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• The	human	blastocyst	has	an	inner	cell	mass,	despite	claims	to	the	contrary	

• Cell	purging	via	apoptosis	defines	a	phylogenetically	restricted	class	of	blastocyst	non-committed	cells		
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• Fast	transcriptome	evolution	is	relatively	unique	to	the	pluripotent	epiblast	and	is	mostly	due	to	a	primate-

specific	transposable	element	

• Current	 naive	 cultures	 don’t	 reflect	 human	 uniqueness,	 are	 heterogeneous	 and	 are	 developmentally	

“confused”.	

	
Abstract	
	
The	phylogenetic	singularity	of	the	human	embryo	remains	unresolved	as	cell	types	of	the	human	blastocyst	have	

resisted	classification.	Combining	clustering	of	whole	cell	transcriptomes	and	differentially	expressed	genes	we	

resolve	the	cell	types.	This	unveils	the	missing	inner	cell	mass	(ICM)	and	reveals	classical	step-wise	development.	

Conversely,	numerous	features	render	our	blastocyst	phylogenetically	distinct:	unlike	mice,	our	epiblast	is	self-

renewing	 and	 we	 have	 blastocyst	 non-committed	 cells	 (NCCs),	 part	 of	 an	 apoptosis-mediated	 quality	

control/purging	process.	At	the	transcriptome-level	all	primate	embryos	are	distinct	as	the	pluripotent	cell	types	

are	 uniquely	 fast	 evolving.	 All	 major	 gene	 expression	 gain	 and	 loss	 events	 between	 human	 and	new-world	

monkeys	involve	endogenous	retrovirus	H	(ERVH).	Human	pluripotent	cells	are	unique	in	which	(H)ERVH’s	are	

active,	 the	extent	 to	which	these	modulate	neighbour	gene	expression	and	their	ability	 to	suppress	mutagenic	

transposable	elements.	Current	naïve	cultures	are	heterogeneous	and	both	developmentally	and	phylogenetically	

“confused”.		

	

Introduction	

Blastocysts	harbour	the	blueprints	of	the	body	plan	as	they	have	the	potential	to	give	rise	to	all	somatic	and	germ	

cell	lineages	(Gardner,	1998).	The	most	potent	cells	are	thought	to	be	the	inner	cell	mass	(ICM)	that	gives	rise	to	

the	hypoblast	(primitive	endoderm)	and	the	pluripotent	epiblast	(EPI)	(Gardner,	1998).	In	contrast	to	mice	(Flach	

et	al.,	1982),	the	primate	embryonic	gene	activation	(EGA)	occurs	not	in	the	zygote,	but	later	(4/8	cells	in	human)	

(Braude	et	al.,	1988).	Early	human	development	is	assumed	to	be	unusual	in	that	an	ICM	is	not	evidenced,	leading	

to	speculation	that	such	a	mass	of	cells	may	not	exist	as	a	distinct	lineage	(Petropoulos	et	al.,	2016;	Sahakyan	and	

Plath,	2016).	In	addition,	the	segregation	of	morula	into	TE,	EPI,	and	primitive	endoderm	(PE)	thought	to	occur	

simultaneously	 rather	 than	 the	 step-wise	manner	 seen	 in	mice	 or	macaques	 (Chazaud	 and	Yamanaka,	 2016;	

Niakan	et	al.,	2012;	Sahakyan	and	Plath,	2016).		

	

While	it	has	been	a	consensus	that	human	pre-implantation	embryogenesis	is	exceptional	(Nakamura	et	al.,	2016),	
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even	 using	 single	 cell	 data	 (Blakeley	 et	 al.,	 2015;	 Petropoulos	 et	 al.,	 2016;	 Yan	 et	 al.,	 2013),	 the	 cells	 of	 the	

blastocyst,	however,	still	resist	unambiguous	identification.	Owing	to	the	fast	progression	of	the	developmental	

process,	suddenly	generating	a	large	number	of	cells,	the	most	challenging	task	is	to	catch	the	distinct	lineages	

during	 blastocyst	 formation.	 To	 address	 this,	 and	 to	 enable	 characterization	 of	 all	 stages	 of	 early	 human	

development,	we	use	a	strategy	of	clustering	both	cells	and	genes.	We	employ	a	dimension-reduction	clustering	

methodology	on	single	cell	transcriptomics	(Satija	et	al.,	2015)	that	focuses	on	defining	local	resemblances.	This	

strategy	is	ideally	suited	to	single	cell	data,	to	resolving	transitory	stages,	capturing	unresolvable	clusters	and,	in	

turn,	to	identifying	diagnostic	markers,	hence	informing	the	biology	of	discrete	cell	types.	Expecting	a	considerable	

turnover	in	gene	expression	during	primate	pre-implantation	embryogenesis,	we	also	employ	comparative	single	

cell	 high-resolution	 analysis	 of	 human	 vs	macaque	 (Cynomolgus	 fasciculara)	 transcriptomes.	Using	 the	 above	

approaches,	we	ask	if	the	cell	types	are	preserved	and	whether	all	the	cell	types	of	early	embryogenesis	are	equally	

subject	 to	 evolutionary	 processes.	 Our	 strategy	 (i)	 unambiguously	 detects	 the	 human	 ICM,	 (ii)	 identifies	 cells	

expressing	multiple	lineage	markers,	(iii)	resolves	a	novel	non-committed	cell	type	during	the	formation	of	the	

blastocyst	that	filtered	out	from	the	developmental	process	and	(iv)	reveals	that	while	the	pluripotent	ICM/EPI	

(mostly	 EPI),	 is	 highly	 divergent	 between	 primates,	 the	 primitive	 endoderm	 (PE)	 and	 TE	 remain	 almost	

unchanged.	To	decipher	the	mechanism	of	accelerated	evolution	of	EPI,	we	take	the	opportunity	that	the	EPI	can	

be	modelled	using	cultured	pluripotent	cells	(PSCs).	We	follow	the	evolution	of	pluripotency	by	examining	gene	

expression	and	structural	differences	in	more	detail	between	old-world	(OWMs)	and	new	world	monkeys	(NWMs)	

in	selected	primate	PSCs,	including	human,	bonobo,	gorilla	and	marmoset	(Callithrix).	

	

The	OWMs	share	a	high	degree	of	similarity	with	humans	in	their	genome	sequence	(92.5%	to	97.5%)	(Olson	and	

Varki,	2003;	Yan	et	al.,	2013).	The	presence/absence	differences	are	in	no	small	part	attributed	to	transposable	

element	 (TrE)	 insertions	 (Ramsay	 et	 al.,	 2017),	 including	 those	 derived	 from	 multiple	 waves	 of	 retroviral	

invasions	into	primate	genomes	(endogenous	retroviruses,	ERVs).	After	EGA,	reactivating	the	transcription	of	TrE	

families	of	different	phylogenetic	age	is	evidenced,	and	has	a	characteristic	patterning	(Friedli	and	Trono,	2015;	

Goke	et	al.,	2015;	Grow	et	al.,	2015;	Guo	et	al.,	2014;	Izsvak	et	al.,	2016;	Rowe	and	Trono,	2011;	Smith	et	al.,	2014).	

To	decipher	if	(and	how)	TrEs	contributed	the	primate	evolution	of	the	pre-implantation	development,	in	addition	

to	considering	classical	genes	as	markers,	we	analyse	the	transcriptional	dynamics	of	transcripts	associated	with	

TrEs.	We	find	that	both	the	young	transpositionally	active	(e.g.	genotoxicity	in	NCC)	and	older	transpositionally	

inactive	(e.g.	rapid	evolution	of	the	ICM/EPI)	TrE-derived	transcriptional	changes	are	associated	with	the	primate	

evolution	of	the	blastocyst.		
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Finally,	a	new	classification	of	early	cell	types	and	markers	enables	us	to	ask	whether	there	is	a	pluripotent	cell	

type	in	the	human	blastocyst	that	would	be	a	good	candidate	for	extraction	and	stable	maintenance	in	vitro	or	to	

mimic.	 In	 characterizing	 recently	 derived	 naïve	 cultures	we	 find	 them	 developmentally	 and	 phylogenetically	

confused.		

	

	

Results	

Resolving	the	identity	of	cells	expressing	multiple	and	no	lineage	markers	unmasks	the	human	inner	cell	

mass	(ICM)	

What	cell-types	are	present	in	the	human	pre-implantation	embryo?	In	particular,	is	the	inner	cell	mass	really	

missing	 from	 human	 blastocysts?	 To	 classify	 cell-types	 we	 used	 available	 single	 cell	 transcriptome	 data	

(Petropoulos	et	al.,	2016;	Yan	et	al.,	2013).	 In	 contrast	 to	 these	previous	analyses	that	 identified	differentially	

expressed	 genes	 (DEGs),	 we	 used	 a	 strategy	 of	 clustering	 both	 whole	 cell	 trancriptomes	 and	 DEGs,	 using	 a	

combination	 of	 clustering	 K-means	 and	 principal	 component	 (PCs).	 In	 doing	 that,	 we	 identified	 1597	 genes	

exhibiting	high	variability	across	single	cells	and	thus	potentially	useful	for	defining	cell	types	(Figures	1A	and	

S1A).	 Next,	 we	 performed	 principle	 component	 analysis	 (PCA)	 to	 reduce	 the	 dimensionality	 of	 the	 data	 and	

identified	nine	significant	principal	components	(PC)	using	a	previously	described	‘jackstraw’	method	(Satija	et	

al.,	 2015).	 We	 used	 these	 PC	 loadings	 as	 inputs	 to	t-distributed	 stochastic	 neighbour	 embedding	 (t-SNE)	 for	

visualization.	This	approach	allowed	us	to	distinguish	10	clusters	 that	we	annotate	on	the	basis	of	previously	

reported	expressed	markers	(Petropoulos	et	al.,	2016)	(Figures	1A	and	S1A).	

	

In	E3-E4,	it	is	relatively	straightforward	to	identify	the	clusters	such	as	oocytes,	zygote,	2,	4,	8	cells	stage	(E3)	and	

even	the	more	heterogeneous	morula	(E4)	of	two	subgroups	(Figure	S1B).	While	LEUTX1	flags	the	8-cell	stage,	

the	two	clusters	of	morula	are	marked	by	either	HKDC1	or	GATA3	(Figures	S1C),	the	latter	is	further	traceable	in	

Pre-TE.	Human	blastocyst	formation	initiates	at	E5,	progresses	at	E6	and	stabilizes	at	E7	prior	to	implantation	

(Figures	 S1D).	 After	 morula	 our	 analysis	 reveals	 previously	 unidentified	 clusters	 (Figures	 1A).	 Our	 strategy	

distinctly	identifies	EPI	and	PE,	as	well	as	TE	(polar,	mural)	clusters	in	E5,	E6	and	in	E7	stages,	respectively	[area	

under	curve	(AUC)	≥	0.90]	(Figures	1A	and	S1E).	A	remaining	cluster	from	E6	and	one	from	E6-E7	is	yet	to	be	

defined	since	they	express	markers	heterogeneously	(Figures	1A	and	S1A).		
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Not	all	the	clusters	are	so	easy	to	classify	as	EPI,	PE	and	the	early	cell	types.	Given	heterogeneity	in	a	cluster,	might	

some	cells	also	be	transitory	types?	At	E5,	we	observed	two	types	of	cells,	either	expressing	(even	multiple)	lineage	

markers	or	 those	 that	 fail	 to	express	any	markers	of	known	blastocyst	 lineages	 (EPI-PE-TE).	Cells	 expressing	

multiple	markers	at	E5	do	not	segregate	on	the	t-SNE	plot	using	unbiased	approaches	of	clustering	E3-E7	cells,	

and	we	defined	them	as	transitory	cells	(Figure	1A).	By	contrast,	cells	expressing	none	of	the	known	markers	form	

a	clearly	segregated	cell	population	on	the	t-SNE	plot	that	we	name	non-committed	cells	(NCCs)	(Figures	1A	and	

S1A).		

	

If	ICM	exists,	we	would	expect	it	to	be	resolved	as	a	cell	type	segregating	from	morula.	In	order	to	further	resolve	

the	broad	spectrum	of	 transcriptomes	of	cells	segregating	 from	morula,	we	restricted	analysis	 to	E5	only,	and	

removed	cells	with	low	quality	transcriptomes	(expressing	(log2	Transcript	Per	Million	(TPM	>	1)	less	than	5000	

genes).	 The	 transcriptomes	 of	 the	 remaining	300	 cells	were	 subjected	 to	 a	 similar	 strategy	 that	we	 used	 for	

dissecting	E3-E7.	This	approach	resulted	in	six	significant	principal	components	(PCs),	and	we	enlisted	the	top	30	

genes	contributing	to	 their	respective	eigen	vectors	(Figure	S2C).	Loading	the	above	PCs	as	 input,	we	observe	

three	 distinct	 transcriptome	 clusters	 on	 t-SNE	 (Figure	 1B)	 (that	 could	 also	 be	 distinguished	 on	 the	 first	 two	

principal	components)	using	the	expression	dynamics	of	Most	Variable	Genes	(MVGs)	(Figure	S2A).	Altogether,	

we	identified	235	genes	(AUC	>	0.80)	that	we	used	to	characterize	the	individual	clusters	(Figure	1D).	Expression	

of	DLX3,	a	known	marker	of	a	precursor	population	of	TE	defines	the	first	cluster	(n=86)	as	pre-TE.	Curiously,	the	

second	 cluster	 (n=97),	 corresponding	 to	 the	 freshly	 identified	 NCC,	 homogeneously	 expresses	 BIK.	 The	 third	

cluster	(n=71)	co-expresses	known	EPI	(e.g.	NANOG)	and	PE	(e.g.	BMP2)	markers,	defining	the	ICM	(Figures	1C-

E).	 Thus,	our	 strategy	 to	 resolve	 distinct	 cell	populations	 segregating	 from	morula	 enabled	 us	 to	unmask	 the	

human	ICM.	In	sum,	based	on	their	ranking	in	the	corresponding	clusters,	we	identify	the	top	markers	of	human	

ICM	(e.g.	IL6R,	SPIC),	pre-TE	(e.g.	DLX3,	TMPRSS2)	and	NCC	populations	(e.g.	BIK,	BAK1)	(Figures	1D-E).	

	

Human	pre-implantation	embryogenesis	is	a	sequential	process	segregating	from	morula	

Identifying	the	human	ICM	would	challenge	the	recent	‘simultaneous	model’	for	human	blastocyst	formation.	This	

model	suggests	that	the	human	morula	segregates	to	EPI,	PE	and	TE	simultaneously	around	E5	(Petropoulos	et	

al.,	 2016),	 a	 deviation	 from	 the	 step-wise	 lineage	 specification	 dynamics	 of	mouse	 or	macaque	 (Chazaud	 and	

Yamanaka,	2016;	Nakamura	et	 al.,	 2016).	To	evaluate	 the	 ‘simultaneous'	 vs	 ‘sequential’	models,	we	employed	

scaled	expression	of	our	cluster-specific	markers,	DLX3	(Pre-TE),	BMP2	(PE),	NANOG	(EPI),	IL6R	(ICM)	and	BIK	

(NCC),	and	determined	co-expression	patterns	at	single	cell	resolution	(Figures	1E).		
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This	strategy	helped	us	to	identity	of	the	transitory	cells	and	decipher	developmental	path	following	morula.	Out	

of	300	cells,	we	detected	3	expressing	all	four	markers,	indicating	that	these	cells	could	be	the	precursors	of	early	

blastocysts.	Another	subset	of	cells	expressed	the	markers	of	the	three	layers	of	the	blastocyst	(n=25),	featuring	a	

transitory/precursor	state	(T1)	prior	the	segregation	to	ICM	(n=71)	and	pre-TE	(n=86).	ICM	and	either	PE	or	EPI	

markers	were	 enriched	 exclusively	 in	 the	 transitory	 cell	 population	 of	 T2	 (n=8)	 and	 T3	 (n=10),	 respectively	

(Figures	1E	and	S2F).	We	hypothesized	that	these	ICM-derived	cells	are	the	Pre-EPI	and	Pre-PE	cells	that	would	

commit	to	PE	and	EPI	at	E6-7	stages.	The	identification	of	ICM	and	the	transitory	cells	supports	the	model	that	the	

human	early	embryogenesis	is	a	step-wise	process	and	thus	resembling	that	seen	in	mouse	and	macaque.	

	

How	does	 the	 transcriptome	of	our	 freshly	 identified	human	 ICM	compare	with	 that	of	 a	non-human	primate	

(NHP)?	We	 compared	 single	 cell	 transcriptomes	 of	 the	 blastocysts	 from	 human	 and	 a	macaque	 (Cynomolgus	

fascicularis)	(Nakamura	et	al.,	2016;	Petropoulos	et	al.,	2016).	In	contrast	to	the	human	study,	the	lineage	specific	

cells	(e.g.	ICM,	EPI,	PE/hypoblast	and	TE)	were	extracted	prior	to	sequencing	in	Cynomolgus,	thus	no	NCCs	were	

isolated.	We	 reclassified	 their	 transcriptomes	by	PCA	revealing	a	 similar	pattern	of	distinct	 cell	 types	 in	both	

macaque	and	human	(Figures	S3A-B).	For	comparison,	we	only	use	genes	annotated	in	both	species.	Using	the	top	

transcription	markers	that	are	expressed	 in	both	species,	we	could	 identify	EPI	(e.g.	NODAL,	GDF3,	PRDM14),	

PE/hypoblast	(e.g.	APOA1,	GATA4	and	COL4A1)	and	TE	(e.g.	DLX3,	STS	and	PGF).	Using	this	strategy,	we	could	

identify	again	the	ICM,	unambiguously	marked	by	the	expression	of	SPIC	in	both	species	(Figure	S3C).		

	

	

Are	non-committed	cells	parts	of	a	quality	control	mechanism	filtering	out	damaged	cells?	

To	discern	more	of	the	biology	of	previously	unreported	non-committed	cells	(NCCs),	we	determine	the	markers	

defining	them.	The	top	marker	of	NCCs,	BIK	(BCL2-Interacting	Killer)	(Figures	1C-D	and	S2B-E),	is	an	apoptosis-

inducing	factor,	suggesting	that	this	cell	population	have	no	developmental	future.	To	clarify	this,	we	averaged	the	

expression	for	individual	genes	across	the	cell	types	and	performed	pairwise	analysis,	enabling	identification	of	

the	genes	 that	 are	differentially	 regulated	 in	 committed	 ICM	vs	non-committed	 cells.	KEGG	pathway	mapping	

revealed	 that	 NCC	 enriched	 genes	 belong	 to	 the	Apoptosis	 pathway	 (Figures	 S2B-E).	 In	 addition	 to	BIK1,	we	

observed	 the	differential	upregulation	of	numerous	genes	associated	with	programmed	cell	death	 (e.g.	BAK1,	

various	caspases	or	MAPK3,	etc.)	(Figures	S2B	and	S2E).	By	contrast,	ICM	genes	(e.g.	BMP2,	NANOG,	etc.)	were,	as	

expected,	enriched	in	Pluripotency	regulating	signalling	(Figure	1C-E	and	S2B-D).		
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Apoptosis	is	thought	to	play	an	active	role	throughout	the	developmental	process,	although	not	before	embryonic	

gene	activation	(EGA)	(Hardy,	1999).	To	find	out,	where	NCCs	come	from,	we	performed	a	transcriptome-wide	

clustering	with	1000	bootstraps.	Since,	the	cells	are	in	continuous	progression	exhibiting	a	dynamic	transcriptome	

in	the	otherwise	clearly	definable	clusters,	we	averaged	their	expression	for	the	clusters.	This	analysis	detects	

NCCs	post-morula	as	an	alternative	population	of	cells	that	fail	to	commit	either	to	ICM	or	Pre-TE	(Figure	2A).		

	

Why	might	the	NCCs	be	expressing	apoptotic	factors?	This	may	be	a	mechanism	that	serves	as	a	quality	control	

measure	to	eradicate	damaged	cells	or	that	simply	removes	unnecessary	cells	during	the	developmental	process.	

In	the	former	context,	one	possibility	is	that	they	might	be	damaged	by	the	activity	of	mutagenic	transposable	

elements	(TrEs).	In	humans,	the	phylogenetically	young	elements	include	certain	transpositionally	active	TrEs,	

such	as	Long	Interspersed	Element	class	1	(LINE-1	or	L1),	SVA	and	Alu	(Hancks	and	Kazazian,	2012;	Mills	et	al.,	

2007).	The	majority	of	the	young	elements	in	the	human	genome	are	activated	following	EGA	with	their	expression	

peaking	in	morula	(Goke	et	al.,	2015;	Romer	et	al.,	2017).	Thus,	we	would	expect	that	activation	of	TrEs	would	

adversely	affect	some	cells	in	the	embryo.		

	

The	quality	control	hypothesis	predicts	that	NCCs	should	express	young	TrEs	with	transposing	potential,	while	

committed	cells	would	not.	To	monitor	the	dynamics	of	TrEs	expression	following	morula,	in	the	blastocyst,	we	

averaged	 the	expression	 (Log2	CPM+1)	of	 each	particular	TrE	 family	and	compared	 their	 expression	 in	NCCs	

against	ICM.	We	detected	transcriptional	upregulation	of	TrEs	in	both	NCC	and	ICM	(Figure	2B).	However,	while	

the	activated	families	in	the	ICM	are	phylogenetically	old	and	transpositionally	inactive,	the	upregulated	TrEs	in	

NCCs	are	young	and	include	transpositionally-competent	elements	(Figure	2B).	The	list	of	activated	young	TrEs	

in	NCCs	includes	both	LTR-containing	TrE	such	as	LTR5_Hs	and	recently	mutagenic	non-LTR	retrotransposons,	

such	 as	 AluY	 (Ya5),	 SVA-D/E	 and	 L1_Hs	 elements.	 To	 corroborate	 these	 findings,	 we	 analyzed	 human	 pre-

implantation	embryos	using	confocal	microscopy	and	an	antibody	raised	against	the	L1_Hs-encoded	L1_Hs-ORF1p	

protein.	Our	immunostaining	detects	robust	expression	of	the	L1_Hs-ORF1p	during	blastocyst	formation,	in	situ	

(Figures	S3D	and	Movie	1)	with	an	 inverse	correlation	with	POUF5F1	(OCT4)	levels	(Figure	2C).	The	cells	are	

compacting	to	 form	ICM	show	high	 intensity	of	POU5F1	staining	whereas,	L1_HS-ORF1p	stains	scattered	cells,	

belonging	neither	the	forming	ICM	nor	trophectoderm	(Figures	2C	and	S3D),	suggesting	that	L1_HS-ORF1phigh	cells	

fail	to	express	a	commitment	marker.	We	also	detect	cells	with	signs	of	genomic	DNA	damage,	visualised	by	H2AXg	

staining	(Figure	2D).	While,	massive	transcriptional	upregulation	of	certain	TrEs	might	already	trigger	apoptosis,	
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we	speculate	that	the	DNA	damage	in	NCCs,	generated	by	the	endonuclease	activity	of	L1_Hs	contributes	to	the	

apoptotic	process.	The	quality	control	hypothesis	suggests	that	cells	are	selectively	dying,	and	further	predicts	

that	 NCCs	 are	 a	 developmental	 dead	 end.	 Consistent	with	 the	model,	 NCCs	 are	 not	 detectable	 after	 E5,	 thus	

excluded	from	the	developmental	process	(Figures	1A	and	S1A).		

	

Transcripts	of	Older	transposable	elements	mark	committed	cells	of	ICM	

Both	of	the	above	models	(selective	purging	and	removal	of	excess	cells)	predict	that	the	mutagenic	young	TrEs	

should	not	be	massively	expressed	in	the	cell	types	that	have	a	developmental	future.	In	committed	cells	of	ICM	

there	 are	 indeed	 no	 significant	 level	 of	 young	TrEs	 expressed	 (Figure	 2B).	 Consistently,	we	 also	 observe	 the	

expression	of	various	APOBECs	and	 IFITM1,	 implicated	 in	host	defence,	 controlling	Young	retroelements	 (e.g.	

LINE-1)	 and	 retroviruses	 (Grow	 et	 al.,	 2015;	 Knisbacher	 et	 al.,	 2016)(Figure	 2E).	 In	 ICM,	 instead	 of	 Young	

elements,	we	observe	abundant	transcripts	of	various	ancient,	transpositionally	inactive	endogenous	retroviruses	

(ERVs),	dominantly	represented	by	their	 full-length	versions:	LTR2B-ERVL18,	LTR41B-ERVE_a,	LTR17-ERV17,	

LTR10-ERVI,	MER48-ERVH48,	 and	LTR7-(H)ERVH	 in	 ascending	order	of	 average	expression	 (Figure	2B).	The	

most	robustly	expressed	is	LTR7/HERVH,	having	a	strikingly	antagonistic	pattern	to	transcription	of	young	TrEs	

(e.g.	SVA-D	and	LTR5_Hs)	in	committed	vs	non-committed	cells	(NCCs)	(Figure	2F).	In	EPI,	by	contrast	to	PE,	the	

expression	 of	 LTR7/HERVH	 stays	 high	 (Figure	 2F).	 Thus,	 besides	 marking	 committed	 cells	 and	 driving	 a	

regulatory	 network	 of	 pluripotency	 (Wang	 et	 al.,	 2014b),	 LTR7/HERVH	 might	 also	 contribute	 to	 lineage	

determination.	

	

The	mutual	exclusion	of	Young	and	Old	TrEs,	the	former	being	seen	in	NCCs,	the	latter	in	ICM,	could	be	owing	to	

some	 third-party	 switches.	 Alternatively,	 activity	 of	 one	might	 suppress	 the	 activity	 of	 the	 other.	 As	 HERVH	

expression	is	expected	to	decline	following	implantation,	knocking	down	(KD)	HERVH	in	hPSCs	can	model	certain	

aspects	of	this	developmental	stage,	when	cells	discontinue	to	self-renew	and	commit	to	differentiate	(Lu	et	al.,	

2014;	Wang	et	 al.,	 2014b).	The	 transcriptome	of	KD-HERVH_h1	cells	 (Lu	et	 al.,	 2014)	 reveals	upregulation	of	

Young	TrEs	(Figure	S3E).	Thus,	we	speculate	that	the	future	viability	of	cells	with	a	potential	developmental	fate	

is	possibly	dependent	on	HERVH	involved	in	suppressing	the	activity	of	potentially	mutagenic	Young	TrEs.		Hence,	

activation	of	Old	TrEs	(e.g.	HERVH)	is	probably	involved	in	the	maintenance	of	genome	stability.	

	

Both	ICM	and	EPI	are	pluripotent	in	humans,	but	only	EPI	has	self-renewal	potential	
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Understanding	phylogenetic	similarities	and	differences	of	the	blastocyst	would	be	also	important	to	define	a	cell	

type	that	would	be	a	good	candidate	for	a	laboratory	model	pluripotent	cell	population.	Optimally,	in	addition	to	

pluripotency,	such	a	cell	population	would	need	self-renewal	ability,	be	relatively	homogeneous	and	genetically	

stable.	Both	EPI	and	the	newly	resolved	ICM	are	potential	candidates,	as	analysis	of	pluripotency-specific	markers	

(e.g.	NANOG,	KLF4,	POUF5F1/OCT4,	etc.)	reveals	no	differential	gene	expression	between	EPI	and	ICM	(p-value	

insignificant)	(Figure	3A),	arguing	against	EPI	being	the	only	pluripotent	cell	population	in	the	pre-implantation	

embryos	(Brons	et	al.,	2007).		

	

Nevertheless,	the	EPI	cells	can	be	uniquely	characterized	by	their	low	cell-to-cell	variation,	clustering	together	

from	both	E6	and	E7	(Figure	1A).	Thus,	these	cells	stably	maintain	their	transcriptome	in	the	blastocyst	(a	feature	

of	self-renewing	cultured	cells).	To	dissect	the	underlying	transcriptional	differences	between	EPI	and	ICM,	we	

used	the	top	1217	most	variable	genes	(MVGs).	This	strategy	revealed	two	distinct	clusters	of	ICM	(n=75)	and	EPI	

(n=53)	on	PCA	(Figure	3B),	and	identified	22	and	9	genes,	whose	exclusive	expression	distinguishes	ICM	from	EPI,	

including	 BMP2,	 FOXR1,	 NANOGNB	 (a	 duplicated	 version	 of	 NANOG)	 and	 NODAL,	 and	 LEFTY2	 respectively	

(Figures	3C).	Importantly,	among	the	top	markers	of	EPI,	NODAL	and	GDF3	(rank	1	and	2	in	our	analysis)	(Figures	

1A	and	S1E)	are	implicated	in	triggering	the	self-renewal	cascade	(Niakan	and	Eggan,	2013),	indicating	that	self-

renewal	might	be	a	key	feature	of	EPI.	Indeed,	expression	profiling	of	these	markers	and	further	self-renewing	

genes	(e.g.	LEFTY1/2,	TDGF1,	SMAD1)	indicates	that	the	self-renewal	potential	is	a	property	of	EPI,	but	not	ICM	

(Figure	3D).	These	results	define	EPI	as	a	pluripotent	 cell	population	with	self-renewing	ability,	being	a	most	

appropriate	candidate	for	in	vitro	work.	In	this	regard,	human	EPI	is	also	phylogenetically	distinct.	

	

The	transcriptomes	of	ICM/EPI	evolve	faster	compared	to	the	rest	of	the	blastocyst	in	primates	

The	above	results	suggest	that	the	human	early	embryo	is	classical	in	having	ICM	and	step-wise	development,	but	

distinct	in	having	a	self-renewing	EPI.	To	approach	the	problem	of	uniqueness	more	generally,	we	ask	whether	

the	 trancriptomes	 of	 the	 different	 cells	 types	 are	 evolving	 at	 different	 rates	 and,	 if	 not,	 what	 underpins	 any	

differences.	We	observe	that	ICM	and	EPI	trancriptomes	form	a	single	cluster	in	macaque,	but	segregate	in	human	

(Figure	S3A-B),	suggesting	that	the	functional	divergence	is	the	feature	of	the	human	pluripotent	cells.	To	compose	

comparable	data	for	more	detailed	cross-species	analysis,	we	calculate	the	scaled	expression	of	Homo-Cynomolgus	

common	16222	genes	and	merge	the	data	in	a	single	pool.	Applying	quality	control	thresholds,	we	end	up	with	

11043	 genes	 for	 further	 analysis.	 PCA	plotting	 these	merged	 cross-species	 data	 kept	 the	PE	 and	TE	 lineages	

together,	 regardless	 of	 their	 phylogenetic	 divergence,	 also	 supported	 by	 1K	 unbiased	 hierarchical	 clustering	
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(Figures	3E-F).	This	suggests	that	their	identity	is	functionally	defined	and	slow	evolving.	By	contrast,	the	macaque	

ICM	displays	some	level	of	transcriptome-wide	similarity	to	the	human	EPI	(Figures	3E-F	and	S4A),	rather	than	

ICM,	perhaps	following	a	similar	trend	of	directionality	also	observed	between	marmoset	ICM	and	macaque	EPI	

(Nakamura	 et	 al.,	 2016).	 Upon	 loading	 the	 first	 four	most	 significant	 PCs	 to	 segregate	 the	 cells	 on	 two	 t-SNE	

dimensions,	we	 see	 again	 the	 divergent	 behaviour	 of	 ICMs,	 but	 the	most	 divergent	 cell	 populations	 between	

human	and	macaque	are	the	EPIs	(Figures	3E-F).		

	

Can	we	estimate	the	speed	of	the	divergence?	We	detect	approximately	300	differentially	expressed	genes	(DEGs)	

upon	comparing	entire	cross-species	blastocyst’s	single	cells	in	a	pairwise	manner	(Figure	S4B).	However,	when	

we	compare	the	pluripotent	ICM/EPI	to	the	entire	blastocyst,	we	find	that	the	number	of	DEGs	is	~	4	fold	higher	

(300	vs	1116	DEGs	(fold	change	|2|,	adjusted	p-value	<	0.05))	(Figure	3G),	suggesting	the	pluripotent	ICM/EPI	

was	subjected	to	an	accelerated	evolution	compared	to	the	rest	of	the	blastocyst.	Among	the	DEGs	distinguishing	

pluripotency,	we	established	12	orthologous	genes	for	Cynomolgus	and	27	for	Homo	that	could	be	considered	as	

markers	(AUC	>	85%),	including	the	top	markers	CYP11A1,	STRA6	and	ABHD12B,	SCGB3A2,	respectively	(Figure	

4A).	 Among	 the	 diverged	 gene	 ontology	 categories	 between	 Cynomolgus	 and	 Homo	 we	 primarily	 identify	

metabolic,	immune	and	defense	processes	(Figure	3G	and	S4C).	

	

	

HERVH-remodelled	genes	are	integrated	into	the	regulatory	circuitry	of	self-renewal	in	EPI		

What	underpins	the	divergence	of	EPI	between	macaque	and	human?	To	address	this	we	take	a	systems	approach	

to	define	networks	seen	in	both	or	either.	Due	to	the	low	cell-to-cell	variation	in	EPIs,	it	is	possible	to	investigate	

the	gene	co-expression	dynamics	by	calculating	pairwise	weight	correlation	network	analysis	(WGCNA)	(Figures	

S4D	and	4B),	and	to	observe	significant	pairwise	ranked	correlations	(>80%)	on	scaled	data.	Consistent	with	the	

predicted	 self-renewing	 capacity	 of	 EPI,	 the	 tightly	 co-regulated	 genes	 in	 both	 species	 include	NODAL,	 GDF3,	

TDGF1	and	PRDM14	(Figures	4B	and	S4D),	associated	with	the	regulation	of	self-renewal.		

Beside	conserved	gene	expression,	this	approach	also	allowed	us	to	identify	genes	between	Homo	and	Cynomolgus	

whose	expression	has	been	shifted	from	the	ICM	to	EPI	(e.g.	MT1G	and	MT1X)	or	are	unique	to	human	EPI	(e.g.	

ATP12A,	 ABHD12B,	 SCGB3A2)	 (Figure	 4B).	 Notably,	 while	 ABHD12B	 and	 SCGB3A2	 are	 both	 annotated	 in	

Cynomolgus,	they	are	remodelled	by	HERVH	only	in	human	in	pairwise	comparison,	and	SCGB3A2	is	even	human	

specific	(Figures	4C-D).	Thus,	HERVH-remodelled	gene	products	appear	to	be	incorporated	into,	and	predicted	to	

modulate,	the	regulatory	circuitry	of	self-renewal	in	human	pluripotency.		
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Furthermore,	in	our	cross-species	analyses,	in	both	ICM	and	EPI,	we	detect	the	upregulation	of	expressed	(log2	

TPM	>	1)	neighbour	genes	(n=90),	 located	at	 least	10KB	downstream	of	 the	HERVH	locus	 in	 the	proximity	of	

expressed	HERVH	loci	in	human	(Wilcoxon	test,	p-value	<	0.0001)	(Figure	4E).	In	contrast,	TE	and	PE	neighbours	

are	downregulated	or	not	affected	(Figure	4E).	

	

While	 many	 HERVH-enforced	 transcripts	 may	 reflect	 noise,	 the	 function	 of	 a	 number	 of	 HERVH-derived	

transcripts	 and	 remodelled	 genes	 has	 been	 confirmed	 to	 be	 functional	 and	 affect	 pluripotency	 (Durruthy-

Durruthy	et	al.,	2016;	Loewer	et	al.,	2010;	Wang	et	al.,	2014b;	Zhao	et	al.,	2007).	Notably,	while	SCGB3A2	shows	

equal	 expression	 in	 both	 ICM	 and	 EPI,	 ABHD12B	 and	 other	 HERVH-derived	 transcripts	 (e.g.	 LINC-ROR,	

LINC00263,	ESRG)	are	expressed	more	abundantly	in	EPI	(Figure	4F).	Furthermore,	while	TFPI2	is	exclusively	

expressed	in	ICM,	the	expression	of	its	HERVH-remodelled	paralogue,	TFPI	has	been	shifted	to	both	pluripotent	

cell	types	of	ICM	and	EPI	(Figure	S4E).	These	examples	argue	for	a	possible	functional	diversification	of	HERVH-

enforced	gene	regulation/transcripts	in	modulating	pluripotency.		

	

Robust	 divergence	 of	 pluripotency	 following	 the	 split	 of	 old	 and	 new	world	monkeys	 due	 to	 HERVH	

enforced	expression	

As	 HERVH-enforced	 gene	 regulation/remodelling	 appears	 to	 be	 involved	 in	 the	 evolution	 of	 EPI,	 we	 further	

dissected	the	emergence	of	the	HERVH-driven	regulatory	network	of	pluripotency	in	primates.	Additionally,	as	

HERVH	was	 introduced	 into	the	primate	genome	after	 the	old	world	new	world	monkey	split,	we	predict	 that	

much	of	the	divergence	in	regulation	will	be	owing	to	HERVH.		

	

As	models	of	the	pluripotent	EPI,	we	use	comparable	pluripotent	stem	cells	(PSCs),	established	from	human	and	

various	Non	Human	Primates	(NHPs).	To	determine	differentially	expressed	genomic	loci	between	human	and	

NHPs	transcriptomes,	we	include	male	PSCs	from	human,	chimp,	bonobo	(Marchetto	et	al.,	2013)	and	our	own	

Gorilla	data	(Wunderlich	et	al.,	2014).	We	additionally	generate	RNASeq	data	from	comparable	Callithrix	(Muller	

et	al.,	2009),	where	HERVH	is	not	present	(Izsvak	et	al.,	2016)	as	a	control.	We	also	extract	HERVH-governed	genes	

defined	as	those	differentially	regulated	in	the	knockdown	cells	(HERVH-KD)	in	the	human	embryonic	stem	cell	

line	ESC_h1	compared	to	a	control	(GFP-KD)	(Lu	et	al.,	2014).		
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Our	cross-species	mapping	demonstrates	how	dramatically	the	expression	of	human	EPI	markers	(e.g.	including	

LEFTY1/2,	 NODAL)	 changes	 between	 human	 and	 Callithrix	 PSCs	 (Figure	 5A),	 supporting	 the	 dramatic	

restructuring	of	the	pluripotency	network	after	the	split	of	new	world	(NWM)	and	old	world	monkeys	(OWMs).	

The	 divergence	 of	 PSC	 transcriptomes	 is	 also	 high	 among	 OWMs	 (Figures	 S5A-B).	 Compared	 to	 humans,	 we	

observe	2340,	375,	172	and	81	differentially	expressed	genes	(DEGs)	unique	in	Callithrix,	Gorilla,	Chimpanzee	and	

Bonobo	PSCs,	respectively,	whereas	only	82	genes	are	shared	between	them	(Figure	S5B).	The	number	of	unique	

DEGs	is	also	directly	proportional	to	the	total	number	of	DEGs,	and	the	degree	of	transcriptome	diversity	agrees	

with	the	predicted	evolutionary	path	as	inferred	from	clustering	fold	change	values	of	all	observed	DEGs	(Figures	

S5C-D).	As	we	expected,	the	most	contrasting	transcriptional	pattern	is	observed	between	the	pluripotent	cells	of	

NWM	and	OWMs.	

	

Next,	we	determine	the	expression	of	human	HERVH	loci	by	mapping	reads	from	the	comparator	species	against	

the	human	genome,	and	calculating	the	level	of	relative	transcription	at	each	locus.	Differences	between	the	NWM	

and	OWM	are	also	reflected	in	gene	loss/gain	expression	events.	Remarkably,	the	major	gain	(19)	and	loss	(29)	

events	 in	 regulating	pluripotency	between	human	and	Callithrix	 are	due	 to	HERVH-governed	gene	expression	

(Figure	5C),	underpinning	the	centrality	of	HERVH	to	pluripotency.	Among	those	genes	whose	expression	has	

tuned	down,	we	identified	NR2F2,	whose	repression	was	reported	to	enhance	PSC	reprogramming	in	human	(Hu	

et	al.,	2013)	(Figure	5C).	Curiously,	PRODH	is	also	among	the	HERVH-controlled	gained	genes,	suggesting	that	

PRODH	is	under	a	dual	HERV-governed	regulation	e.g.	LTR5/HERVK	and	LTR7B	in	brain	(Suntsova	et	al.,	2013)	

(Figure	5C),	respectively.		

	

The	emergence	of	the	HERVH-based	regulatory	network	predates	the	human-gorilla	common	ancestor	

When	was	the	co-option	of	HERVH	initiated?	To	address	this,	we	employ	the	gene	expression	profile	of	the	HERVH	

knockdown	as	a	surrogate	of	the	ancestral	–	before	HERVH	–	expression	profile.	Adding	up	all	observed	DEGs	in	

any	comparison	including	those	identified	in	HERVH-KD	results	in	around	1100	genes	(FDR	<	0.05).	Hierarchical	

clustering	 applying	 ranked-correlation	 on	 their	 fold-change	 values	 reflects	 the	 evolution	 of	 the	 primate	

transcriptome,	 and	 pushes	 human	HERVH-KD_ESC_h1	 between	Gorilla	 and	Callithrix	 (Figures	 5B	 and	 S5E-F),	

suggesting	that	the	domestication	of	HERVH	predates	the	human-gorilla	common	ancestor.		

	

In	order	to	decipher	the	transcriptional	gain	and	loss	of	existing	HERVH	loci	between	human	and	NHPs,	we	scale	
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the	 expression	 of	 orthologous	 loci	 between	 human-gorilla	 and	 human-chimp.	 Curiously,	 nearly	 half	 of	 the	

expressed	full-length	HERVH	loci	appear	to	be	human-specific	(Figures	5D).	Compared	to	non-human	(non-h)	

PSCs,	we	observe	heavy	loss	in	the	number	of	HERVH	expressed	loci	in	hPSCs,	whereas,	only	a	few	orthologous	

loci	gained	expression	(Figures	5D	and	S5G-H).	Notably,	at	orthologous	loci,	the	HERVH-affected	neighbour	genes	

are	 upregulated	 in	 hPSCs,	 but	 not	 in	 non-hPSCs	 (Figure	 5E),	 suggesting	 that	 the	 robust	 HERVH-mediated	

transcriptional	control	over	neighbour	genes,	thus	the	modulation	of	pluripotency	occurred	quite	recently.	Upon	

comparing	 the	 orthologous	 transposable	 element	 (TrE)	 loci	 between	 primate	 species,	 we	 notice	 a	 marked	

reduction	of	overall	TrE	expression	(including	the	Young,	mutagenic	elements)	in	the	human	pluripotent	state	

(Figure	5F).		

	

Human	naïve	cultures	are	heterogeneous	and	are	both	evolutionarily	and	developmentally	“confused”		

Above	we	have	characterised	the	various	cell	types	in	human	pre-implantation	embryos,	suggested	that	EPI	is	the	

best	model	to	mimic	in	vitro	and	that	much	of	the	circuitry	is	lineage	specific.	In	particular,	the	HERVH	driven	

transcriptional	network	has	significantly	modulated	pluripotency	during	primate	evolution.	How	well	do	current	

in	 vitro	 pluripotent	 stem	 cell	 cultures	match	 these	 features?	We	 examine	 human	 naïve	 cell	 cultures	 (e.g.	 3D	

morphology)	 that	are	either	converted	 from	primed	cells	(Pastor	et	al.,	2016)	(e.g.	2D	morphology)	or	 freshly	

established	from	the	human	blastocyst	(Chan	et	al.,	2013;	Pastor	et	al.,	2016;	Takashima	et	al.,	2014)	and	compare	

them	and	to	their	potential	primed	counterparts.		

	

Upon	surveying	expression	of	 lineage-specific	markers	of	 the	blastocyst	 (AUC	cut-off	>	85%)	we	observe	 that	

while	 the	 naïve	 cultures	 upregulate	 ICM/EPI	 specific	 markers	 and	 downregulate	 PE-specific	 markers	 when	

compared	to	their	primed	counterparts,	they	also	upregulate	NCC	markers	(Figure	6A).	To	better	profile	them,	we	

thus	examine	genes	that	are	significantly	upregulated	in	at-least	80%	of	the	studied	naïve	lines	when	compared	

to	their	primed	counterparts.	We	intersect	the	resultant	genes	with	our	lineage	specific	markers	(AUC	cut-off	>	

0.85)	 (Figure	6B).	 These	 in	 vitro	 cultures	 appear	 to	 represent	 heterogeneous	mixture	 of	 cell	 types	 in	 various	

degree,	expressing	a	diversity	of	human	pre-implantation	embryonic	lineage	markers,	including	8-cell,	morula,	

NCC	and	PE	(Figures	6A-B	and	S6A-B).	Thus,	although	a	fraction	of	cells	in	naïve	cultures	resemble	real	stages	of	

development,	 the	 cultures	 exhibit	 a	 non-stereotypical	 idiosyncratic	 expression	 profile	 and	 are	 in	 this	 sense	

“confused”.	The	expression	of	potentially	mutagenic	TrEs	(expression	which	may	under	normal	circumstances	
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lead	to	apoptosis	and	a	sideways	move	into	the	NCC	category)	might	be	of	concern	for	the	application	of	these	

naïve	cultures.	

	

Are	the	transcripts	that	mark	the	human-specific	features	of	pluripotent	cells	in	vivo	well	represented	in	naïve	

cultures?	To	address	this,	we	also	compared	fold-change	expression	of	naïve	vs	primed	cells	with	the	fold-change	

expression	of	pairwise	human	and	macaque	blastocyst	stages	(Figures	6C-D	and	S6C).	Our	analysis	reveals	that	

the	human	pluripotent	blastocyst	features	are	significantly	downregulated	in	naïve	cultures	(Figure	6C).	Similarly,	

transcripts	 of	 those	 genes	 that	 mark	 the	 human	 specific	 vs	 primate	 features	 of	 pluripotent	 stem	 cells	 are	

underrepresented	in	naïve	cultures	(Figures	6D).		

	

The	naïve	cultures	are	also	unusual	in	having	more	frequent	generation	of	chimeric	transcripts	compared	to	their	

primed	counterparts.	These	transcripts	deriving	from	two	physically	independent	genomic	loci	are	abundantly	

generated	 during	 early	 embryogenesis	 (morula	 and	 before),	 but	 their	 generation	 gradually	 decays	 to	 an	

approximately	 steady-state	 frequency	 after	morula	 (Figure	 6E).	 Chimeric	 transcripts	 are	 still	 expressed	 upon	

converting	naïve	cells	to	primed	state	(Figure	6F),	and	might	help	to	explain	why	these	cells	are	less	capable	of	

proper	conversion	(Pastor	et	al.,	2016).		

	

If	EPI	is	possibly	the	best	cell	type	to	mimic,	what	genes	should	the	optimal	cell	type	express	or	not	express?	To	

this	end,	we	propose	a	checklist	that	could	be	used	to	guide	in	vitro	studies.	We	presume	that	the	key	properties	

of	the	pluripotent	EPI,	including	self-renewal	and	homogeneity,	make	this	the	best	candidate	to	mimic	in	vitro.	The	

checklist	hence	includes	top	genes	that	appear	to	have	a	unique	expression	status	in	human	EPI	against	the	rest	

of	 the	clustered	cells	(Figure	6G).	We	also	provide	a	checklist	 to	exclude	genes	that	do	not	 feature	 in	any	real	

developmental	 stage	 in	 human	 (Figure	 6H).	 The	 expression	 of	 these	 genes	 could	 induce	 various	 aberrant	

processes	that	could	compromise	pluripotency.	The	checklists	include	ESRG,	LEFTY1,	HHLA1	and	excludes	H19	

and	KLF2/17	expression	(Figures	6G-H).	Notably,	ESRG	and	HHLA1	genes	carry	 full-length	HERVH	sequences,	

suggesting	that	human	pluripotent	cultures	should	reflect	 the	species-specific	 features	properly,	 including	the	

expression	 of	 HERVH-remodelled	 genes	 that	 have	 been	 contributed	 to	 fine-tune	 pluripotency	 regulation	 in	

humans.		

	

Discussion	
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To	discern	the	uniqueness	(or	lack	thereof)	of	human	early	development,	here	we	aimed	to	decipher	the	evolution	

of	the	blastocyst,	with	a	special	focus	on	pluripotency	regulation	in	primates.	In	agreement	with	the	hourglass	

model	of	development	(Kalinka	et	al.,	2010),	we	find	that	multiple	features	of	early	development	are	massively	

divergent	between	humans	and	non-human	primates.	Nevertheless,	and	despite	of	the	general	belief,	we	propose	

that	the	trajectories	and	the	cell	types	in	the	primate	blastocyst	are	fundamentally	conserved.	Our	comparative	

single	cell	high-resolution	analysis	of	human	vs	macaque	blastocyst	can	clearly	identify	the	human	ICM	(marked	

by	NANOG,	POU5F1	expression),	disproving	down	the	notion	that	it	might	not	exist	in	human	embryos	(Nakamura	

et	al.,	2016).	Our	strategy	also	helped	us	to	identify	phylogenetic	differences	of	pre-implantation	embryogenesis	

in	primates.	

	

A	distinctive	feature	of	human	pre-implantation	development	is	the	presence	of	dynamically	changing,	hard-to-

catch	transitory	zones	between	stages.	Although	ICM	is	short-lived	before	it	segregates	to	EPI	and	PE,	it	is	clearly	

identifiable,	supporting	the	hypothesis	that	blastocyst	formation,	comparable	to	other	mammalian	species,	occurs	

in	well-defined	sequential	steps.	Upon	unmasking	ICM,	we	identified	a	relatively	large	(1/3	of	E5	cells),	previously	

unrecognised	cell	population	during	blastocyst	formation.	These	cells	derive	from	morula,	exhibit	a	high	degree	

of	transcriptome	heterogeneity	(i.e.	variation	between	cells	within	a	resolvable	cluster)	and	fail	to	express	lineage	

markers.	These	non-committed	cells	(NCCs)	are	subjected	to	programmed	cell	death	and	don’t	persist	after	E5.		

	

Apoptosis	 is	 thought	 to	 play	 an	 active	 role	 throughout	 the	 developmental	 process.	 Apoptotic	 cell	 are	 first	

detectable	immediately	following	embryonic	genome	activation	(EGA),	but	their	timing	varies	among	different	

mammalian	species	(Braude	et	al.,	1988).	In	the	mouse,	the	major	activation	event	occurs	during	the	2-cell	stage	

(Flach	et	al.,	1982),	whereas	in	humans	it	occurs	later,	between	the	4-	and	8-cell	stages	(Braude	et	al.,	1988).	EGA	

is	accompanied	with	a	global	epigenetic	change	that	also	de-represses	transposable	elements	(TrEs)	(Rowe	and	

Trono,	2011).	In	human,	the	expression	of	mutagenic	phylogenetically	young	elements	peaks	in	morula	(Romer	

et	 al.,	 2017;	 Theunissen	 et	 al.,	 2016).	 Upregulated	 Young	 TrEs	 are	 likely	 to	 contribute	 to	 the	 observed	 high	

heterogeneity	of	cells	segregating	from	morula,	giving	rise	to	both	committed	(progenitor)	and	non-committed	

cells	(NCCs).	It	is	parsimonious	to	suppose	that	apoptosis	is	a	means	to	enforce	a	selective	filter	against	damaged	

cells	that	emerge	after	EGA	and	fail	to	properly	express	lineage	markers.	NCCs	are	not	observed	in	mice,	perhaps	

due	 to	 the	earlier	 timing	of	EGA,	while	 they	might	exist	 in	primates,	but	were	not	detected	 (e.g.	 selective	 cell	

extraction	method,	(Nakamura	et	al.,	2016)).		
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According	to	our	quality	control	model,	pre-implantation	development	is	not	absolutely	directional,	but	includes	

a	selection	process.	The	boost	of	TrE	activity	might	determine	the	fate	of	the	embryo,	whether	it	proceeds	to	the	

blastocyst	 stage	 or	 be	 selected	 out	 in	 a	 process	 reminiscent	 of	 attrition	 in	 fetal	 oocytes	 (Malki	 et	 al.,	 2014),	

involving	programmed	cell	death.	Nevertheless,	 it	 is	 likely	 that	only	highly	damaged	cells	are	 filtered	out,	and	

some	TrE	 activity	 is	 tolerated,	 resulting	 even	 in	 heritable	 TrE	 insertions	 (van	 den	 Hurk	 et	 al.,	 2007).	 In	 this	

scenario,	a	heterogeneous	cell	pool	of	committed	cells	with	a	slightly	modified	genome/transcriptome	could	be	

even	 beneficial.	 An	 alternative	 possibility	 is	 that	 NCCs	 express	 mutagenic	 TrEs	 because	 they	 have	 no	

developmental	fate.	In	this	model,	the	upregulation	of	young	TrEs	could	be	a	mechanism	to	lead	to	the	destruction	

of	cells	that,	for	whatever	reason,	have	failed	to	commit	or	that	are	surplus	to	requirements.	Consistent	with	both	

models,	NCCs	are	not	detectable	after	E5,	thus	excluded	from	the	developmental	process.	

	

Pluripotency	has	been	evolved	in	conjunction	with	host	defence	

Our	study	suggests	that	the	evolution	of	pluripotency	in	primates	primarily	affected	metabolism,	innate	immunity	

and	defence	response.	The	connection	between	the	evolution	of	pluripotency	and	self-defence	has	been	suggested	

before	(Grow	et	al.,	2015;	Wang	et	al.,	2014a)	to	explain	why	the	human	defence	response	was	capable	of	dealing	

with	 the	multiple	waves	 of	 viral	 invasion	 during	 primate	 evolution,	 and	 successfully	 attenuated	 Young	 TrEs	

(Friedli	and	Trono,	2015).	From	the	arsenal	of	complementary	processes	regulating	TrE/viral	activities	we	have	

detected	 various	 APOBECs	 (Knisbacher	 et	 al.,	 2016)	 and	 IFITM1,	 specifically	 expressed	 in	 ICM	 vs	 NCCs.	

Intriguingly,	by	contrast	to	NCCs	that	are	marked	by	Young	TrEs,	progenitor	cells	that	passed	quality	control	and	

continue	to	participate	in	the	developmental	program	characteristically	express	ancient,	dominantly	full-length	

ERVs,	 primarily	 HERVH.	 The	 phenotype	 of	 Young	 TrE	 activation	 can	 be	 reproduced	 in	 HERVH-knockdown	

conditions	in	pluripotent	stem	cells	(Lu	et	al.,	2014),	suggesting	that	Old	TrEs	might	be	involved	in	Young	TrEs	

suppression.		

	

The	accelerated	evolution	of	ICM/EPI	compared	to	other	lineages	of	the	blastocyst	refines	the	hourglass	model	

(Kalinka	et	al.,	2010).	The	functional	divergence	between	ICM	and	EPI	is	a	phylogenetically	young	phenomenon	

(e.g.	not	observed	in	macaques).	The	pluripotent	EPI	is	the	fastest	evolving	cell	types	of	the	blastocyst.	While,	both	

ICM	and	EPI	are	pluripotent,	only	EPI	forms	a	self-renewing	cell	population	in	humans.	Cells	of	the	human	EPI	are	

characterised	by	relatively	homogenous	transcriptomes,	maintained	throughout	E5-E7,	an	ideal	cell	type	for	in	

vitro	 culturing.	Domestication	of	HERVH	 appears	 to	 be	 central	 to	 the	 evolution	of	 pluripotency.	 ICM	 and	EPI	

selectively	 express	 various	 HERVH-enforced	 transcripts,	 several	 of	 them	 reported	 to	 regulate	 pluripotency	
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(Izsvak	et	al.,	2016;	Loewer	et	al.,	2010;	Lu	et	al.,	2014;	Ng	et	al.,	2012;	Wang	et	al.,	2014b).	The	features	of	lineage	

specification	following	HERVH	invasion	in	new	world	monkeys	can	be	further	dissected	using	primate	PSC	models	

of	 the	 pluripotent	 EPI.	We	 find	 that	 the	major	 gene	 expression	 gain	 (19)	 and	 loss	 (29)	 events	 in	 regulating	

pluripotency	 between	 human	 and	new	 world	 monkeys	 (Callithrix)	are	 due	 to	 the	 HERVH-governed	 gene	

expression.	 This	 involvement	 of	 HERVH	underpins	 the	 great	majority	 of	 the	 gene-level	 differences	 in	 genetic	

architecture	 between	 otherwise	 similar	 cell	 types	 across	 species.	 	Nonetheless,	 the	 major	 HERVH-driven	

remodelling	of	EPI	has	occurred	quite	recently,	following	the	split	of	the	Gorilla-human	common	ancestor.	Thus,	

pluripotency	of	the	human	form	appears	to	be	specific	to	us	humans.		

	

Besides,	fine-tuning	human	pluripotency,	HERVH	also	contributes	to	the	regulatory	network	of	self-renewal	(not	

reported	 in	 vivo),	by	 incorporating	HERVH-remodelled	genes	 (e.g.	ABHD12B	and	SCGB3A2)	 into	 the	 circuitry.	

Furthermore,	HERVH	might	be	 involved	 in	cell	 fate	determination	(e.g.	EPI	vs	PE).	 In	sum,	HERVH	appears	to	

selectively	marking	the	genetically	stable,	self-renewing,	pluripotent	cell	population	during	blastocyst	formation.	

This	profile	is	consistent	with	a	model	in	which	TrEs	are	under	selection	to	attempt	to	control	cell	fate	to	promote	

their	 own	 “ends”,	 and	 thus	 to	 manipulate	 pluripotency	 and	 steer	 cell	 fate	 towards	 germline,	 within	 which	

transposition	events	have	an	evolutionary	future	(Izsvak	et	al.,	2016).	

	

Lessons	for	in	vitro	models	of	early	embryogenesis	

In	the	last	five	years,	numerous	attempts	have	been	reported	to	derive	human	naive	cells.	The	quality	of	these	

cells	has	been	extensively	discussed	(Theunissen	et	al.,	2016).	Researchers	aim	at	establishing	pluripotent	stem	

cell	cultures,	mimicking	the	pluripotent	blastocyst	as	closely	as	possible,	and	find	a	suitable	non-human	primate	

host	for	human	pluripotent	stem	cells.	Cynomolgus	is	assumed	to	have	both	a	comparable	pluripotency	regulation	

and	serve	as	a	potential	in	vivo	model	of	human	biology	(Dodsworth	et	al.,	2015).		

	

Our	 analysis	 holds	 lessons	 for	 establishing	 self-renewing,	 pluripotent	 stem	 cell	 cultures	 in	 vitro.	 The	 human	

pluripotent	EPI	forms	a	relatively	homogenous	cell	cluster,	has	self-renewal	capacity	and	attenuated	Young	TE	

activity,	potentially	making	a	good	choice	for	in	vitro	culturing.	While,	the	studied	naïve	cultures	have	improved	

presentation	of	ICM/EPI	markers	and	underrepresent	PE	markers,	they	are	heterogeneous,	each	consisting	of	a	

mixture	of	cells	of	various	identities,	and	appear	to	be	both	evolutionarily	and	developmentally	“confused”.		Beside	

EPI-like	 cells,	 naïve	 cultures	 contain	 large	 number	 of	NCCs,	 as	well	 as	 cells	 that	 display	 similarity	 to	 various	

embryonic	 cell	 lineages,	 and	 to	pluripotent	 cells	of	NHPs	 instead	of	human	ones.	Whether	 the	human-specific	

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/318329doi: bioRxiv preprint first posted online May. 18, 2018; 

http://dx.doi.org/10.1101/318329
http://creativecommons.org/licenses/by-nc-nd/4.0/


features	of	EPI	could	explain	difficulties	of	chimeric	studies	is	yet	to	be	clarified.	Furthermore,	as	the	desired	end-

point	of	the	naïve-like	cultures	is	as	a	model	for	early	human	develop	or	for	transformation	into	any	number	of	

alternative	 cell	 types	 for	 therapeutic	 application,	 it	 is	 a	 matter	 of	 substance	 to	 discern	 whether	 potentially	

damaging	transposition	is	happening.	Filtering	out	NCCs,	preserving	human-	and	lineage-specific	features	should	

help	 to	 improve	 derivation	 and	maintenance	 of	 human	naïve	 stem	 cell	 cultures	with	 improved	 homogeneity,	

pluripotency	and	genome	stability.	While	several	strategies	have	been	suggested	to	establish	naive-like	cultures,	

employing	a	LTR7/HERVH	reported-based	approach	(Wang	et	al.,	2016;	Wang	et	al.,	2014b)	targets	to	identify	

pluripotent	EPI-like	cells,	the	only	pluripotent,	self-renewing	cell	type	in	the	pre-implantation	embryo	could	have	

multiple	advantages.	

	

Methods	

Bulk	RNAseq		

Data	generation:	

Total	RNA	was	extracted	from	Callithrix	jacchus	(Muller	et	al.,	2009)	and	Gorilla	PSCs	(Wunderlich	et	al.,	2014)	

using	 trizol	 RNA	Mini	 Prep	 kit	 (Zymo	 research)	 following	 the	manufacturer’s	 instructions.	 After	 extraction,	 a	

DNase	treatment	was	applied	using	TURBO	DNA-free	Kit	(Ambion).	The	RNAseq	library	preparation	followed	the	

Illumina	TruSeq	Stranded	mRNA	Sample	Preparation	Kit	protocol	on	Illumina	HiSeq	machine	with	paired-end	101	

cycles.		

	

Data	analysis	

RNAseq	reads	with	MAP	quality	score	<	30	were	removed.	We	also	truncated	2nt	 from	the	end	of	sequencing	

reads,	since	their	average	quality	score	was	not	same	as	the	rest	of	nucleotides.	This	resulted	at	least	70	million	

reads	 per	 sample.	 Next,	 reads	 were	 mapped	 over	 the	 reference	 genome	 (Human	 hg19/GRCh37)	 and	

transcriptome	 model	 (hg19.refseq.gtf),	 downloaded	 from	 USCS	 tables	

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/).	Reads	were	mapped	to	their	respective	reference	

genomes	i.e.	human	(hg19),	chimp	(PanTro4),	gorilla	(gorGor4),	marmoset	(calJac3)	and	mouse	(mm10)	using	

STAR	 with	 our	 defined	 settings	 i.e	 –alignIntronMin	 20	 –alignIntronMax	 1000000	 –chimSegmentMin	 15	 –

chimJunctionOverhangMin	15	–outFilterMultimapNmax	20	folllowed	by	constructing	STAR	genome/transcriptome	

indices	 providing	 their	 respective	 RefSeq	 gtf	 annotations.	 As	 per	 STAR	 default	 we	 permitted	 at	 most	 two	

mismatches.	We	obtained	uniquely	mapped	read	counts	using	featureCounts	(Dobin	et	al.,	2013)	at	gene	level	with	
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refSeq	annotations.	Gene	expression	levels	were	calculated	at	Transcript	per	million	(TPM)	from	counts	over	the	

entire	gene	(defined	as	any	transcript	locating	between	TSS	and	TES).	This	we	did	using	our	in-house	R	script.		

The	 read	 counts	were	 calculated	with	 featureCounts	 from	 subread	 package	 (http://subread.sourceforge.net/),	

FPKM	 was	 calculated	 using	 bamutils	 (http://ngsutils.org/modules/bamutils/count/).	 In	 order	 to	 calculate	

differential	 expression	 at	 gene	 level,	we	 used	 the	 published	model	 of	 GFOLD	 algorithm,	which	 calculates	 the	

normalization	constant	and	variance	to	extract	fold	changes	from	unreplicated	RNAseq	data.	

	

Cross-species	analyses		

Genes	 that	 are	 differentially	 expressed	 (DEGs)	 between	 species	 were	 obtained	 by	 cross-species	 mapping	 of	

RNAseq	reads.	Reads	mappable	on	both	comparators	were	further	mapped	on	human	genome	(hg19)	using	STAR.	

Cross-species	 read	 counts,	 FPKM	and	 effective	 fold	 change	was	 calculated	 using	GFOLD	 (Fan	 et	 al.,	 2016)	 on	

obtained	replicated	and	unreplicated	datasets.	We	mapped	human	and	non-human	iPSC	RNAseq	reads	against	the	

human	reference	genome	and	gene	models	to	determine	the	expression	level	of	human	genes	and	repeat	elements	

in	NHPs.		

	

Single	cell	RNAseq	data	processing	

PCA		

To	define	the	set	of	discriminating	genes,	we	calculated	the	z-score	for	each	gene	in	each	sample	in	the	data	frame	

of	all	genes	across	all	the	samples	(i.e.	for	human	15501	genes	in	1285	samples).	Each	gene	was	then	represented	

by	an	across	sample	vector	of	z-scores.	We	then	determined	the	mean	of	this	value	across	all	the	genes	within	the	

cluster.	Those	clusters	showing	a	mean(log(Variance/mean))	>	1	were	considered	as	most	variable	clusters.	All	

the	genes	in	these	clusters	were	considered	as	most	variable	genes	(MVG).	The	above	PCA	analysis	clearly	resolves	

the	merged	datasets	of	Oocytes	to	blastocysts	with	embryonic	days	E3	and	E4.	However,	E5	onwards	appears	as	

an	unresolved	cloud.	 In	order	to	resolve	this	cloud,	we	first	ran	t-SNE	on	single	cell	data	 for	E5	stage.	As	this	

resolved	the	stages	we	were	interested	in,	we	then	applied	t-SNE	to	the	full	dataset,	enabling	full	resolution	of	

discrete	stages	in	early	human	development.	

	

t-SNE	

We	used	Seurat	(http://satijalab.org/seurat/)	and	SCDE	(http://hms-dbmi.github.io/scde/)	packages	from	R.	A	

R	package	‘Seurat’	was	used	to	obtain	most	variable	genes,	markers	for	given	clusters,	most	significant	principle	

components,	t-SNE	analysis	and	visualizations.	Samples	expressing	more	than	5000	genes	and	genes	that	express	
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(Log2	TPM	>	2)	in	at	least	in	1%	of	total	samples	were	subsequently	selected	for	analysis.	This	resulted	in	1285	

single	cells	carrying	expression	levels	of	15501	genes	for	human	E3-E7	samples.	We	separated	cells	by	applying	

most	variable	genes	({log(Variance)	&	log(Average	Expression)}	>	2)	to	the	dimension	reduction	methods,	notably	

principal	 component	 analysis	 (PCA)	 and	 t-stochastic	 neighbor	 embedding	 (t-SNE).	 Briefly,	 We	 reduced	 the	

dimensionality	of	our	dataset	using	principal	component	analysis.	As	previously	described	 in	 (Macosko	et	 al.,	

2015),	we	ran	PCA	using	the	‘prcomp’	function	in	R,	and	then	utilized	a	modified	randomization	approach	(‘jack	

straw’),	a	built-in	 function	 in	“Seurat”	package	to	 identify	 ‘statistically	significant’	principal	components	 in	 the	

dataset.	This	approach	gave	us	9	significant	principle	components	(PCs)	for	E3-E7	stages,	5	significant	PCs	for	E3-

E4	stages	and	6	significant	PCs	for	E5	stage.	Using	these	cell	loadings	for	significant	PCs	of	respective	analysis,	we	

applied	 t-distributed	 stochastic	 neighbor	 embedding	 (t-SNE),	 a	machine	 learning	 algorithm	 for	 clustering	 the	

single	cells	to	visualize	the	data	in	two	dimensions.	This	approach	illustrated	10	clusters	from	E3-E7,	3	clusters	

each	for	E3-E4	and	E5	cell	populations.	A	gene	qualified	as	a	marker	of	a	given	cluster	if	it	fulfilled	three	criteria:	

the	gene	must	be	overexpressed	in	that	particular	cluster	(average	 fold	difference	>	2	compared	to	the	rest	of	

clusters),	must	also	be	expressed	(Log2TPM	>	2)	in	at	least	70%	of	cells	in	that	particular	cluster	and	Area	Under	

Curve	(AUC)	value	must	be	greater	than	80%.	

	

Analysis	of	repetitive	elements	

To	estimate	the	expression	level	for	repetitive	elements	on	their	locus,	we	used	two	strategies.	The	long	reads	in	

(Yan	et	al.,	2013)	data	allowed	us	to	cover	and	calculate	CPM	or	RPKM	for	unique	loci	of	TrEs.	In	contrast,	data	

from	(Petropoulos	et	al.,	2016)	was	suitable	only	to	detect	the	average	expression	of	any	given	TrE	family.	For	this	

analysis,	we	considered	multimapping	reads	only	 if	 they	were	mapping	exclusively	within	a	TrE	 family.	 	Than	

counted	one	alignment	per	 read	 to	 calculate	 counts	per	million	 (counts	normalized	per	million	of	 total	 reads	

mappable	 on	 human	 genome).	Note	 that	 datasets	 from	different	 layouts	 (single	 vs	 bulk	RNAseq)	were	 never	

merged	into	one	data	frame	to	perform	TrEs	comparative	analysis,	as	no	any	normalization	method	was	effective	

enough.	

	

Homo-Cynomolgus	

For	this	analysis,	we	selected	cells	from	the	pre-implantation		blastocysts	of	human	(Petropoulos	et	al.,	2016)	with	

228	cells	(ICM,	EPI,PE	and	TE)	and	Cynomolgus	(Nakamura	et	al.,	2016)	with	170	cells	(ICM,	EPI,	Hypoblast	and	

TE).	For	cross-platform	single-cell	RNAseq	data,	counts	were	merged	on	gene	names,	log2	TPM+1	was	calculated	

in	 similar	way	as	mentioned	above.	We	 redefined	 ICM,	EPI,	PE	and	TE	cells	using	only	 those	genes	 that	were	
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annotated	in	Refseq	gene	track	of	both	human	and	Cynomolgus	species.	We	checked	the	validation	of	this	analysis	

by	 visualizing	 the	 selected	 gene	 expression	 (log	TPM	values)	of	 conserved	 lineage	markers	 across	 vertebrate	

blastocysts	(Nakamura	et	al.,	2016).	Plots	shows	a	similar	expression	pattern	of	e.g	NANOG,	POU5F1,	ICM/EPI;	

SPIC,	ICM;	NODAL,	GDF3	and	PRDM14,	EPI;	APOA1,	GATA4	and	COL4A1,	PE;	DLX3,	STS	and	PGF	marking	TE	in	

both	human	and	macaque.	We	then,	filtered	out	those	genes	that	are	not	annotated	in	any	of	the	given	species.	

This	resulted	in	16222	individual	genes	that	were	merged	in	single	pool.	In	total,	11053	orthologous	genes	are	

analysed	that	are	expressed	in	any	of	5	cells.	Variation	due	to	batch	effects	was	adjusted	using	COMBAT	(Johnson	

et	al.,	2007)	from	R	package	sva.	We	checked	the	normalization	status	by	drawing	PC	biplots	using	various	subsets	

of	clustered	genes.	This	assured	us	that	cells	did	not	cluster	on	the	basis	of	platform	or	species.		

	

Self-renewal	regulatory	network	

We	created	a	data	frame	of	single-cell	data	for	ICM,	EPI,	PE	and	TE	from	days	E5,	E6	and	E7,	carrying	expression	

values	(TPM)	of	all	Human	MVGs.	We	then	computed	pairwise	Pearsons	correlation	for	all	MVG.	We	then	selected	

only	those	paired	genes	that	show	strong	correlation	or	anti-correlation	(threshold	rho	>	 |0.80|),	as	shown	in	

heatmap	(Figure	S4f).	A	network	was	constructed	on	genes	showing	the	highest	level	of	ranked	correlation	among	

each	other,	with	rho	>	0.80,	using	igraph	(http://igraph.org/r/)	package	from	R.	Arrows	show	the	linking	(links	

based	on	a	preset	level	of	preferential	attachment	(Barabasi-Albert	model))	between	genes.	The	direction	of	the	

arrows	is	manually	set	under	the	criterion	that	from	genes	appear	first	in	human	pre-Epi,	to	genes	appearing	next.	

The	size	of	a	circle	represents	the	number	of	instances	a	gene	is	upstream	(nodes)	of	its	paired	partners	(edges).	

Genes	in	the	network	are	markers	of	human	EPI	and	colors	are	assigned	as	to	their	expression,	or	lack	thereof,	in	

mouse	embryogenesis.		

	

Visualization	of	reads	

Mapped	reads	 from	single	cell	 transcriptomes	of	human	embryonic	development	were	merged	for	each	stage,	

defined	as	EPI,	PE	and	TE	(Yan	et	al.,	2013)	using	the	markers	shown	on	Figure	S1E.	Mapped	reads	in	bam	format	

were	converted	into	bedGraph	format	to	visualize	through	IGV	over	Refseq	genes	(hg19).	Conservation	track	was	

visualized	 through	 UCSC	 genome	 browser	 under	 net/chain	 alignment	 of	 given	 non-human	 primates	 (NHPs)	

shown	in	Figure	4D	and,	later	on,	merged	beneath	IGV	tracks.	

	

Pathway	analysis	of	differentially	expressed	genes	
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Canonical	 pathways	 and	 biological	 function	 of	 the	 identified	 differentially	 expressed	 genes	 in	 data	 sets	were	

investigated	using	KEGG	Pathway	or	Gorilla	 tool.	Overrepresentation	of	a	biological	pathway	was	assessed	by	

Fisher's	exact	test	and	corrected	for	multiple	testing	by	the	Benjamini-Hochberg	procedure.	The	ratio	(overlap)	is	

calculated	as	a	number	of	genes	from	the	dataset	that	map	to	the	pathway	divided	by	the	number	of	total	genes	

included	into	the	pathway.	

	

Detection	of	chimeric	transcripts	from	RNAseq	data		

In	 order	 to	 determine	 chimeric	 transcripts,	we	 first	 aligned	 the	 reads	 using	 universal	 aligner	 STAR	using	 the	

parameters	written	above	that	can	discover	canonical	and	non-canonical	splice	and	chimeric	(fusion)	sites.	We	

kept	only	the	junctions	that	were	identified	with	a	minimum	of	6	uniquely	mapped	reads.	Any	novel	genes	with	

resemblance	to	mitochondrial	genes	were	excluded	from	the	analysis.	Either	donor	site	or	acceptor	site	mapping	

to	the	mitochondrial	genome	was	considered	grounds	for	exclusion.	To	exclude	chimeras	derived	from	repeated	

elements,	we	identified	those	novel	transcripts	that	had	at	least	6	consecutive	bps	from	known	repeated	elements	

(repeat	specified	in	hg19	rmsk.gtf).	

	

Human	embryo	manipulation	and	microscopy	analyses	

Prior	to	the	start	of	the	project,	the	whole	procedure	was	approved	by	local	regulatory	authorities	and	the	Spanish	

National	Embryo	steering	committee.	Cryopreserved	human	embryos	of	the	maximum	quality	were	donated	with	

informed	 consent	 by	 couples	 that	 had	 already	 have	 undergone	 an	 in	 vitro	 fertilization	 (IVF)	 cycle.	 All	

extractions/manipulations	were	carried	out	in	a	GMP	certified	facility	by	certified	embryologist	in	Banco	Andaluz	

Celulas	Madre,	Granada,	Spain.	Confocal	analyses	of	LINE-1	ORF1p	expression	were	analyzed	on	a	Zeiss	LSM	710	

confocal	 microscope	 using	 a	 previously	 described	 method	 (Macia	 et	 al.,	 2017).	 –	 Antibodies	 for	 the	

immunostaining:	 Rabbit	 anti	 LINE-1	 ORF1p,	 1:500,	 a	 generous	 gift	 of	 Dr	 Oliver	Weichenrieder	 (Max	 Planck,	

Germany).	Secondary	antibody:	Alexa	488	Donkey	anti	Rabbit,	1:1000	(Thermo).	Mouse	anti	H2AXg,	1:200,	clone	

3F2	(Novus).	Secondary	antibody:	Alexa	555	Donkey	anti	Mouse,	1:1000	(Thermo).	DAPI	(Thermo)	was	used	at	

1:500.	
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Figure	legends	

Figure	1.		High-resolution	dissection	of	human	pre-implantation	development	

A. Two-dimensional	 t-SNE	 analysis	 of	 human	 single-cell	 pre-implantation	 transcriptomes	 using	 1651	 most	

variable	 genes	 (MVGs)	 resolves	 the	 following	 distinct	 cell	 populations:	 8-cell	 at	 E3,	 morula	 at	 E4,	 non-

committed	cells	(NCCs)	and	transitory	cells	at	E5,	pluripotent	epiblast	(EPI)	at	E6-E7,	primitive	endoderm	(PE)	

at	 E6-E7,	mural	 and	 polar	 trophoectoderm	 (TE)	 at	 E7.	 At	 E5,	 cells	 presenting	 none	 of	 the	 known	 lineage	

markers	referred	as	non-committed	cells	(NCCs),	whereas	cells	express	multiple	markers	are	annotated	as	

transitory	cells.	The	most	discriminatory	genes	of	each	clusters	are	listed	in	boxes.	Numbers	in	brackets	refer	

to	AUC	values.	Colors	indicate	unbiased	classification	via	graph	based	clustering,	where	each	dot	represents	a	

single	cell.	
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B. t-SNE	clustering	of	E5	cells	using	the	first	six	PCs	(Figure	S2C)	as	input	loadings	reveals	three	distinct	clusters.	

The	analysis	dissects	the	previously	unattended	cluster	(shown	in	dark	red)	of	non-committed	cells	(NCCs).	

Each	dot	represents	an	individual	cell.		

C. Multiple	 feature	 plots	 illustrate	 the	 three	 clusters	 (shown	 on	 Figure	 1B),	 distinguished	 by	 their	 strong	

expression	of	known	markers	ICM	(IL6R),	EPI	(NANOG),	PE	(BMP2),	Pre-TE	(DLX3	and	TMPRSS2).	NCCs	are	

flagged	by	BIK	(BCL2-Interacting	Killer/Apoptosis-Inducing	NBK)	as	illustrated	in	the	feature	plot.	Each	dot	

represents	an	individual	cell.	Colour	intensity	indicates	the	expression	of	the	marker	gene.	

D. Heatmap	visualization	of	scaled	expression	[log	TPM	(transcripts	per	million)]	values	of	discriminative	set	of	

genes	for	each	cluster	defined	in	Figure	1B	(AUC	cut-off	>0.90).	Color	scheme	is	based	on	z-score	distribution	

from	 -2.5	 (light	 blue)	 to	 2.5	 (purple).	 Left	margin	 color	 bars	highlight	 gene	 sets	 specific	 to	 the	 respective	

clusters	in	Figure	1B	and	top	margin	colour	bars	define	the	same	for	cells.	ICM	specific	genes	are	marked	by	

(*)	or	(#)	are	also	expressed	at	E6-E7	in	EPI	or	PE,	respectively.	

E. Heatmap	of	the	row-wise	scaled	expression	(log	TPM)	levels	of	selected	marker	genes	(Figure	1C-D)	for	Pre-

TE	(DLX3),	EPI	(NANOG),	PE	(BMP2),	ICM	(IL6R)	and	NCC	(BIK).	Colour	bars	under	the	dendrogram	were	set	

manually	showing	the	clusters	of	distinct	cells	expressing	differential	combination	of	markers.	Transitory	cells	

(T	and	T1)	are	co-expressing	multiple	lineage	markers.		

	

Figure	2.	Phylogenetically	young	and	old	transposable	elements	are	antagonistically	expressed	in	non-

committed	cells	and	the	inner	cell	mass		

A. Dendrogram	based	hierarchical	clustering	using	ranked	correlation	and	complete	linkage	method	on	averaged	

expression	from	the	distinct	cell	populations	of	human	pre-implantation	embryogenesis	(via	bootstrapping	

(1000	replicates).	The	transcriptomes	of	all	the	distinct	populations	are	pooled	together	and	averaged	for	the	

analysis.	Height	of	dendrogram	represents	the	Euclidian	distance	of	dissimilarity	matrix,	numbers	in	red	and	

blue	indicate	au	and	bp	values	from	the	bootstrapping.	

B. Scatterplot	shows	the	comparison	of	normalized	mean	expression	in	CPM	(Counts	Per	Million)	of	various	TrE	

families	between	averaged	pool	of	 ICM	(x-axis)	and	NCC	(y-axis)	cells.	Read	counts	are	normalized	to	total	

mapable	 reads	 per	TrE	 family.	Note:	Uniquely	mapped	 reads	were	 considered	 as	 one	 alignment	 per	 read.	

Multimapping	 reads	 were	 considered	 as	 one	 alignment	 only	 if	 they	 were	 mapped	 to	 multiple	 loci,	 but	

exclusively	within	a	TrE	family.	Every	dot	corresponds	to	a	TrE	family.	TrE	families	enriched	in	ICM	(red)	vs	

NCC	(blue).		
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C. Representative	 images	show	immunofluorescence	staining	of	human	early	(E5)	blastocysts	POU5F1/OCT4,	

nuclear,	green;	LINE-1	(L1_Hs)	ORF1p,	cytoplasmic,	red;	DAPI,	nuclear,	blue).	Note:	POU5F1,	used	to	stain	ICM	

is	 significantly	 enriched	 in	 ICM.	 See	 also	 violin	 plot	 (upper	 left	 panel)	 that	 visualizes	 the	 density	 and	

expressional	 dynamics	 of	 the	 POU5F1	 compared	 with	 TE	 and	 NCC	 at	 E5.	 Co-staining	 demonstrates	 the	

exclusive	expression	of	POU5F1	and	L1_Hs_ORF1p	during	the	formation	of	blastocyst	(arrows).	Note:	The	cells	

expressing	higher	POU5F1	are	compacting	to	form	the	ICM	at	polar	region	of	the	blastocyst	are	not	stained	for	

L1_Hs_ORF1p.	L1_Hs_ORF1p	stains	scattered	cells,	not	included	in	the	compacted	population	of	cells.	(TE	cells	

were	 not	 considered	 for	 this	 analysis).	 L1_Hs	 belongs	 to	 a	 group	 of	mutagenic,	 Young	TrEs	and	 supports	

transposition	of	both	L1	and	the	non-autonomous	Alu	and	SVA	elements.		

D. Representative	images	show	immunofluorescence	staining	of	two	(upper	and	lower	panels)	human	early	(E5)	

blastocysts.	�H2AXg	staining	(green)	visualizes	double	stranded	DNA	damage	(DAPI,	blue).	�H2AXg	is	readily	

detected	 in	 a	 fraction	 of	 cells	 during	 blastocyst	 the	 formation.	 Damaged/dying	 cells	 accumulate�H2AXg	

signals.	H2AXg	stained	cells	might	still	have	integrity	and	exhibit	normal	oval	shape	(upper	panel)	or	loose	

integrity	 (lower	 panel).	 	 Note:	 As	 cells	 might	 die	 upon	 thawing,	 we	 only	 analysed	 blastocysts	 that	 fully	

developed	in	vitro	from	E2	embryos.	

E. Violin	plots	visualize	the	density	and	expressional	dynamics	of	various	proteins,	implicated	in	host-defence	

against	retroelements	and	viruses	(APOBEC3C/D/G	and	IFITM1)	in	non-committed	(NCC)	vs	committed	cell	

populations	(pre-TE	and	ICM)	of	the	E5	human	blastocyst.	Note:	the	transcription	of	the	depicted	genes	mark	

ICM	at	E5.	

F. Violin	plots	visualize	the	density	and	expressional	dynamics	of	transposable	elements,	SVA,	LTR5_HS	(Young)	

vs	LTR7/HERVH	(Old)	the	in	non-committed	(NCC)	vs	committed	cell	populations	(PE	and	EPI)	of	the	human	

blastocyst.	Young	elements	are	enriched	in	NCCs	vs	committed	cells	(p-value	<	0.000072),	whereas	LTR7	and	

HERVH-int	are	enriched	in	EPI	vs	PE	and	NCCs	(p-value	<	0.00037).	

		

Figure	3.	Accelerated	divergence	of	ICM	and	pluripotent	epiblast	during	primate	evolution	

A. Violin	plots	illustrate	expression	distribution	of	selected	genes	associated	with	pluripotency,	(p-value	>	0.23)	

genes	(grey	for	EPI;	green	for	ICM).	

B. PCA	biplot	showing	the	analysis	of	human	ICM	(n	=	75)	and	EPI	(n	=	52)	cells	using	the	most	variable	genes	

(n=687).	PC1	versus	PC2	demonstrates	the	splitting	process	of	ICM	to	EPI	based	on	transcriptional	proximity	
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between	the	mentioned	lineages;	each	dot	represents	an	individual	cell;	coloured	legend	for	each	subset	is	

shown	on	the	top	of	the	plot.	

C. Heatmap	showing	scaled	expression	(log	TPM	values)	of	discriminative	gene	sets	defining	EPI	and	ICM	(AUC	

cutoff	≥	0.85).	Colour	scheme	is	based	on	z-score	distribution,	from	–2.5	(blue)	to	2.5	(purple).	

D. Violin	 plots	 illustrate	 expression	 distribution	 of	 candidate	 genes	 associated	 with	 self-renewal	 (p-value	 <	

0.00005)	genes		(grey	for	EPI;	green	for	ICM).	

E. t-SNE	visualization	of	significant	genes	contributing	to	PC1	and	PC2	from	the	cross-species	normalized	scaled	

genes	(commonly	annotated	in	Homo	and	Cynomolgus	(Cyno)	Refseq	gene	track	format	aka	gtf)	expression	

(Log2	TPM)	estimates	 in	Homo	 and	Cynomolgus	 blastocyst	 single	 cells	 aka.	 ICM,	EPI,	PE	and	TE.	For	 input	

loading	 the	 1055	most	 variable	 genes	 across	 the	merged	 cross-species	 datasets	were	 selected.	 Every	 dot	

represents	a	single	cell	and	colour	code	for	respective	cells	are	pinned	next	to	dots	with	same	colour.	While	

conserved	cell	population	across	the	species	are	circled,	arrows	point	to	the	diverged	cell	clusters	between	

Homo	and	Cynomolgus	(e.g.	ICM,	but	mostly	EPI),		

F. Dendrogram	via	bootstrapping-based	(1000	replicates)	hierarchical	clustering	using	ranked	correlation	and	

complete	 linkage	 method	 on	 averaged	 expression	 from	 the	 cell	 populations	 (mentioned	 in	 Figure	 3F)	

transcriptome	 pooled	 together.	 Height	 of	 dendrograms	 represent	 the	 Euclidian	 distance	 of	 dissimilarity	

matrix,	numbers	in	red	and	blue	indicate	au	and	bp	values	from	bootstrapping.		

G. Volcano	plot	illustrates	the	differentially	regulated	genes	(DEGs)	between	Homo	and	Cynomolgus	pluripotent	

states	(ICM	and	EPI).	In	total,	7583	genes	that	are	expressed	in	50%	of	the	cells	of	any	of	the	two	species	are	

plotted	(y-axis,	log2	fold	change	calculated	from	‘seurat’	package	and	adjusted	p-value;	x-axis,	two-tailed	t-test	

which	is	further	adjusted	by	multiple	corrections).	1116	differentially	regulated	genes	are	shown	as	purple	

dots	(fold	change	|2|,	adjusted	p-value	<	0.05).	Enriched	gene	ontologies	of	DEGs	are	indicated	in	the	plot	with	

corresponding	p-values.	

	

	

Figure	4.	HERVH-remodelled	genes	are	incorporated	into	the	regulation	of	self-renewal	in	primates	

A. Heatmap	showing	scaled	expression	of	discriminative	gene	sets	defining	either	EPI	or	ICM	(AUC	cutoff	≥	0.85)	

between	Homo	and	Cynomolgus.	Colour	scheme	is	based	on	row-wise	z-score	distribution	ranging	from	–2.5	

(blue)	to	2.5	(purple).	
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B. Differential	 transcriptional	 network	 regulating	 self-renewal	 between	 Cynomolgus	 and	Homo	 by	 analysing	

single	cell	transcriptomes.	Only	pairs	having	a	strong	correlation	with	each	other	are	considered	(Spearman’s	

coefficient	 >	 80%).	 Note	 that	 the	 human	 EPI	 was	 the	 only	 cell	 population	 where,	 due	 to	 low	 cell-to-cell	

variation,	 paired	 gene	 expression	 genes	 could	 be	 obtained.	 Only	 genes	 annotated	 in	 both	 species	 are	

considered.	For	each	pair,	nodes	and	edges	are	decided	on	their	expressional	dynamics	in	the	EPI	cluster.	Size	

of	the	nodes	is	proportional	to	the	number	of	components	the	gene	expression	is	paired	with	in	the	network.	

Colours	denote	species	specificity:	genes	whose	expression	is	shifted	from	monkey	ICM	to	human	EPI	(grey);	

expressed	in	both	human	and	monkey	EPI	(blue);	in	human	EPI	only	(red).		

C. Violin	plots	visualize	the	density	and	distribution	of	gene	expression	(log	TPM	values)	of	selected	orthologous	

genes	in	the	Homo	vs	Cynomolgus	blasctocyst	lineages	(left	vs	right	panels).	Note:	Selected,	HERVH-remodelled	

genes	 (e.g.	 SCGB3A2,	 ABHD12B	 and	 HHLA1)	 are	 specifically	 marking	 the	 human	 pluripotent	 lineages.	

Expression	of	ATP12A	is	shifted	from	Cynomolgus	TE	to	human	EPI	(not	HERVH-dependent).		

D. HERVH-enforced	 gene	 expression	 marks	 distinct	 stages	 of	 early	 development.	 Integrative	 Genome	

Visualization	(IGV)	of	uniquely	mapped	reads	over	a	specific	gene	and	the	proximal	full-length	HERVH	locus.	

Arrows	 show	 the	 annotated	 (black)	 and	 HERVH-enforced	 (purple)	 transcriptional	 start	 sites	 (TSSs).	

Transcription	skipped	at	annotated	 (empty	box)	and	HERVH-enforced	TSSs	(shaded	box)	are	shown.	Both	

genes	 loose	 their	 annotated	 TSS	 and	 proximal	 exons	 to	 form	 HERVH	 chimera.	 The	 chimeric	 ABHD12B	

transcript	 is	 expressed	 from	 zygote	 to	 EPI,	 but	 expression	 pauses	 in	 8-cell/morula,	 exons	 of	 ABHD12B	

upstream	of	HERVH/LTR7	are	skipped.	While	ABHD12B	HERVH	appears	to	be	intact	in	Chimpanzee,	it	has	

several	deletions	compared	to	the	human	version	(not	shown).	SCGB3A2,	implicated	in	pluripotency,	exhibit	

partially	overlapping	expression	patterns,	usage	of	distinct	human-specific	HERVH	TSS	and	loss	of	annotated	

TSS	and	proximate	exons.	Lowest	panels	show	phylogenetic	conservation	status,	the	presence	(thick	line)	and	

the	 absence	 (narrow	 line)	 of	 the	 human	 sequence	 compared	 to	 the	 Chimpanzee,	 Orangutan,	 Rhesus	 and	

Marmoset	assemblies.		

E. Notched	boxplot	represents	the	distribution	of	average	difference	(at	log2	scale)	of	LTR7-HERVH	neighbour	

(upto	10	KB	downstream,	n=53)	genes	expression.	Note:	Cell	populations	are	pooled	 together,	 scaled	and	

averaged.	Only	genes,	commonly	annotated	in	both	human	and	macaque	Refseq	gtf	were	taken	for	this	action.	

The	upregulation	of	HERVH	neighbour	gene	expression	was	observed	only	in	ICM	and	EPI,	but	not	in	PE	and	

TE	transcriptomes.		

F. Violin	plots	illustrate	expression	distribution	of	selected	genes	remodelled	by	HERVH	(grey	for	EPI;	green	for	

ICM).	
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Figure	5.	Loss	and	gain	of	expression	in	pluripotent	cells	during	primate	evolution	is	mostly	due	to	HERVH	

A. Scatterplot	shows	differential	expression	of	human	pluripotent	EPI	genes	(n=308,	AUC	cut	off	>	80%)	in	

human	and	Callithrix	pluripotent	stem	cells.	Expression	values	are	obtained	as	RPKM	calculated	on	the	

human	genome	from	reads	mappaple	on	both	genomes.	Dots	represent	genes	that	have	either	lost	(blue)	

or	gained	(dark-red)	expression	in	human	PSCs,	respectively.	Note:	We	also	considered	those	genes	that	

contained	zero	mappable	reads	in	either	of	the	analysed	species	(e.g.	ESRG).	

B. Barplots	combined	with	dendrograms	display	the	comparison	of	genes	in	non-human	primate	and	human	

pluripotent	stem	cells	(PSCs)	controlled	by	HERVH	transcription.	Barplots	show	the	number	of	significant	

DEGs	(FDR<0.01	and	fold	change	>	2	or	<	-2)	of	gene	lists	obtained	from	Callithrix	(n=1)	vs	human	(n=4),	

Gorilla	(n=2)	vs	human	(n=4),	Chimpanzee	(n=4)	vs	human	(n=4),	Bonobo	(n=4)	vs	human	(n=4),	HERVH-

KD	 vs	 GFP-KD	 (n=2)	 in	 ESC_h1.	 In	 case	 of	 two	 replicates,	 we	 selected	 only	 those	 genes,	 which	 were	

differentially	regulated	in	both	replicates	in	a	similar	fashion.	Sorted	according	to	HERVH-KD.	Dendrogram	

is	 calculated	 by	 ranked	 correlation	 and	 Euclidian	 distance	 method	 on	 the	 expression	 matrix	 of	 most	

variable	genes	(n=~2800).	

C. Combined	barplots	show	the	gain	(n=19)	and	loss	(n=29)	of	gene	expression	between	human	and	Callithrix	

(no	HERVH	is	present)	pluripotent	stem	cells	due	to	HERVH	regulation.	Left	and	right	panels	show	and	

fold-change	 |2|	 values	 in	 KD-HERVH	 vs	 KD-GFP	 in	 ESC_h1s	 and	 cross-species	 expression	 (RPKM),	

respectively.	Green	bars	in	the	right	panel	are	genes	expressed	significantly	in	human,	but	not	in	Callithrix	

(reads	are	mapped	on	the	human	genome).	Left	panel	shows	the	same	set	of	genes	downregulated	when	

HERVH	is	depleted	using	by	RNAi	(HERVH-KD	vs	GFP-KD	in	ESC_h1s).	The	opposite	scenario	is	shown	in	

purple.	(FPKM	<	1	was	considered	as	loss).	

D. Heatmap	displays	the	dynamic	expression	of	HERVH	and	HERVK	(log	FPKM)	in	primate	pluripotent	stem	

cells.	Z-scores	are	calculated	on	the	expression	obtained	by	mapping	reads	on	the	human	genome	from	

Bonobo,	Chimpanzee	and	Gorilla.	The	numbers	represent	expressed	genomic	loci.	Note	the	lower	number	

of	active	genomic	copies	of	HERVH	in	human	compared	to	the	rest	of	the	primates.	

E. Notched	 boxplots	 represent	 the	 distribution	 of	 LTR7-HERVH	 affected	 gene	 expression	 (upto	 10	 KB	

downstream,	n=53)	from	cross-species	mappable	reads	in	various	primate	pluripotent	stem	cells	(at	log2	

scale).	Hash	(#)	bars	show	the	pairwise	calculation	of	p-values	between	human	and	non-human	primates.	
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F. Boxplots	 show	 the	pairwise	distribution	of	global	 genomic	expression	of	 transposable	elements	 (TrEs)	

between	 human	 (hg19	 version)	 and	 non-human	 primates.	 We	 consider	 only	 those	 TrE	 loci	 that	 are	

mappable	in	both	comparators	and	are	expressed	(Log2	FPKM	>	1).	P-values	were	calculated	by	Wilcoxon	

test.		

	

Figure	6	

Current	naïve	cell	cultures	don’t	reflect	human	uniqueness	properly		

A. Boxplot	shows	the	upregulation	of	human	pre-implantation	lineage	markers	in	various	naïve	cell	cultures	

compared	to	their	respective	primed	counterparts	(GFOLD	calculated	on	Reset	cells/H9_ESCs	(Takashima	

et	al.,	2014;	Theunissen	and	Jaenisch,	2014),	5iL_SSEA_Neg/UCLA1_primed,	UCLA_20n/UCLA_20n_primed,	

5iL_SSEA_Pos/UCLA1_primed	(Pastor	et	al.,	2016)	and	Chan_3iL/h1_ESCs	(Chan	et	al.,	2013).	The	marker	

genes	selected	for	the	analysis	flag	distinct	lineages	(e.g.	NCC,	ICM,	EPI,	PE;	n=number	of	marker	genes).	

The	AUC	 cutoff	 values	were	 chosen	using	 the	 following	 criteria:	 (i)	 should	 be	 putative	markers	 of	 any	

distinct	lineage	in	human	pre-implantation	embryos	(AUC	cutoff	>	0.85)	after	EGA;	(ii)	should	be	expressed	

in	either	naïve	or	primed	cells.	

B. Stacked	bar	plots	showing	the	expression	of	human	pre-implantation	lineage	marker	genes	in	various	naïve	

and	their	respective	primed	cell	cultures.	Colours	and	the	gene	list	are	as	in	Figure	6A.	

C. Notched	boxplot	shows	the	distribution	of	differential	gene	expression	(log2	fold	change)	in	various	human	

naïve	cell	cultures	with	their	respective	primed	counterparts	(steel	blue	boxes).	The	genes	chosen	for	this	

analysis	(n=246)	are	commonly	upregulated	(log	fold	change	>	1)	in	all	lineages	(ICM,	EPI,	PE	and	TE)	of	

the	human	blastocysts	compared	with	their	counter	lineages	in	Cynomolgus	blastocysts	(gold	boxes).	

D. Notched	boxplot	shows	the	distribution	of	differential	gene	expression	(log2	fold	change)	in	human	naïve	

cell	 cultures	 with	 their	 respective	 primed	 counterparts	 (steel	 blue	 boxes).	 The	 genes	 chosen	 for	 this	

analysis	(n=197)	are	commonly	upregulated	(log	fold	change	>	1)	in	human	pluripotent	stem	cells	(hPSCs)	

vs	all	analysed	non-hPSCs	(Callithrix,	Gorilla,	Chimpanzee	and	Bonobo)	(violet	boxes).	

E. Bar	 plot	 showing	 the	 number	 of	 chimeric	 transcripts	 detected	 in	 single	 cell	 transcriptomes	 of	 various	

human	pre-implantation	stages	(Yan	et	al.,	2013).	Note	that	the	generation	of	chimeric	transcripts	is	tuned	

down	after	morula.		

F. Bar	plot	showing	the	number	of	chimeric	transcripts	detected	in	various	naïve	cultures,	in	their	respective	

primed	controls	and	in	their	converted	counterparts.	(n=number	of	samples	analysed).	
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G. Barplot	of	EPI-like	checklist.	Log2-fold	change	values	of	genes	either	specifically	expressed	in	pre-EPI/EPI	

or	upregulated	in	EPI	vs	rest	of	the	cells	(ROC)	in	the	human	embryos,	and	show	opposite	pattern	when	

naïve	cells	are	compared	with	their	primed	counterparts.		

H. Barplot	of	EPI-like	checklist.	Log2-fold	change	values	of	genes	either	specifically	repressed	in	pre-EPI/EPI	

or	downregulated	in	EPI	vs	rest	of	the	cells	(ROC)	in	the	human	embryos,	and	show	opposite	pattern	when	

naïve	cells	are	compared	with	their	primed	counterparts.		

	

Supplementary	Figures	

Figure	S1,	related	to	Figure	1.	Tracing	human	pre-implantation	embryogenesis	

a. Re-ordered	 phylogenetic	 tree	 of	 clusters	 shown	 on	 Figure	 1A.	 The	 tree	 is	 constructed	 using	

“BuildClustertree”	 built-in	 function	 of	 the	 R	 package	 ‘Seurat’.	 Nodes	 are	 shown	 in	 grey	 boxes	 and	

numbers	are	in	the	order	of	their	position	on	the	tree.	Colour	codes	are	as	in	Figure	1A.	Numbers	in	

coloured	boxes	denote	the	number	of	cells	in	each	representative	cluster.	Note:	From	the	1,285	single	

cells	in	total	(Petropoulos	et	al.,	2016),	the	independently	clustering	16	single	cells	were	added	to	the	

transitory	category	from	E6	and	E7	(originally	410	cells).	At	E5,	a	cluster	of	99	cells	does	not	express	

any	of	the	lineage	markers	(non-committed	cells,	NCCs)	(dark	red).		

b. Two-dimensional	t-SNE	analysis	of	human	single-cell	pre-implantation	transcriptomes	using	872	most	

variable	genes	(MVGs)	resolves	8-cell	and	morula	stages.		

c. Defining	markers	of	8-cell	and	morula	stages.	The	most	discriminatory	genes	of	8	cell	stage	and	the	two	

distinctive	cell	populations	of	morula,	marked	by	LEUTX,	GATA3	and	HKDC1.	Colours	indicate	unbiased	

classification	via	graph	based	clustering,	where	each	dot	represents	a	single	cell.	

d. Tracing	 the	 human	 embryonic	 development	 progression	 from	 zygote	 to	 blastocyst.	 Principal	

component	 analysis	 (PCA)	 of	 cross-platform	 1285+104	 single-cell	 pre-implantation	 transcriptome	

(Petropoulos	et	al.,	2016;	Yan	et	al.,	2013)	using	1,583	most	variable	genes	(MVGs).	Developmental	

stages	defined	as	in	(Blakeley	et	al.,	2015;	Petropoulos	et	al.,	2016).	

e. Heatmap	displaying	the	scaled	expression	(log	TPM	values)	of	discriminative	gene	sets	(AUC	cutoff	≥	

0.90)	defining	cell	populations	of	morula	(n=171),	EPI	(n=52),	PE	(n=45)	and	TE	(n=99)	reported	in	

Figures	1A	and	S1A.	Heatmap	colour	scheme	is	based	on	z-	score	distribution	from	-2	(light	blue)	to	2	

(purple).	Note:	In	the	previous	study	(Petropoulos	et	al.,	2016),	EPI,	PE	and	TE	genes	were	defined	as	

differentially	expressed	at	defined	embryonic	days	(E5,	E6	and	E7).		
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Figure	S2,	related	to	Figure	1.	Dissection	of	the	human	blastocyst	formation	

a. PCA	of	E5	cells	(n=300)	using	most	discriminating	genes	(n=526)	reveals	three	clusters	on	PC1	and	
PC2.	

b. Scatterplot	displays	the	comparison	of	averaged	gene	expression	of	NCC	and	ICM	cells	pooled	together	
in	pairwise	manner.	Red	and	blue	dots	represent	genes	whose	expression	is	enriched	in	either	ICM	or	

NCCs.	 Annotated	 genes	 are:	 unchanged	housekeeping	 genes	 (GAPDH	 and	ACTB),	 genes	 enriched	 in	

either	NCCs	or	in	ICM.		

c. Heatmaps	showing	scaled	expression	(log	TPM	values)	of	top	30	discriminative	genes	per	PC	(Principle	
Component)	in	E5	cells	visualized	on	the	first	six	most	significant	components.	These	six	PCs	were	used	

as	input	loading	for	further	t-SNE	analysis	of	E5	cells.	This	analysis	explores	the	pairwised	correlated	

and	anti-correlated	gene	sets	among	E5	cells.		

d. Venn	diagram	shows	the	top	3	KEGG	(Kyoto	Encyclopedia	of	Genes	and	Genomes)	pathways	enriched	
either	 in	 ICM	(red)	or	 in	NCC	(blue)	and	shared	between	them	(merged,	grey).	Numbers	 in	bracket	

indicate	the	number	of	genes	involved	in	the	respective	pathways.	Black	brackets	show	ICM	numbers	

slashed	by	NCC	ones.		

e. Multiple	 violin	 plots	 visualize	 the	 density	 and	 distribution	 of	 gene	 expression	 (log	 TPM	 values)	 of	
selected	 genes	 that	 are	 upregulated	 in	 human	NCC	 vs	 EPI/PE.	 The	 depicted	 genes	 are	 involved	 in	

regulating	 apoptotic	 pathways	 (KEGG:	 hsa04210,	 Gene	 Ontology	 GO:008219,	 GO:0012501	 and	

GO:0006915)	(Wilcox	test,	p-value	<	7.135e-06).	

f. Schematic	of	stepwise	progression	of	blastocyst	formation	based	on	tracing	the	marker	from	cell-to-

cell	at	E5.	Bracketed	numbers	indicate	the	number	of	cells	showing	the	characteristics	of	the	various	

cells	types.		

	

Figure	 S3,	 related	 to	 Figure	 2.	 Non	 committed	 cells	 upregulate	 apoptotic	 gene	 expression	 and	 Young	

transposable	elements	

a. PCA	of	the	distinct	lineages	of	the	human	blastocyst	by	most	variable	genes	among	the	shown	groups	

(228	cells,	1055	genes).	a-b:	Note:	We	considered	ICM,	EPI,	PE	and	TE	cells	and	only	those	genes	were	

taken	into	account	that	were	annotated	in	Refseq	gene	track	of	both	human	and	Cynomolgus	species.	

Every	dot	represents	single	cell.	Colours	flag	distinct	cell	types	in	the	human	blastocyst.	

b. PCA	of	the	distinct	lineages	of	the	Cynomolgus	blastocysts	by	most	variable	genes	among	the	shown	

groups	(170	cells,	1237	genes).		
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c. Multiple	violin	plots	visualize	density	and	distribution	of	selected	gene	expression	(log	TPM	values)	of	

conserved	lineage	markers	across	vertebrate	blastocysts	(Nakamura	et	al.,	2016).	Plots	shows	a	similar	

expression	 pattern	 of	 e.g	 NANOG,	 POU5F1,	 ICM/EPI;	 SPIC,	 ICM;	 NODAL,	 GDF3	 and	 PRDM14,	 EPI;	

APOA1,	GATA4	and	COL4A1,	PE;	DLX3,	STS	and	PGF	marking	TE	in	both	human	and	macaque.	

d. Expression	dynamics	of	L1-ORF1	(red)	by	immunofluorescence	staining	during	the	formation	of	the	

blastocyst.	Note	that	L1_HS_ORF1p	accumulates	in	the	cytoplasm	of	Pre-TE			and	in	the	blastocoel	cells	

(DAPI,	blue).	See	also	Movie	1.	

e. MA	plot	displaying	the	comparison	of	average	difference	of	normalized	expression	(CPM)	of	various	

transposable	element	 (TrE)	 families	 in	knockdown	HERVH	vs	 control	 cells	 (Lu	et	 al.,	 2014).	 y-axis,		

Logfold	 change	 GFP_KD	 (n=2)	 vs	 HERVH_KD	 (n=2)	 in	 ESCs_h1;	 	 x-axis,	 average	 expression	 of	 TrE	

families	in	the	same	dataset.	Dots	represent	TrE	families	downregulated	(blue)	or	upregulated	(red)	

(log2	Average	CPM	>	5	and	average	difference	>	2)	in	HERVH_KD	ESC_h1.	

	

Figure	S4,	related	to	Figure	4.	Divergence	of	the	pluripotent	cell	types	in	human	

a. PCA	visualization	of	significant	genes	contributing	to	PC1	and	PC2	from	the	cross-species	normalized	

scaled	genes.	Only	genes	commonly	annotated	in	both	human	and	Cynomolgus	Refseq	gene	track	format	

aka	 gtf)	 are	 considered.	 Expression	 (Log2	 TPM)	 estimates	 are	 shown	 in	 Homo	 and	 Cynomolgus	

blastocyst	single	cells	aka.	ICM,	EPI,	PE	and	TE.	The	1,055	most	variable	genes	(as	in	Figure	3F)	across	

the	merged	cross-species	datasets	were	selected	for	input	loading.	Every	dot	represents	a	single	cell.		

b. Histogram	 showing	 the	 distribution	 of	 differentially	 expressed	 genes	 (DEGs)	 between	 human	 and	

macaque	blastocyst.	In	total,	11,053	orthologous	genes	are	analysed	that	are	expressed	in	any	5	cells.	

The	analysis	detected	181	down-regulated,	141	upregulated	genes	in	the	human	blastocysts		(p-value	

<	0.05	and	log2	fold	change	>	1).	The	differential	expression	of	further	2226	genes	was	not	significant.	

c. Table	 displays	 the	 gene	 ontology	 of	 DEGs	 between	 human	 and	macaque	 blastocyst.	 Analysis	 was	

performed	using	Gorilla	tool.	

d. Heatmap	of	a	correlation	matrix	visualizing	the	pairwise	correlation	of	most	variable	gene	expression	

in	single	cells	of	human	blastocysts	lineages.	For	the	analysis	1076	genes	were	used	whose	dynamic	

expression	was	 suitable	 to	 segregate	distinct	blastocyst	 lineages	on	 first	 two	principal	 components	

(Figure	S3A).	K-means	clustering	provided	three	major	clusters	of	genes	marking	TE,	ICM	and	EPI	(from	

left	 to	 right).	 Framed	 box	 contains	 a	 list	 of	 tightly	 correlated	 EPI	 markers.	 Networks	 beneath	 the	

correlogram	 illustrates	 the	 paired	 pluripotent	 genes	with	 ABHD12B	 and	 SCGB3A2	 calculated	with	
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similar	parameter	shown	in	Figure	4C.	

e. Violin	plots	visualize	the	density	and	distribution	of	TFPI	and	TFPI2	(the	paralogue	of	TFPI)	expression	

(log	TPM	value)	in	EPI	(grey)	and	ICM	(green).	Note	the	differential/exclusive	gene	expression	of	the	

TFPI	paralogues	in	the	pluripotent	ICM	and	EPI	cells.	Each	dot	represents	an	individual	cell.	

	

Figure	S5,	related	to	Figure	5.	The	robust	divergence	of	pluripotency	regulation	in	primates	is	HERVH-

enforced		

a. Boxplots	show	the	normalized	global	expression	estimates	of	RNAseq	datasets	from	various	primate	

induced	pluripotent	stem	cells	(PSCs)	analysed	in	this	study	(cross-species	mapped).	

b. Venn	 diagram	 displays	 the	 divergence	 of	 PSC	 transcriptomes	 in	 primates	 (e.g.	 human,	 Bonobo,	

Chimpanzee,	Gorilla	and	Callithrix).	The	numbers	in	the	Venn	diagram	denote	differentially	expressed	

genes	 (DEGs)	 (FDR<0.05	 and	 fold-change	 |2|).	 RNAseq	 data	 of	 various	 non-human	 primates	 were	

compared	to	human	PSCs.	Only	cross-species	reads	mappable	to	both	genomes	were	considered.	Gene	

expression	was	calculated	on	the	human	genome,	using	the	human	gene	model.		

c. Barplot	showing	number	of	DEGs	calculated	from	reads	mappable	to	both	comparators.		

d. Heatmap	showing	 level	of	differential	 expression	of	 cross-mapped	genes	between	human	and	non-

human	primate	PSCs.	The	analysis	included	all	the	differentially	expressed	genes	in	any	of	the	given	

comparisons	(as	in	Figure	S5C).		

e. The	impact	of	HERVH-mediated	regulation	on	the	evolution	of	primate	pluripotency.	As	in	Figure	S5B,	

but	also	including	DEGs	genes	upon	HERVH	knockdown	(HERVH-KD	in	ESC_h1	vs	GFP-KD	in	ESC_h1).		

f. Barplot	showing	number	of	DEGs	affected	by	HERVH	expression.	As	in	Figure	S5C,	but	also	including	

DEGs	genes	upon	HERVH	knockdown	(HERVH-KD	in	ESC_h1	vs	GFP-KD	in	ESC_h1).		

g. Heatmap	 displays	 the	 loss	 and	 gain	 of	 expression	 of	 orthologous	 HERVH	 loci	 between	 human	 and	

gorilla	 PSCs.	 Only	 RNAseq	 reads,	 mappable	 to	 both	 human	 and	 Gorilla	 reference	 genomes	 were	

considered.	

h. Heatmap	 displays	 the	 loss	 and	 gain	 of	 expression	 of	 orthologous	 HERVH	 loci	 between	 bonobo,	

chimpanzee	and	human	PSCs.	Only	RNAseq	reads,	mappable	to	both	human	and	Chimpanzee	reference	

genomes	were	considered.		

	

Figure	 S6,	 related	 to	 Figure	 6.	 How	 faithful	 a	 primate’s	 developmental	 model	 could	 be	 for	 human	

pluripotency?	
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Multiple	heatmaps	of	pairwise	Spearman’s	 correlation	 showing	purple	as	positive	and	 light	blue	as	

negative	 correlation	 of	 four	 subsets	 of	 genes	 obtained	 from	 k-means	 clustering	 the	 transcriptome.	

Dendrogram	shows	the	clustering	of	samples	based	on	Euclidian	distance	of	dissimilarity	matrix	using	

1210,	1265,	1181	and	2214	genes	from	cluster	1	to	cluster	4.	Note:	Based	on	the	input	gene	sets	in	vitro	

naïve	cultures	cluster	with	NCC	and	Morula	or	ICM	and	EPI.	Reset	/H9ESCs	(Takashima	et	al.,	2014),	

5iL_SSEA_Neg/UCLA1_primed,	UCLA_20n/UCLA_20n_primed,	5iL_SSEA_Pos/UCLA1_primed	(Pastor	et	

al.,	2016)	and	Chan_3iL/ESC_H1s	(Chan	et	al.,	2013).	

a. Boxplot	showing	the	upregulation	of	various	early	embryonic	lineage	markers	(shown	in	the	table	next	

to	the	boxplot	with	respective	AUC	cutoff	values)	in	cultured	naive	cells	compared	to	their	respective	

primed	 counterparts	 (GFOLD	 calculated	 on	 Reset	 cells/H9ESCs).	 The	 selected	 genes	 were	 chosen	

according	to	the	following	criteria:	(i)	should	be	putative	markers	of	any	distinct	lineage	in	human	pre-

implantation	embryos	after	EGA	 (AUC	cutoff	>	0.85);	 (ii)	 should	be	 significantly	upregulated	 in	 the	

majority	of	analysed	naive	cultures	(3	out	of	5).	

b. Heatmap	showing	the	comparison	of	expressional	changes	as	fold-change	of	naïve	vs	primed	cells	with	

the	fold-change	of	pairwise	human	and	macaque	blastocyst	stages		(ICM,	EPI,	PE	and	TE).	Row-wise	z-

score	 of	 log2-fold	 change	 expression	 of	 most	 variable	 genes	 (MVGs)	 (n=948).	 The	 clustered	

dendrogram	represents	Spearman’s	correlation	and	Euclidian	distance.	Note	the	contrasting	pattern	of	

gene	expression	between	in	vitro	naïve	cultures	and	human	in	vivo	pluripotent	states	(ICM	and	EPI)	

compared	with	their	counter	samples.	The	zoom-in	details	expressional	changes	of	five	genes,	whose	

expression	is	shifted	between	macaque	and	human	(e.g.	mark	pluripotent	states	in	macaque	and	TE	in	

human).	The	 five	genes	also	represent	genes	that	are	upregulated	 in	naïve	 in	vitro	 cultures	vs	 their	

primed	counterparts.		

	

Movie	S1	
Expression	dynamics	of	L1-ORF1	(red)	by	immunofluorescence	staining	during	the	formation	of	the	blastocyst.	

Note	that	L1_HS_ORF1p	accumulates	in	the	cytoplasm	of	Pre-TE			and	in	the	blastocoel	cells	(DAPI,	blue).	See	also	

Figure	S3D.	
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Supplementary Figures
S. Figure 1 to S. Figure 6
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• hsa05205: Proteoglycans in Cancer (67)
• hsa05203: Viral carcinogenesis (60)
• hsa04550: pluripotent stem cells regulating

signalling (55)

• hsa04210: Apoptosis (67)
• hsa04015: Rap1 signalling (31)
• hsa04060: cytokine-cytokine

interaction (55)
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GO ID GO Term P-value

GO:0048856 anatomical structure development 5.55E-06

GO:0006954 inflammatory response 1.56E-5

GO:0009725 response to hormone 3.45E-5

GO:0044273 sulfur compound catabolic process 9.35E-5

GO:0006952 defense response 1.07E-4

GO:0060191 regulation of lipase activity 3.72E-4

GO:0044421 extracellular region part 5.42E-4

GO:0050777 negative regulation of immune 
response 4.08E-4

GO:0032652 regulation of interleukin-1 
production 6.42E-4

GO:0030154 cell differentiation 9.14E-4
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cluster 1, n=1210

cluster 2, n=1265

cluster 3, n=1181

cluster 4, n=2214
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