mouse BL cells (Figure 7A):
a vector encoding a gRNA specifically targeting the mt Foxo1
allele and Cas9 were electroporated in the cells, together with
a donor plasmid encoding FOXO1 wt exon 1. To select for
positively recombined cells, a puromycin-resistance gene was
introduced into the donor plasmid as well as a silent mutation in
the FOXO1 sequence to identify the repaired allele in sequencing
analysis. The repair of the mt allele in individually recovered cell
line clones was verified by Sanger sequencing. Western blot
analysis demonstrated an increase in T24 phosphorylation of
FOXO1, confirming the proper function of the corrected allele
(supplemental Figure 6A-B). Indeed, the single-nucleotide ex-
change that corrected the T24 position and thus repaired the AKT-
phosphorylation site of FOXO1 resulted in the nuclear exclusion of
the transcription factor (Figure 7B), and cytoplasmic (wt) FOXO1
did not support lymphoma cell growth (Figure 7C).

Because human BL cells are characterized by nuclear FOXO1
regardless of its mutation status, we intended to mimic the
existence of nuclear wt FOXO1 in the mouse cells. To study
tumor cell expansion under this condition, we enforced ex-
pression of T24 wt FOXO1 lacking an intact nuclear export signal
(NES)38 and appropriate controls (Figure 7D) in a FOXO1 KO
clone of a FOXO1 mt lymphoma cell line (mouse BL#19). As
expected, expression of wt FOXO1 resulted in its constitutive
phosphorylation at T24 (due to the intrinsic PI3K pathway ac-
tivation in the cells) and the cytoplasmic localization of the
transcription factor (FOXO1wt) (Figure 7E; supplemental
Figure 7A). Lack of T24 phosphorylation and nuclear FOXO1was
detected in cells expressing T24 mt FOXO1, in the presence
(FOXO1T24P) or absence of an intact NES (FOXO1T24P1L375A).
Nuclear localization of T24 wt FOXO1 whose NES was ablated
(FOXO1L375A) coincided with variable levels of T24 phosphory-
lation (supplemental Figure 7A; Figure 7G). In contrast to cy-
toplasmic T24 wt FOXO1, the nuclear T24 mt was able to
strongly enhance lymphoma growth in the FOXO1-deficient
tumor cells (Figure 7F; supplemental Figure 7B).

Besides their impact on the subcellular localization, post-
translational modifications control the transcriptional activity of
FOXO proteins and thereby their function.9,35,39,40 Thus, we
studied selected FOXO1 modifications after overexpression of
the transcription factor in mouse FOXO1 KO cells. Phosphory-
lation at all known AKT-phosphorylation sites (T24, S256, and
S319) was strong in T24 wt FOXO1, irrespective of the sequence
integrity of the NES and the subcellular localization of the
transcription factor (Figure 7G). In constrast, FOXO1T24P selec-
tively lacked T24 and S256 phosphorylation in mouse BL cells.
The functional significance of this effect remains unclear, how-
ever, because FOXO1L375A significantly rescued the growth of
FOXO1-deficient BL cells (Figure 7F). FOXO1 AAA (FOXO13A),
a mutant with alanine substitutions at all AKT-phosphorylation
sites, was included in our analysis to demonstrate specificity of
the antibodies used. We also analyzed lysine acetylation and
O-glycosylation in T24 wt and mt FOXO1, but failed to detect
significant differences (supplemental Figure 7C-D).
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Discussion
The GC reaction is fundamental for effective pathogen defense,
but prone to tumorigenesis. The transcription factor FOXO1 is
one of the prominent determinants of the GC reaction required
for GC compartmentalization and DZ maintenance.

Abundant FOXO1 expression in proliferating DZ cells is coun-
terintuitive given its antiproliferative function in nonmalignant cells
outside of the GC reaction. However, the recurrent FOXO1
mutations in BL, the tumor-promoting activity of nuclear FOXO1 in
mouse and human BL, and overlapping gene sets controlled by
FOXO1 in DZ and BL cells suggest shared FOXO1 functions in
nonmalignant and malignant GC B cells. Although Foxo1 deletion
in early (or pre-) GC B cells does not interfere with the prolifera-
tive capacity of the cells,11 its absence at a later stage of GC B-cell
differentiation negatively affects cell expansion.41 Similarly, in
GC B-cell–derived HL cells, FOXO1 acts as a bona fide tumor-
suppressor gene: its downregulation is essential for the ex-
pansion of the malignant cells22 and correlates with plasma cell
differentiation blockade.42 In contrast, BL cells with their char-
acteristic MYC translocation abuse FOXO1 to promote their
growth. Interestingly, this is not a feature of MYC-driven lym-
phomagenesis in general, as FOXO1 has been shown to have
tumor-suppressor activity in Em-MYC transgenic mice.43 In this
latter model, B-cell transformation is biased toward early stages
of B-cell development44 where FOXO1 is associated with cell
cycle blockade.45

Transcriptional control of key target genes by FOXO1 is most
attractive to explain its tumor-promoting function. A pre-
requisite for its transcription factor function is FOXO1’s lo-
calization in the nucleus. PI3K-mediated AKT activation
antagonizes its nuclear retention whereas mutations prevent-
ing AKT-mediated phosphorylation foster the coexistence of
active PI3K and nuclear FOXO1 in the tumor cells, a scenario
not shared by nonmalignant B cells throughout development
and maturation. As in the presence of MYC overexpression,
PI3K signaling promotes malignant transformation of GC
B cells6 and nuclear FOXO1 has tumor-promoting activity in the
resulting lymphomas (present study); concomitant PI3K and
FOXO1 activity in BL seem well suited to give the tumor cells
a selective advantage. Indeed, both factors act nonredundantly
in lymphoma growth as mouse BL cells expressing nuclear
FOXO1 will stop expanding after either mt FOXO1 ablation or
inactivation of PI3K signaling.

One mechanism of nuclear retention of FOXO1, regardless of
PI3K activity in mouse BL cells, is disturbed FOXO1 binding to the
scaffold protein 14-3-3 by mutating the T24-phosphorylation site.
In mouse lymphomas, T24 mt and therefore nuclear FOXO1 was

responsible for proliferation and survival. This effect could be
partially mimicked by wt FOXO1 lacking the NES. Although
mutations around the T24 position can explain the nuclear lo-
calization of FOXO1 in the presence of constitutive PI3K pathway
activation in the mouse model and also heterozygous mt human
BL cells (Figure 2D), the molecular mechanisms allowing FOXO1
to persist in the nucleus of human BL cells lacking FOXO1
mutations remain elusive. Possible explanations relate to the
synergy in human BL of PI3K-pathway activation and BCR sig-
naling,7 leading perhaps to intermittent rather than continuous
PI3K activity; or redox-state–dependent protein interactions be-
tween FOXO1 and nuclear transporters46; or posttranslational
modifications other than AKT-dependent phosphorylation that
might promote the nuclear translocation of wt FOXO1 as has been
described for other FOXO members and cellular contexts.23,47

Posttranslational modifications can also influence the tran-
scription factor activity of FOXO proteins and may differ be-
tween T24 mt and wt FOXO1. Although the present data do not
support a role of AKT-dependent phosphorylation in this respect
and also demonstrated lysine acetylation andO-glycosylation in
both T24 wt and mt nuclear FOXO1, a more detailed analysis of
posttranslational FOXO1 modifications will be needed to settle
this point.

Our gene-expression data provide evidence that mt FOXO1
positively controls a defined gene set that is significantly enriched
for proproliferative and antiapoptotic genes. However, the sub-
stantial overlap of coregulated genes in the presence of mt
(nuclear) and wt (predominantly cytoplasmic) FOXO1 was sur-
prising. Persistence of wt FOXO1 in the cell nuclei, albeit very
inefficient in comparison with mt FOXO1 (see Figure 2E), might
be responsible for this effect.

Although prominent in the transcriptome analyses, the tumor-
promoting function of nuclear FOXO1 is unlikely to be restricted
to its effects on cell viability and cell cycle progression. Control of
redox homeostasis, metabolism, and growth factor signaling40

may well contribute to its oncogenic activity in BL.

Taken together, we provide evidence that FOXO1 is abun-
dantly expressed and recurrently mutated in both human and
mouse BL tumors. Human BL cells are characterized by the
predominantly nuclear localization of FOXO1, and ablation of
nuclear FOXO1 leads to proliferation and survival defects in
both human and mouse lymphoma cells. We conclude that
nuclear FOXO1 has oncogenic function in BL (and potentially
other GC-derived B-cell lymphomas), tightly associated with its
nuclear localization.

Figure 7 (continued) isogenic cell line clone in which themt allele was repaired to express exclusively wt FOXO1 (wt1/wtrep) are shown. Cell nuclei were counterstainedwith DAPI
(blue; scale bar, 10mm). (C) Growth curves of parental cells (wt1/mt1) and isogenic cell line clones (wt1/wtrep) in which themt allele was repaired by CRISPR/Cas9 genome editing.
The graph summarizes data of 3 experiments. Bars indicate the standard deviation. ***P, .001 (Wilcoxon-Mann-Whitney test). (D)Murine stem cell virus–based vector constructs
for overexpression of wt and mt FOXO1. Transgene expression is coupled to BFP via an internal ribosome entry site sequence. (E) Immunofluorescence analysis of infected
mouse BL cells using FOXO1 antibody (red). Foxo1 KO cells were either transduced with an empty vector (BFP) or the constructs described in panel D. Cell nuclei were
counterstainedwith DAPI (blue; scale bar, 10mm). (F) Percentage of BFP expressing cells over time. After infection of Foxo1 KO cells with the constructs described in panel D, the
proportion of transgene-expressing cells wasmonitored by FACS at indicated time points. The graph summarizes the results of 2 infections. Bars indicate the standard deviation.
***P , .001; ****P , .0001 (Wilcoxon-Mann-Whitney test). (G) Western blot analysis of AKT-dependent FOXO1 phosphorylation in mouse BL cells infected with the constructs
depicted in panel D. Cells expressing mt FOXO1 AAA (FOXO13A), which is impaired in T24, S256, and S319 phosphorylation, were included as controls. ACTB served as loading
control. Data are representative of 2 experiments.
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13125 Berlin, Germany; e-mail: klaus.rajewsky@mdc-berlin.de.

Footnotes
Submitted 5 June 2018; accepted 10 October 2018. Prepublished online
as Blood First Edition paper, 17 October 2018; DOI 10.1182/blood-
2018-06-856203.

*E.K. and V.T.C. contributed equally.

The complete microarray data reported in this article have been de-
posited in the Gene Expression Omnibus database (accession number
GSE119437).

The online version of this article contains a data supplement.

There is a Blood Commentary on this article in this issue.

The publication costs of this article were defrayed in part by page
charge payment. Therefore, and solely to indicate this fact, this article is
hereby marked “advertisement” in accordance with 18 USC section
1734.

REFERENCES
1. Mesin L, Ersching J, Victora GD. Germinal

center B cell dynamics. Immunity. 2016;45(3):
471-482.

2. Jacob J, Kelsoe G, Rajewsky K, Weiss U.
Intraclonal generation of antibody mutants in
germinal centres. Nature. 1991;354(6352):
389-392.
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