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Abstract. We present a method for optic nerve head (ONH) 3-D shape analysis from retinal optical coherence
tomography (OCT). The possibility to noninvasively acquire in vivo high-resolution 3-D volumes of the ONH
using spectral domain OCT drives the need to develop tools that quantify the shape of this structure and extract
information for clinical applications. The presented method automatically generates a 3-D ONH model and then
allows the computation of several 3-D parameters describing the ONH. The method starts with a high-resolution
OCT volume scan as input. From this scan, the model-defining inner limiting membrane (ILM) as inner surface
and the retinal pigment epithelium as outer surface are segmented, and the Bruch’s membrane opening (BMO)
as the model origin is detected. Based on the generated ONH model by triangulated 3-D surface reconstruction,
different parameters (areas, volumes, annular surface ring, minimum distances) of different ONH regions can
then be computed. Additionally, the bending energy (roughness) in the BMO region on the ILM surface and 3-D
BMO-MRW surface area are computed. We show that our method is reliable and robust across a large variety of

ONH topologies (specific to this structure) and present a first clinical application. © The Authors. Published by SPIE under a
Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: [T 77 TJBTZ3.10.106004]
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1 Introduction

Many neurological and ophthalmological conditions affect the
retina. Two landmark structures of this affection are the macula
and the optic nerve head (ONH). Parameters describing the
shape of these structures, especially 3-D parameters, are gaining
more and more importance in understanding normative data and
disease-specific changes, in form of additional information
along with traditional quantitative ones. For example, in the
case of the macula, several studies and approaches have already
been published in order to provide a better insight into the def-
inition of healthy structure and shape.H ONH represents the
part in which all retinal ganglion cell axons gather to leave
the eye toward the brain. As such, investigating the ONH is cen-
tral to the diagnosis of many disorders affecting the optic nerve
like glaucoma,n idiopathic intracranial hypertension (I1H) B8
optic neuritis (ON),} and optic neuropathies of other etiology,
for example, in the context of multiple sclerosis (MS) or neuro-
myelitis optica spectrum disorders (NMOSD).B-3

The advent of fast spectral domain optical coherence tomog-
raphy (OCT) recently allows in vivo 3-D imaging of retinal
structures, including the ONH. While high-resolution ONH
images can now be taken in 3-D, the complex ONH shape
has so far made automatic image analysis challenging.

Main focus of this work is to fill in this gap by presenting and
validating a robust and fully automatic method that is capable of
analyzing ONH shape over a range of conditions. Our approach
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includes a fully automatic 3-D shape analysis pipeline, with
various techniques that will be presented throughout the
paper. The algorithm is shown to be stable to various 3-D ONH
scans and is—to our knowledge—the first approach that fully
exploits the 3-D nature of the ONH for computational image
analysis.

1.1 Related Work

Analyzing tissue damage and structural changes in the ONH is
one of the key goals to improve the diagnosis and understanding
of diseases related to this structure. The main focus of ONH
research lies in the field of ophthalmology, the most prominent
topic being glaucoma. The most common parameters utilized
include length, areas, volumes, or ratios to quantify various
regions of the ONH. The main anatomical structures needed
to compute these parameters are the inner limiting membrane
(ILM), Bruch’s membrane or the lower boundary of the retinal
pigment epithelium (denoted throughout the paper, for simplic-
ity, by RPE) and the Bruch’s membrane opening (BMO) points.
The first two structures comprise the retina, and the BMO points
have recently gained more and more attention since Reis et al B
introduced these as being the true anatomical structure defining
the optic disc as to the clinically identified margin using fundus
photography. Following this work, several other groupsBZ
proved BMO-based parameters superiority in reliability com-
pared to cup-to-disk ratio.

For ONH analysis, Enders et ald and Muth and Hirneil®
used manual segmentation of the BMO points and minimal
rim width (BMO-MRW), as well as commercially available
ILM surface detection with manual correction to study the
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correlation between visual fields and structural ONH changes.
Chauhan et al @ proposed BMO-MRW as a marker for early
glaucoma detection also using manual segmented BMO points
and BMO-MRW measurements, while Pollet-Villard= used
a similar manual process to prove that structure—function rela-
tionship was significantly stronger using BMO-MRW over
other ONH parameters derived from spectral-domain OCT.
Furthermore, several studies focused on the description of
normative values that characterize the shape of the ONH.
Chauhan et al 2 analyzed BMO-MRW, the orientation of the
long axis of BMO in a normal population, while Enders
et all described BMO-MRW in micro- and macrodiscs.B
BMO minimum rim area (BMO-MRA) correlates with the total
number of nerve fibers traversing the optic nerve and was intro-
duced and investigated in Refs. P and B4. Both studies have
shown BMO-MRA'’s high diagnostic power for glaucoma.
All these studies used commercial available OCT software to
retrieve the ILM surface and BMO points, which were then
manually controlled and corrected by experienced graders.

Another important parameter is the ONH volume, previously
analyzed mainly in relation to conditions characterized by ONH
swelling. To this end, a 2-D segmentation has been previously
developed by our group. The methodB is able to robustly detect
the lower boundary of the RPE in healthy as well as in ONHs
from patients suffering from various neurological disorders that
lead to swelling of the ONH. Several other publications inves-
tigating the same conditionB® followed, all using a graph-cut
based approach to segment the ILM and BM at the ONH. Lee
et al B introduced an end-to-end pipeline to compute several
morphometric parameters (volumes in different ONH regions
and related area parameters). Furthermore, a surface correspond-
ences approach to create a normalized space was presented.
However, this pipeline is semiautomatic and needs manual seg-
mentation of the ILM, BM, and BMO points. For the develop-
ment of the mean surfaces, an accurate registration between the
ONH surfaces is needed. Gibson et al® introduced an ONH
registration algorithm to compute the one-to-one correspon-
dence between two ONH surfaces using the hemispherical sur-
face and volume registration. Later, Lee et alEl proposed a more
sophisticated registration algorithm based on surface currents
and hemispherical demons. Recently, the shape variability of
retinal nerve fiber layer (RNFL)-choroidal thickness was inves-
tigated using a nonrigid surface registration for longitudinal
analysis.

In general, most of the published methods related to ONH
morphometry are computing the traditional parameters (lengths,
widths, and volumes) and performing layers segmentation either
manually or semiautomatically. To the best of our knowledge,
none of the published ONH morphometry methods use proper
manifold 3-D ILM or BM surfaces but rather a 2.5D surface
(i.e., a graph function on an XY-grid).

1.2 Contribution

In this paper, we propose a fully automatic 3-D shape analysis of
the ONH region and introduce 3-D shape parameters along with

commonly used ones. The objective of our proposed method is
to retrieve robust and reliable 3-D quantitative measurements
that describe different aspects of the various shapes of the
ONH. Specifically:

e We introduce a fully automatic pipeline for 3-D shape
analysis of the ONH region.

¢ We automatically segment ILM and the lower boundary of
RPE along with BMO points.

o We compute triangulated 3-D surfaces of the ILM and the
lower boundary of RPE.

e We introduce several 3-D shape analysis parameters,
along with traditional parameters.

e We prove the robustness of our algorithm for repeated
measurements in healthy control (HC) data.

e We provide quantitative parameters for different ONH
regions in healthy people with normal vision, as well
as in a dataset with clinical relevance for ONH swelling
and atrophy.

2 Method

In this section, we explain the procedure to compute several 3-D
shape parameters of the ONH including the preprocessing of the
ILM and the RPE surfaces and correspondence between them.
Figure [I] shows the algorithm pipeline, where an OCT volume
scan is the input of the algorithm. Next, we compute the trian-
gulated ILM and RPE surfaces along with the BMO points.
These three structures represent the ONH 3-D shape and
serve as inputs for further shape analysis of the ONH. In the
remainder of the paper, the ILM and the RPE surfaces will
be represented as My and Mpgpg, respectively, and the
BMO points are denoted by P. The ILM and the RPE surfaces
are triangulated manifold surfaces and can be written in terms of
the set of vertices and faces (triangles):

Mum = {Vim Fim} and - Mgpg = {Vrpg, Frpe}-

These two surfaces can have different numbers of vertices
and triangles. Let us consider that ny, and
mym represent the numbers of vertices and faces in the ILM
surfaces. Similarly, ngpg and mgpg denote the size of Vypg
and Fgrpg, respectively. The BMO points are represented as
P={p,eR’li=1--- n,}, where n, is the number of the
BMO points.

p

2.1 OCT Image Data

Our algorithm has as input 3-D ONH scans obtained with
a spectral-domain OCT (Heidelberg Spectralis SDOCT,
Heidelberg Engineering, Germany) using a custom protocol
with 145 B-scans, focusing the ONH with a scanning angle
of 15 degxl15 deg and a resolution of 384 A-scans per
B-scan. The spatial resolution in x direction is ~12.6 um, in

Compute RPE
Lower Boundary|
and BMO Points

INPUT

Volume scan Dzl

Preprocessing of Region Splitting OUTPUT
the ILM and RPE of the ILM and 3D Shape
Surfaces RPE Surfaces Parameters

Fig. 1 The pipeline of the proposed algorithm.
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axial direction ~3.9 um, and the distance between two B-scans
is ~33.5 ym.

2.2 RPE Lower Boundary Surface Computation
2.2.1 Smoothing and intensity normalization

The RPE lower boundary represents the termination of the retina
and is therefore an important parameter in several morphometric
computations. In this subsection, we present our RPE segmen-
tation approach based on the method presented in Ref. P3. First,
several preprocessing steps are performed, often employed in
OCT images. Consider I(g,,) the intensity of a pixel g,,.
Our algorithm starts by applying a large Gaussian smoothing
filter (6 =35 pixels isotropic with kernel size = (10 pm X
14 ym) on each B-scan separately. The smoothing operation
not only reduces speckle noise present in most OCT data but
also facilitates the approximation of the two most hyperintense
layers, the RNFL and the RPE. Then, to address varying inten-
sities, a contrast rescaling on each slice (B-scan) is performed.
Contrast inhomogeneities can occur in the form of a B-scan
having regions with different illumination or as several
B-scans of the same volume with very different intensity
ranges. Specifically, a histogram-based amplitude normalization
method® is used to map the signals in the original image linearly
between [0, 1] using as low cutoffs the first, 66th percentiles and
as high cutoff the 99th percentile on the histogram of the B-scan,
where the sampled column (A-scan) is located. Figure
shows one B-scans of the resulting smoothed and normalized
original volume. Figure shows the same B-scan with its
original gray values.

(d) 384 pixels

2.2.2 RPE approximation

First, we start by approximating ILM as the upper boundary. At
each A-scan, we detect the first pixel from top in the smoothed
and normalized volume, Iy, higher than 1/3 of the maximum
value in the B-scan containing the A-scan. This gives us a set of
initial estimate points for the ILM, denoted by ILM;,;. Next, we
approximate the upper boundary of RPE. First, we compute the
image derivative, VIgy, of each B-scan (vertical gradient) using
a Sobel kernel. Looking along each A-scan, starting from the
ILM;,;; set, we perform several intermediate steps for the
RPE upper boundary approximation. We estimate inner and
outer segment junction regions (ISOS) by finding the first set
of points p, as shown in Fig. B(c]:

Py = AVIsn(Giny) < (VIsn(Syy)/3)}. Soy EILM . (1)

Starting from the set p,,, RPE upper boundary is
approximated:

RPEupper = maX[VISN(i’xy)]’ 2

where we only consider the points below IS/OS:

Pry € {IISixy = Pixyll <60 pm}. 3)

At this stage, our input is a list of points that belong to the
upper boundary of RPE in each B-scan. This list comprises
among the points correctly positioned at the upper RPE boun-
dary, also several outliers, especially in the presence of shadows
cast by blood vessels, as well as at the region of the ONH. In
order to remove these, we make use of the observation that the
first and last third of each B-scan most probably lie outside the

384 pixels

384 pixels (f) 384 pixels

Fig. 2 The first step in our pipeline, specifically the RPE lower boundary surface and BMO points detec-
tion exemplified using a B-scans. (a) One B-scan of the original volume (cyan arrows indicate blood
vessels and the shadow artifacts these produce; the region delimited by the yellow line is part of the
ONH disc). (b) After applying smoothing and intensity normalization. (c) Approximated ISOS junction
points (blue points) after removing outliers. As a convention in our computation, the outliers detected
at this step are set to have in the axial (z) direction the coordinate equal to 1. (d) Approximated
upper boundary RPE points (blue points). () Smoothed 2-D RPE lower boundary (blue line).
(f) BMO points (red dots); even in the presence of blood vessel the BMO points can still be detected.
384 pixels represent ~4402.80 ym and 226 pixels ~881.40 ym.
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optic nerve hear area. This is an observation valid for all the
ONH centered scans independently of device or scan settings.
Even in these two parts, outliers caused by shadows of blood
vessels might be present. To remove these, we take the gradient
of the line consisting of the position of upper RPE points and
compute the mean value of these from coordinates that most
likely belong to the correct upper RPE points. These coordinates
represent RPE boundary points that form the largest part of the
gradient line between outliers (outliers in the gradient are con-
sidered to be >40 um). The first seed point is then detected as
the one closest to the mean value. Starting from this seed ggccq,
we iteratively remove outliers from RPE,,,.. (points where
| gsccd = Gnew|| > 70 um). Analog outliers from the last third
of the B-scan are removed. The resulting point set of one B-
scan is shown by the blue points in Fig. E{(d]. The points
removed from the RPE,,,., roughly estimate the ONH region,
as well as the BMO area (BMOA). Note that ILM can have a
very complex topology, whereas other retinal layers are missing
in this area. We create a mask of the ONH from the removed

RPE, . part by fitting an ellipse to its contour, Agng-

2.2.3 RPE lower boundary detection

The final step consists in the RPE lower boundary detection,
RPE, ;- We take the points with the largest negative gradient
below RPE,;p;, closest to the RPE,,, (i.€., if several minimum
points have similar values, the point with the smallest distance to
the corresponding RPE,,, is taken). Using only the maximum
gradient values leads to spurious points along each surface.
Correction of these errors is done by applying a cubic smoothing
spline with a high smoothing parameter. Note that in the case of
presence of blood vessels, large regions of missing coordinates
for the RPE might occur and the cubic spline can present devia-
tions from the desired smooth contour.

2.2.4 TPS fitting to the RPE lower boundary surface

Finally, to account for motion artifacts in consecutive B-scans,
but also for the natural curvature of the retina, we propose an
efficient two-stage thin-plate spline fitting (TPS), which
improves the approach proposed by Ref. B3 without making

-190

-180
-200
-210
-220
-240

-260

-280

-300 =l
400

-260

use of the orthogonal scans presented in the work of Ref. B4.
First, TPS least-square approximation is performed. The number
of control points used is determined by the size of the surface
along each axial dimension. At this stage, the number is set to
25% in the slow scan direction, 15%, respectively, and the con-
trol points are evenly distributed along each direction. This ena-
bles the TPS, in combination with a smoothing parameter, a, see
Ref. B3 set to 0.85, to create a more smoothed surface, which
keeps the curvature of the retina without being influenced from
motion artifacts especially along the slow axis. In our experi-
ments, we found that values of a = [0.70, 0.85] provide consis-
tent results. Extreme grid points in the original surface defined
as mean + standard deviation in local nonoverlapping neighbor-
hoods of 10 x 10 grid points of the TPS surface are removed.
Then, the actual TPS fitting similar to Ref. B4 is applied. The
choice of parameters at this second step is strongly influenced
by the fact that we reduced outliers at a previous stage.
Specifically, for grid points, we use 20% in the slow scan direc-
tion, 10% in the fast scan direction, with smoothing parameter
0.45. Consistent results were obtained for a = [0.30,0.50]. Our
strategy is to obtain a TPS closer to the data in the grid points
while smoothing the artifacts present in the position of the
detected RPE,.,., points, especially at the presence of blood
vessels, or in the close vicinity of the approximated ONH
region. Both stages are done on the RPE,,,., without including
Aony. Figure shows the original RPE surface with typical
artifacts in the in-between B-scans direction. These are corrected
after applying our TPS approach while keeping the shape of the
original surface. The result is presented in Fig. B(b]. The result
of the RPE lower boundary after performing the TPS is shown in

Fig. Be].

2.3 BMO Points Computation

BMO is the termination of the Bruch’s membrane (BM) layer
and was proposed as a stable zero reference plane for ONH
quantification. 2! It is a key parameter in the detection of ONH
shape parameters. A challenge in BMO detection is the correct
identification of these points, especially in the presence of shad-
ows caused by blood vessels, or the border tissue of Elsching,IE
a structure similar to the BM. We propose a BMO points’

-190

-180 -200
190

-200 210

210 1

-220 : -
230
240

250 20
260

-270 -240
400

}\ — o [ 2%

_
200 \ P -
100 \(// L -260
0 150

(b)

Fig. 3 (a) RPE lower boundary surface with motion artifacts. (b) Resulting TPS fitted surface. The pro-
posed two-stage TPS is capable of reducing the motion and segmentation artifacts seen in the original
RPE lower boundary and creating a smoothed surface while still keeping the shape of the retina.
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segmentation approach in the 3-D volume directly without the
use of a 2-D projection image in the xy plane, as presented in
several previous works. B

2.3.1 Volume flattening

We start by flattening the whole OCT volume. This step, per-
formed in several retinal segmentation algorithms, B refers
to the translation of all A-scans such that a chosen boundary
in the volume is flat. We choose to align the retina to the
smoothed RPE,.,. The alignment facilitates the volume reduc-
tion process, as well as the differentiation of BMO from other
tissue.

2.3.2 Volume reduction and vessel suppression

We reduce the OCT volume to a region comprising only the
BMO. Depending on the ONH region fitted by the ellipse
and the position of RPE, .., the reduced volume can change
from 384 x 496 x 145 voxels in its original size to 384 x 90 X
52 voxels, by taking only the B-scans containing the ellipse and
in z direction RPE,,; £ 100 um. Vessels appear in the RPE
layer as dark intensity regions or shadows. These affect the
detection of the BMO, especially because vessels gather at
the ONH creating large shadows. Our approach focuses on
emphasizing the RPE layer and suppressing these artifacts.
To this end, we first smooth the reduced OCT volume contain-
ing the original gray values with an anisotropic diffusion filter&
and then apply a 2-D Morlet wavelet filte for each B-scan to
enhance the RPE line.

2.3.3 BMO points detection

The end-points of the rough ONH area, Agny, provide the start-
ing points for BMO points detection. On each B-scan, the start-
ing points are updated with new BMO points candidates if they
meet the following conditions: (1) have minimum value in the 2-
D Morlet filtered image, (2) d(Ppew> PBMO-sced) < 30 pm, and
(3) the curvature in a neighboring region of five voxels is almost
0 to avoid including the tissue of Elsching. In case the BMO
points detected in the left and right part of one B-scan overlap,
the BMO starting or end region previously defined by Agny are
updated accordingly. An example of a pair of (left and right)
detected BMO points are shown in Fig. E(T).

2.4 ILM Surface Computation

The ILM separates the retina from the vitreous body and defines
a critical boundary layer for the ONH. Several ILM segmenta-
tion methods have been published to separate the ILM layer
around the ONH region, and most of them compute the ILM
layer as a graph function and are unable to capture complex

o

(@)

and variable topological structures of the ONH. To compute
the ILM surface, we previously developed a method introduced
by Gawlik et al. @ This method is based on an active contour
method of Chan—Vese type and produces a truly 3-D ILM seg-
mentation unlike other state-of-the-art methods. Figure
shows the ILM surface, which is computed using the marching
cubes algorithm,EI where the input level sets are computed using
the method proposed by Gawlik et al ® The lower right corner of
Fig. shows that the approach is capable to reconstruct a
complex topological structure in the ONH region and the march-
ing cubes algorithm produces a manifold ILM surface My
with proper neighborhood and properly oriented face normals.

2.5 ILM Surface Smoothing

During data acquisition of the ONH region using the 3-D OCT
scanner, noise is inevitable due to various internal and external
factors. As it can be seen from Fig. fi(2), the ILM surface is not
smooth and has various noise components. Staircase artifacts are
also shown in the left corner of Fig. ] as an effect of the march-
ing cubes algorithm and of the volume scan resolution. For an
accurate shape parameter computation, these artifacts including
noise components should be removed at the early stage of the
algorithm. To compute a noise free and a high-fidelity ILM sur-
face, we use a robust mesh denoising algorithm, proposed by
Yadav et al. B In general, mesh denoising algorithms are divided
into two categories: isotropic and anisotropic methods. Isotropic
methods remove noise effectively but produce a volume shrink-
age, which leads to an incorrect shape analysis of the ONH.
Anisotropic methods are feature preserving mesh denoising
algorithms and induce a small volume shrinkage compared to
the isotropic methods. In the case of the ILM surface, the aniso-
tropic methods treat the marching cube artifacts as features and
lead to an incorrect shape analysis. The method in Ref. 7 is
a combination of both isotropic and anisotropic methods and
produces a high fidelity smooth ILM surface without staircase
artifacts and minimum volume shrinkage, as shown in Fig. fi(B].
This method also produces a high quality triangular mesh with
proper face normal orientation, which is vital in further shape
analysis of the ONH.

2.6 Ellipse Fitting to BMO Points

As presented in Sec. 23, the proposed algorithm computes
the BMO points automatically. Due to blood vessels around
the ONH, noise components and 3-D OCT scan patterns, the
BMO points are nonuniform and noisy, as shown in Fig. p(a].
To remove these artifacts, we fit an ellipse to the BMO point
onto XY-plane. First of all, the BMO points P are projected
onto the corresponding XY-plane and denoted as a points
set: Pop = {p; €R?|i =0, ---,n, — 1}. Then, we apply the

Fig. 4 (a) Noisy ILM surface. (b) Smooth ILM surface. (c) Smooth ILM and RPE surfaces with BMO. The
ILM surface computed using the marching cube algorithm and level sets produced by the method.H
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Fig. 5 (a) Noisy and irregular BMO points, which are computed auto-
matically. (b) Smooth and uniform density BMO points are computed
using an ellipse fit.

methodH to compute a fitted ellipse to the BMO points in R2.
Another key parameter in the ONH shape analysis is the center
of the BMO points. This is computed as the barycentric of the all
P>p points:

o=— 3 b @

n, .
P p€Pap

where p, € R?. Figure | shows that the ellipse fitting is not only
removes the noise but also increases the data points uniformly.

2.7 Correspondence between ILM and RPE
Surfaces

The total retina at the ONH region is delimited by ILM and RPE.
For further analysis, it is necessary to find the corresponding
points between these two surfaces. In the proposed method,
we compute vertices in the RPE surface corresponding to
each face (f; € Fyumli =0, -+, myy — 1) of the ILM surface.
In general, the RPE surface, represented here as a function
graph: Mgpg :R? — R, has a less complex structure compared
to ILM. In the OCT scanner, the number of the A-scans (x-direc-
tion) and the number of the B-scans (y-direction) are fixed,
which create a regular XY-grid as a domain for the RPE
graph function. Therefore, the index of each vertex of the
RPE surface can be computed using the number of x-lines (ver-
tical lines) and y-lines (horizontal lines) and the sampling size in
both directions, denoted by ¢, and &, respectively. The numbers
of x-lines and y-lines are computed using the following
equation:

xhne — Xmaxs_xmln + 1,
e 5)
yline — Ymax ~Ymin + 1 (
£y ’

where Xax> Xmin> Ymax> ad Ymin are the bounding values of the
RPE surface in x and y directions. For each face f; € Fyy, the
vertex of the RPE surface onto the XY-plane is computed, which
approximates the position of the corresponding A-scan and B-
scan in the volume scan. Let us consider that ¢; represents the
centroid of the face f;. To compute the corresponding vertex in
the RPE surface, we project the face f; onto the corresponding
XY-plane, ¢; represents the projected centroid. The terms ¢, and
¢,, are the corresponding x and y coordinates. We compute the
x-index (i), the y-index (i), and the vertex (i) index using x line
and y line in the RPE surface for the face f; using the following
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equation:

i = ’VEx,v — Xmin + gx/z-‘ i = ’VEy,v — Ymin + gy/z-‘
) y - ’

=
Ex €y

=i, +1i- xline,
(6)

where [ ] represents the ceil function and i denotes the corre-
sponding vertex in the RPE surface. For an accurate computa-
tion, we check the neighborhood of vertex i of the RPE surface
and the corresponding vertex is computed as follows:

¥, =V, € Q| min | - ¥,|, @)
where Q; represents the 3 X 3 neighborhood (at XY-plane)
of vertex i. The term V; is the projection of vertex v; € Vrpg
onto XY-plane. Finally, we get the set C=
{v;€R3|i=0,---,myy — 1}, which represents the set of
RPE surface vertices corresponding to each face in Fyj . A vis-
ual representation of the correspondence computation is shown
in Fig. [, where the RPE’s regular XY-grid is shown in blue and
the projected ILM’s vertices and edges are painted in red.

2.8 BMO Region Segmentation

For the ONH shape analysis, the region inside the BMO points
is of special interest since BMO points represent the optic disc
margin. To segment this region, we exploit the elliptic represen-
tation of the BMO points in R? along with their center, as men-
tioned in Eq. (f]). First, we compute the center of the ILM and
the RPE surfaces corresponding to the center p. of the BMO
points. Let us consider that Vy;; and Vgpg represent projected
sets of vertices onto XY-plane. Then, the indices of the centers
of both surfaces can be computed as follows:

ilmc = j €0, -+, nyy — 1| min [V:M — |,
rpeC = ] (S 0, c**,IRPE — 1 |min|€7?PE _13('|’ (8)

where V1M € Vi and ¥ € V... The vertices Virye € Viru
and vgpg. € Vrpg represent the center of the ILM and the RPE
surfaces, respectively.

To compute the BMO regions in the ILM and the RPE sur-
faces, we transform the ellipse into a circle using the affine trans-
form. Let us consider p§ represents the fitted ellipse point to p;
as mentioned in Sec. P.§ and p§ denotes the corresponding affine
transformed point on a circle of radius r. This transformation
reduces the complexity of the BMO region computation and

N

Fig. 6 Correspondence between ILM and RPE surfaces; the face f; €
Fi_v (green triangle) has a corresponding vertex v; € Vgpg in the RPE
surface.
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improves the speed of the algorithm. Now, by using the circular
representation of the BMO points, the BMO regions in both
RPE and ILM surfaces are computed as follows:

Qv =1{f; € FILMHE}LM — Vitme| <7},

Qree = {f; € Frp|[&F = e < 7}, )

where r is the radius of the transformed circle and E}LM, EFPE
represent the centroid of a face in the ILM and the RPE surfaces,
respectively. The computation shown in Eq. (f]) is done using the

disk growing method.

2.9 3-D Shape Parameters
2.9.1 ONH cup volume

The ONH cup is defined as a segment of the ILM surface, which
is below the RPE surface, as shown in Figs. and [/(B). Note
that the cup is not present in every ONH volume scan. For exam-
ple, mostly in the case swollen ONH scans, the ILM surface is
always above the RPE. To detect the availability of the ONH
cup, we go to each face f; € Fy; and compute its centroid
¢;. As we discussed in Sec. B7], each face f; of the ILM has
the corresponding vertex v; € C in RPE. If ¢ — v7 > 0 for all
faces in ILM, then, there is no cup available in the ONH region.
Otherwise, there is a cup. The terms ¢; and v} show the corre-
sponding z-coordinates (height). Similarly, we can compute the
cup region:

chp = {fz € FILM|(C? - U,Z) < 0}, (10)

where Q,, consists of faces (triangles) of ILM, which are below
the RPE surface. As it can be seen from Fig. [[(b], the cup region
is also a manifold surface with proper face normal orientation.
To compute the volume of the cup accurately, we exploit the face
normal information at each triangle of the region. The cup
volume is computed using the following equation:

Vap= Y Al (11

(fiegcup)

where A; represents the area of a triangle, which is a projection
of the face f; of the ILM surface onto XY-plane and #; is the
height with respect to the RPE surface. These variables are
defined as follows:

. .
A= E(eo xey), hi=(ci-v)), a2)

l 1

where €, and €, are the connected edges of the projected tri-
angle. The cross-product between the two edges will take
care of the orientation of the corresponding face and enables
a precise volume computation even in complex topological
regions.

2.9.2 Central ONH thickness

The CONHT is defined as the height difference between the
center of the ILM and the RPE surfaces, as shown in
Fig. [[(c]. The CONHT of ONH volume scan is computed as
follows:

CONHT = (v}, — V5pec) 13)

where o5, . and v},.. show the corresponding height value
(z-coordinates) of the center VETtiCes Vi and Vype., respectively,

introduced in Sec. Z§.

2.9.3 BMO region volume

The BMO region volume is computed using the segmented ILM
and RPE surfaces. We separated the cup volume from the BMO
region volume such that it does not include the cup volume, if it
exists. Then, the BMO region volume can be computed as
follows:

Qppo = Qv \ Qeyp- (14)

Similar to the ONH cup volume, we compute the BMO
region volume using the similar formula:

Vemo = Y Ak, (15)
(fi€Q8Mm0)

where A; is the area of the face f; that belongs to the set Qppo
and is computed using Eq. ([J). Similarly, 4; is also computed
using the corresponding vertices in the RPE surface as men-
tioned in Eq. ([2).

2.9.4 ONH total volume

Similar to the ONH cup and the BMO region volumes, the
ONH total volume is also computed using ILM and RPE

Fig. 7 A visual representation of the different morphological parameters. (a) BMO region, (b) cup volume
Veup» (€) central ONH thickness (CONHT), and (d) bending energy E,,.
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surfaces. The total volume is computed from the circular region,
with radius 1.5 mm, centered at vy, and V.. for ILM and RPE
surfaces, respectively, as shown in Fig. B(a]. Similar to Eq. (),
we compute the circular regions for ILM and RPE surfaces
using the following equation:

M _ ZILM _ &
Q15 mm = 1f; € Fumll&™ = Vige| < 1.5 mm},

RPE  _ SRPE _ o
91.5 mm {fj € FRPEch - Vrpec| <15 mm}, (16)
where QI'M and QRPE are the sets consisting of all faces

within the 1.5-mm region of the ILM and RPE surfaces from
their centers. The other parameters were defined in Eq. (f).
Then, the total volume region is calculated using Eq. (T9):

Q= Q5 mm \ chpv (17

where €, represents the total volume region on the ILM
surface, as shown in Fig. B(b), which is further employed for
the total volume computation:

V=Y A (18)

(f[EQ/v)

where A, is the area of the face f; € Q,, and 4; is the height with
respect to corresponding vertex in the RPE surface similar

to Eq. (1.

2.9.5 ONH annular region volume

The ONH annular region represents the ONH outer region, see
Fig. B(c]. On ILM surface, this region is computed using the
following equation:

Qav = QI.S mm \ QBM07 (19)

where Q,, consists of all the ILM surface faces, which belong to
the annular region of the ONH. Similar to Eq. ([§), we compute
the volume of the annular region using the ILM and RPE sur-
faces correspondence:

Vav: Z Aihi' (20)

(fi€Quy)

The annular region volume helps to see the change in the
outer region of the ONH volume in different cohorts.

/.

2.9.6 Bending energy

The roughness on the ILM surface within the BMO region is an
important parameter and commonly known as the bending
energy on a manifold surface. The bending energy measures
the fairness of a surface in terms of the curvature. In general,
the outer region of the ILM surface is quite smooth and flat
unlike the one inside the BMO, which has very complex topo-
logical structure. In this paper, we define the bending energy
within the BMO region using the element-based normal voting
tensor (ENVT).E The ENVT exploits the orientation informa-
tion (face normals) to compute a shape analysis operator at
each face f; € Qgyo and is defined as follows:

1
am;-n?

Mi JH j (21)

Zf €m0 %) 1i€9%mo0

where n; represents the normal of face f; and n]T is the transpose

of n;. The term a; is the area of the face f;. To assure robustness
against irregular sampling of the ILM surface, we weight
Eq. €I) by the corresponding face area a ;- The ENVT, M;,
is a symmetric and positive semidefinite matrix, so, it can be

decomposed into its spectral components:

2
M, = Zﬂieke,{, (22)
=0

where i = {2),2{,1}} are the eigenvalues vector, and these
eigenvalues are sorted in decreasing order (45 > A} > 45 > 0).
The corresponding eigenvector is denoted by e;. In general,
the dominant eigenvalue 26 has the corresponding eigenvector
in the direction of the face normal and the remaining two eigen-
vectors will be aligned to the principle curvature direction on the
ILM surface. On the planer region, only 4 will be significant, on
the edge region, A} and 4} will be significant and at the corners,
all of these eigenvalues are significant. Using the anisotropic
properties of these eigenvalues, we define the bending energy
inside the BMO region using the following equation:

Ey= ) Ai+4, (23)
fi€Q%mo0

where A} and A} are the two least dominant eigenvalues of the

ENVT of the face f;. Figure [[(d] shows how each face of the

BMO region is colored based on Eq. (Eg). The color is scaled
from white (flat regions) to red (sharp features).

=

()

Fig. 8 A visual representation of total and annular volume regions. (a) 1.5 mm regions of ILM (Q4 5 mm)
and RPE (QFEE | surfaces from the BMO center. (b) Total volume (V) between ILM and RPE surfaces
within 1.5 mm radius region. (c) Annular volume (V/,,) is defined as the volume between ILM after taking

out the BMO region.
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2.9.7 BMO-MRW

BMO-MRW has been proposed by Ref. [[4 as a valid alternative
structural measure. It computes the minimum distance between
the BMO points and the ILM surface. The average BMO-MRW,
denoted by avgyrw, is calculated as follows:

np

1
AVEmrw = I’I_Z |p;fnrw - ple| (24)
P =1

2.9.8 BMO-MRW surface area

BMO-MRW surface area, BMO-MRA, is computed by taking
the whole region defined by all BMO-MRW. We combine the
ellipse fitted BMO points P,p and the z-coordinates from P and
represent these as P, = {pf € R*[i =0, ---,n, — 1}, as it can
be seen in Fig. f| (green points). For each point p¢ € P,, we
compute a point pMRW on the ILM surface:

P/ = V; € Vixy, | min |v; — p|. @

The MRW points Pyrw = {PYRV e R |i =
0,--,n,— 1} are lying on the ILM surface as shown in
Fig. (violet points). We create a quad surface using
point sets P, and P, by introducing edges between the cor-
responding vertices in both point sets and connecting the neigh-
bor points as shown in Fig. P(b]. The number of quad elements
in the MRD surface is equal to the number of points in each
point sets and is represented as Q = {¢;|i=0 --- n, —1}.
MRW-MRA is computed as follows:

Ap = > _ay,. (26)

q:€Q

where a,, represents the area of the quad g;.
2.9.9 BMO area

As shown in Fig. fl, BMOA represents the area under the fitted
ellipse to the BMO points and is computed using the conic
representation:

Agmo = #Ti12, 27

where r; and r, are the major and minor axes of the fitted
ellipse.

3 Experiments and Results

In order to evaluate our method, we performed repeated-meas-
urement reliability tests, investigated ONH shape in healthy sub-
jects, and tested if our method is able to detect differences in
patients with diseases known to affect the ONH in the form
of swelling and atrophy. Finally, we measured the implementa-
tion’s performance.

3.1 Repeated-Measurement Reliability

In order to estimate the repeated-measurement reliability, we
took three repeated scans of each eye from 10 healthy subjects.
These subjects were measured each in a time frame of a week
and then again in the following week. Table [ shows the repeat-
ability results. We see that our method scores highly at every
parameter presented, with lowest intraclass correlation coeffi-
cient (ICC) of 0.905 for CONHT, and highest 0.998 for V.
The ICC and confidence intervals were estimated using the vari-
ance components from a one-way ANOVA.

We also evaluated our method with several other scan pro-
tocols of the same device (ONH cube with 73 B-scans, scanning
angle of 15 degx15 deg and resolution 384 A-scans per
B-scan, spatial resolution in x direction is ~12.6 um, in axial
direction ~3.9 ym and the distance between two B-scans
~61 ym, ONH star scan with 24 B-scans, scanning angle of
15 degx15 deg and a resolution of 768 A-scans per B-scan,
spatial resolution in x direction is %5.36 um, in axial direction
~3.9 ym) and the volumetric ONH-centered protocol acquired
using Cirrus HD OCT (Carl Zeiss Meditec, Dublin, California),
which covers 6x 6x2 mm® region with 200 x 200 x 1024
voxels and obtained positive results.

3.2 Validation

We validated the BMO detection and checked the RPE segmen-
tation. Five scans from the ones used in the repeatability testing
were randomly selected. An experienced grader manually
selected the BMO points using the Rol tool from ImageJ.E
This resulted in a total amount of 488 B-scans with manually
selected BMO points, which corresponded to the number
detected automatically. Furthermore, we compared the mean
signed and unsigned error in the x axis, as well as in the
axial one (in z axis). If the automated method identified the
BMO closer to the optic disc center, the sign of distance in
the x-direction was positive. Similarly, if the automated
BMO located below the manual BMO, the sign of distance
in the z-direction was positive. Results are shown in Table .
To our knowledge, there is no other study regarding BMO seg-
mentation with the device used in this approach. As such, we are
not able to relate our results to other published methods, since
comparative studies revealed that measurements are not directly

Fig. 9 BMO-MRW surface with and without ILM. (a) BMO-MRW surface with ILM surface and (b) BMO-

MRW surface.
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Table 1 Repeatability test for the 3-D parameters.

Parameters ICC LCI UCI

ONH cup vol. (V) (mmd) 0.998 0.996 0.999

Central ONH thickness (CONHT) (mm) 0.905 0.813 0.958

BMO region vol (Vgyo) (Mm?) 0.993 0.986 0.997
ONH total vol. (V;,) (mm?®) 0.995 0.989 0.998
ONH annular vol. (V,,) (mm?) 0.983 0.965 0.993
Bending energy (Ej) 0.911 0.824 0.961

BMO-MRW surface area (Ayrw) (MM?)  0.910 0.823  0.960
BMO-MRW (dyrw) (mm) 0.993 0.986 0.997

BMOA (Agwo) (mm?) 0.989 0976 0.995

Note: LCI, lower boundary of 95% confidence interval and UCI, upper
boundary of 95% confidence interval.

comparable between different OCT devices.H The ILM valida-
tion was done in another work of our research group. For RPE
computation, an experience grader visually controlled all scans
used in the repeatability testing and assessed these as correctly
segmented.

3.3 Clinical Evaluation

In this section, we present the results of our automatic pipeline
approach for 248 OCT scans, from three groups, 71 HC eyes, 31
eyes of patients suffering from IIH,B which causes swelling of
the ONH (papilledema). We also included 146 eyes of patients
with autoimmune central nervous system disorders (MS and
NMOSD) and a history of ON, an inflammatory optic neuro-
pathy that damages the optic nerve leading to neuroaxonal
degeneration 3

All participants gave written informed consent according to
the 1964 Declaration of Helsinki. The study was approved by
the ethics committee of Charité — Universititsmedizin Berlin.

In ITH patients, the ONH volume is increased and was shown
to correlate with cerebrospinal fluid pressure. The longitudinal
analyses from Ref. § revealed that ONH volume measured by
OCT decreased after the initial lumbar puncture and initiation of
therapy with acetazolamide. Additionally, increased ONH vol-
ume was associated with lower visual acuity in I[IH patients,

Table 2 Mean unsigned and signed error in pixel and xm, for the x
axis, and z axis between automatic (proposed) and manual
segmentation.

Mean (+SD) Mean (+SD) Mean (+SD) Mean (+SD)
unsigned unsigned signed error  signed error

error (pixels) error (um) (pixels) (um)
X axis 4.9098 61.8635 -0.6107 —7.6943
(£4.9182)  (+61.9693)  (+6.9261)  (+87.2693)
Z axis 2.8828 12.4024 -0.3618 -1.4110
(£3.1801)  (£11.2429)  (+4.2790) (+16.6881)

Journal of Biomedical Optics
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which points out to the potential clinical relevance of the
parameter.

ON is one of the most common initial clinical presentations
of MS without any prior history of a demyelinating event.
During the course of the disease, acute ON affects 50% and
70% of MS patients.B After initial swelling due to edema in
the acute phase of ON, RNFL thickness decreased over the fol-
lowing six months M ON is the first NMOSD-related clinical
event in 55% of the patients, which causes severe structural
damage to the optic nerve and retina with resulting functional
impairment. Recurrent ONs in NMOSD give rise to severely
thinned pRNFL and combined ganglion cell layer and inner
plexiform layer.IEI Furthermore, within 5 years, ~50% of
NMO patients are either blind in one or both eyes® RNFL
reduction was consistently observed in MS patients, who had
never had a clinical episode of ON, as well as in the clinically
unaffected fellow eye of patients with a history of ON.EEI
Similarly, a recent study® found that there is also retinal neuro-
axonal damage without ON in NMOSD, but longitudinal studies
investigating neuroaxonal damage without ON in NMOSD have
not been performed extensively.

We hypothesized that patients with IIH would show signifi-
cant changes in comparison to HCs indicating ONH swelling.
Also, patients with a history of ON would show significant
changes in comparison to HCs indication ONH atrophy. The
results presented in Table [§ demonstrate that our approach suc-
cessfully captures the differences. The only parameter showing
no difference between groups is bending energy, E,. Although
we expected that in the IIH affected eyes, the ONH shape inside
the BMO to have a smoother convex shape, the data are still
extremely heterogeneous. Thus, the bending energy reflects
this extreme variability in the data. Especially inside the BMO,
the topologies from one ONH to the other can be extremely
different.

We plan to further investigate these findings (for both proc-
esses of swelling and atrophy of the ONH) with the parameters
presented, to gain more insight into the pathology of the ONH.

3.4 Performance

Computation of the whole pipeline for a volume on an Intel (R)
Core(TM) 17-4790, 3.60 GHz, 16 GB RAM and 64bit operating
system takes on average 2 min (computation of the ILM, RPE
lower boundary and BMO points takes about 75 s, and the mor-
phological computation another 40 and 45 s).

4 Discussion and Conclusion

We have proposed an automatic and robust pipeline for the com-
putation of several parameters that characterize ONH shape. In
particular, we developed an approach that computes truly 3-D
parameters derived from triangulated mesh surfaces of the
ILM and RPE, and BMO points.

The proposed method identifies the RPE lower boundary and
is able to provide a smooth 2.5-D surface by employing a two-
stage TPS fitting that preserves the retina natural curvature.
Then, the estimated location of ONH region is detected and
BMO points are identified. The issue of the presence of border
tissue and the blood vessels was also dealt with by employing
several filters that suppress vessel artifacts and enhance the
Bruch’s membrane termination points. Additionally, the compu-
tation time is significantly reduced by performing the BMO
points’ detection only in the ONH approximated region.
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this issue in the future and establish the foveal-BMO axis as
reference axis to eliminate rotational artifacts, which might
increase repeated measurement reliability also in the context
of longitudinal measurements. Furthermore, the algorithm
was implemented and tested only on images of one device.
Future work needs to adapt the approach to imaging data
from other devices. Last, the sample size of our HC cohort is
too small to allow meaningful investigation of ONH shape
parameters correlations, e.g., with age and sex. These analyses
should be repeated in a future study with higher sample sizes.
We plan to perform an evaluation of our method on a larger data-
set with different scan protocols and different OCT devices and
to create a normative database for the developed parameters.

In summary, our results showed that the proposed method
successfully and robustly identifies ILM, RPE, and BMO points
and it enables computing the morphometric parameters, that
capture shape characteristics of the ONH.
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