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Supplementary results and discussion 

Environmental associations of the global topsoil microbiome 

To determine the main predictors of taxonomic diversity based on our global metabarcoding soil 

data, we applied generalized least squares (GLS) regression models. The best-fit models revealed 

that soil pH predominantly explains the variation in taxonomic richness (r2=0.633, p<0.001) as well 

as phylogenetic diversity (r2=0.677, p<0.001) of bacteria. Bacterial phylogenetic diversity and 

richness displayed a quadratic relationship with soil pH, peaking at values 5-6, which is consistent 

with several smaller scale studies1,2. Soil pH was also the best predictor for the relative abundance of 

most phyla, as revealed by the random forest machine learning approach (Extended Data Fig. 4). 

However, the relative abundance and diversity of particular phyla such as Firmicutes and 

Thermotogae were mostly affected by climatic variables including temperature (Extended Data Fig. 

1b, Extended Data Fig. 4). Compared to other bacterial phyla and the general trend of bacterial 

latitudinal diversity, Firmicutes, Chlamydiae, Thermotogae and WD272 and Cyanobacteria were 

clustered together in a cluster analysis based on their correlations to latitude and environmental 

variables (Extended Data Fig. 1b). The deviation of a few phyla from the general LDG trends can be 

explained by responses to edaphic and climate factors weakly related to latitude (Extended Data Fig. 

1b) or contrasting effects at lower taxonomic levels. Thus, environmental filtering may be stronger at 

the level of phylum.  

While several large scale studies have also reported soil pH as the main predictor of microbial 

taxonomic diversity1-3, others have found temperature4 and soil nutrient stoichiometry5 as the main 

predictors of bacterial diversity from regional to continental scales. These conflicting results could 

reflect limited ranges of climate and soil pH covered in previous smaller scale studies or no one 

single variable explaining the bulk of diversity across different microbial taxa. Temperature was a 

negligible factor for the overall taxonomic diversity (Supplementary Table 3). Similarly to their 

functional gene diversity, the metabolic potential of bacteria (inferred from the relative abundance of 

genes belonging to metabolic OGs functions), respectively, showed a relationship with latitude 

(r2=0.234, p<10-11; r2=0.10, p<10-4, respectively) and a weak relationship with temperature (p>0.05; 

Supplementary Table 14). From these, we infer that the metabolic theory of ecology6,7 may not be 

largely applicable to the global distribution of soil bacteria soil microbes and substrate availability, 
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local environment and biotic interactions may overrule each other’s effect on the global distribution 

of soil bacteria. 

 

Due to high microbial genomic plasticity8,9 and functional redundancy in microbial communities10,11 , 

distributions of microbial taxa may not directly reflect distributions of microbial functions. The lack 

of a perfect fit between taxonomic and functional diversity may stem from expansion and reduction 

in gene families and horizontal gene transfer12 and decoupling mechanisms of taxonomic and 

functional gene assemblies8. Thus, the joint effects of climate and soil factors on functional gene 

composition compared to the dominant effect of soil pH on taxonomic composition may explain the 

lack of perfect fit between taxonomic and functional gene composition on a global scale. Functional 

diversity of soil bacteria was positively correlated to taxonomic diversity, for all levels from OTUs to 

classes (r=0.704±0.063, mean±SD). Similarly, the richness of bacterial Operational Taxonomic Units 

(OTU) and functional Orthologous groups (OG) were strongly correlated (r=0.504, p<0.001). Unlike 

bacteria, functional and taxonomic richness of fungi were weakly correlated (p>0.05). Fungal 

functional richness was most strongly affected by C/N ratio (r2=0.357, p<0.001) and less affected by 

pH (r2=0.103, p<0.001). We used structural equation modelling (SEM, see Methods) to predict the 

response of functional diversity to environmental factors that may affect functional diversity directly 

and indirectly via the structuring of taxonomic diversity and the alteration of other parameters (see 

Methods). In bacteria, mean annual precipitation (MAP) was the key variable correlated to functional 

diversity, greatly exceeding the effect of pH (Extended Data Figs. 3g,h, 5c,g; Supplementary Table 

3,5). Moreover, the pH effect on functional diversity was mostly mediated by altered taxonomic 

diversity (Supplementary Table 5). In fungi, functional diversity was negatively associated with soil 

pH, with a weak positive association to MAP (Extended Data Figs. 3g,h,5d,h; Supplementary Table 

3,5). These results suggest that opposing responses to MAP and soil pH may partly explain the 

observed inverse pattern of functional diversity in bacteria and fungi (Fig. 1). Using SEM modelling, 

we also tested whether the observed correlations between bacterial diversity and environmental 

variables stem from microbial effect on or response to their environmental conditions. We thus tested 

the hypothesis that MAP could affect soil pH though its effect on bacterial diversity as a major 

component of topsoil microbial diversity. Comparing model fits suggested that soil pH is more likely 

to affect rather than to be affected by bacterial diversity in our global dataset (Model: MAP> soil 
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pH> Bacterial OG & OTU diversity; AIC: 26.00; RMSEA: 0.000, P=0.959, compared to Model: 

MAP> Bacterial OG & OTU diversity> soil pH; AIC: 27.23; RMSEA: 0.053, P=0.367) 

Taxonomic and functional differences between biomes 

Overall, bacteria were the most abundant microbial group in topsoil, especially bacteria from the 

phyla Proteobacteria (34.3% of all sequences), Actinobacteria (15.5%), Cyanobacteria (10.9%), 

Acidobacteria (10.0%), Planctomycetes (6.90%), Verrucomicrobia (4.0%) and Bacteroidetes (2.8%), 

followed by the fungal phyla Basidiomycota (2.6%) and Ascomycota (2.4%) (Supplementary Table 

17). There were significant differences in the phylogenetic composition of bacteria among biomes 

(PERMANOVA: pseudo-F=7.292, r2=0.321, p=0.001; Extended Data Fig. 2f,5i; Supplementary 

Table 14). Across all metagenomes, in genes for which OGs could be assigned, the most abundant 

broad function category (COG one-letter codes, as available in eggNOG), were replication, 

recombination and repair (8%) and carbohydrate transport and metabolism (7%) (Supplementary 

Table 17). Similar to taxonomic groups, functional gene composition (PERMANOVA; bacteria: 

pseudo-F=2.162, r2=0.108, p=0.001; Extended Data Fig. 5k) and the relative abundances of 

functional categories were significantly discriminated across biomes (pseudo-F=5.495, r2=0.235, 

p=0.001; Extended Data Fig. 2h,i; Supplementary Table 14). Because they describe mostly 

housekeeping gene roles, OG functional categories are known to show little variance between 

samples9; however, when small differences are significant across biomes, it indicates that certain 

gene functions have an effect on or respond to the environment and are thus ecologically important 

(this was tested using a non-parametric test that only compares ranks). 

Correlation of Antibiotic resistance and fungal relative abundance 

As carriers of ARGs, it is expected that the abundance of bacteria is somewhat correlated with that of 

ARGs. For example, (alpha) Proteobacteria, whose genomes are known to be enriched for ARGs, 

were a major bacterial phylum positively correlated with ARG relative abundance. However, this 

correlation was weaker than the positive correlation between ARG and fungal abundance, a 

correlation which is strong despite fungal genomes not being expected to carry genes closely 

matching models for bacterial ARGs, each with very strict cutoffs that should not allow for cross 

kingdom orthologous matches). We have also used SEM modelling to test possible scenarios of 

direct/indirect associations to put these correlations in environmental context and found that in all 

models fungal rather than bacterial abundance appears to be a better determinant of ARG abundance. 

In addition, we tested this by including fungal and bacterial abundance instead of B/F in the SEM 
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model (Fig. 3c). We found the model including fungal abundance has significantly better fit 

(RMSEA=0.065, PCLOSE=0.00; AIC=29.79) compared to the models including bacterial abundance 

(RMSEA=0.378, PCLOSE=0.278; AIC=55.80) or both fungal and bacterial abundances 

(RMSEA=0.456, PCLOSE=0.278; AIC=118.10). 

While we used a specific bacterial ARG database, to examine the rate of false positive discovery of 

ARGs as a result of increasing fungal genomes in samples enriched for fungi, we characterized ARG 

profiles in simulated metagenomes based on samples that included only fungal genomes (n=15) from 

diverse fungal groups including those with high antibiotic production potential (including 

Oidiodendron and Aspergillus) using our methods (Supplementary Table 10). This analysis revealed 

a very low AR potential (3E-07±6E-07 read fraction) compared to the AR potential of a simulated 

community composed solely of bacteria (9E-04±3E-04 read fraction). We also re-analyzed our data 

using the CARD database, despite its limitations (see Methods), and our main results remained 

qualitatively unchanged (namely ARG abundance correlated to fungal (r=0.275, p=0.0001) rather 

than to bacterial abundance (r=-0.145, P=0.048), and fungal phyla/classes (particularly Ascomycota, 

Leotiomycetes) strongly correlated to ARG abundance (see Supplementary Table 18).  

Correlation of Antibiotic resistance to functional genes 

To further understand genomic mechanisms behind changes in antibiotic resistance (AR) potential in 

topsoil, we sought to identify gene functional pathways associated with antibiotic resistance genes 

(ARG) abundance. We expected that as a result of more intense fungal-bacterial competition in 

samples with high numbers of ARGs, there should exist a greater abundance of functions related to 

cell damage and nutrient stress responses. While we found a significant correlation between ARG 

relative abundance and specific antibiotic biosynthesis KEGG (Kyoto Encyclopedia of Genes and 

Genomes) pathways (r=0.200, p=0.006), ARG relative abundance was more strongly correlated with 

the relative abundance of reactive oxygen species (ROS) protection factors such as peroxidases 

(r=0.477, p<10-11) as well as the SEED categories of virulence (r= 0.556, p < 10-15) and stress 

response (r=0.283, p<10-5). Closer examination showed that peroxidases that were significantly 

correlated with ARGs mainly consisted of catalases, which contribute to the stress response by 

removing hydrogen peroxide (H2O2). The induction of ROS is known to be a mechanism through 
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which antibiotics can kill bacteria13. Fungi can also generate excessive ROS to compete with 

bacteria14 or with each other15, particularly under nitrogen limitation, which in turn promotes AR in 

the microbial community. There was no significant correlation between the relative abundance of 

fungal “Secondary metabolites biosynthesis, transport and catabolism” and soil C/N and ARG 

relative abundance. However, a detailed re-analysis at higher resolution level (subcategories) within 

this functional category revealed that the relative abundance of OGs related to the biosynthesis of 

polyketide which is involved in production of antibiotics strongly correlates with C/N ratio (r=0.536, 

p<10-8) and ARG abundance (r=0.415, p<10-8) (Supplementary Table 4). In addition, analysis of 

fungal specific biosynthetic gene clusters (BGCs) with known antibiotic production reports revealed 

that the abundance of these clusters correlate significantly to C/N and ARG abundance in the global 

(r=0.456, p<10-10; r=0.346, p<10-4, respectively) and in the external validation dataset (r=0.420, 

p<10-6; r=0.381, p<10-5, respectively). These data together with evidence of fungi-bacteria 

antagonism in nature suggest that resistance may, at least partially, have arisen as a response to 

antibiotics as a means of competition, rather than as e.g. signalling agents, which has also been 

proposed16. Future experiments to test these hypotheses will improve our understanding of the forces 

shaping the distribution of ARGs and the conditions that select for resistant strains over sensitive 

ones.  

Analysis of antibiotic resistomes from additional environments 

To test if the positive relationship between ARGs and fungi observed in the topsoils sampled herein 

and oceans extends to other habitats, we analysed 233 additional soil metagenomes from non-

forested natural (grassland and desert) and human-impacted soils, including pasture, lawn and 

agricultural soils available from MGRAST17. Due to the heterogeneity of the available sequencing 

data, a general approach was adopted to quality filter the samples. Sequences shorter than 90 bp 

length and those longer than 1000 bp (e.g. uploaded assemblies) were rejected to accommodate the 

data for our direct mapping approach. Thus, 3,350,904,460 (52.45%) of 6,388,725,921 processed 

reads from 214 samples passed our stringent quality control.  

As the relative abundance of ARGs was to a large part explained by Bacteria to Fungi (B/F) ratio in 

two very diverse ecosystems (soil and ocean), we also analysed this in the additional soil sample sets 

obtained from MGRAST. For deserts, grasslands, pasture and lawn, fungi are also key associated 
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taxa of ARG relative abundance (Supplementary Table 8), and there was a significant correlation 

between ARG relative abundance and B/F abundance ratio (r=-0.327, p<0.001). However, in 

agricultural soils, the relative abundance of ARGs was unrelated to B/F abundance ratio (r=-0.02, 

p=0.824).  

To compare patterns of ARG diversity in soils and oceans to human gut, human skin, we re-analysed 

the metagenomics data sets of the MetaHit project18 (Supplementary Table 1). MetaHit sequences 

were obtained from European Bioinformatics Institute Sequence Read Archive under accession 

ERP004605. After quality filtering, 4,891,268,695 out of 6,100,278,254 reads were retained from the 

MetaHit. Inclusion of data from MetaHit was limited to the 68 samples from Denmark that were 

sequenced on a HiSeq 2000 sequencer to maintain consistency with the Tara Oceans samples. We 

also included 310 skin samples from American patients (263 samples from ref19.. and 57 skin samples 

from Human Microbiome Project20 (HMP) sequenced on Illumina HiSeq 2000 (obtained from 

ftp://public-ftp.hmpdacc.org). These samples originated from 18 body sites and are thus assumed to 

represent the human skin microbiome; for this dataset 8,374,233,488 of 11,443,026,496 reads were 

retained after quality filtering (see Methods). The quality-filtered reads from all datasets were 

mapped to the corresponding databases using Diamond21, with the exception that no merging of read 

pairs was attempted, because the chances of finding overlapping reads were too low (with a read 

length of 100bp and insert size of 300 bp (Tara Oceans) or 350 bp (MetaHit). Sequences for SSU and 

LSU were extracted from these metagenomics datasets for constructing taxon by sample matrices, as 

described in the miTag approach. ARG abundance matrices were also obtained from the Tara Oceans 

and MetaHit projects based on the published gene catalogues annotated using similar approach as in 

the current study. 

In contrast to what we observed in the soil and ocean samples, we found no negative association 

between ARG relative abundance and B/F abundance ratio in the human samples (gut: r=0.087, 

p=0.501; skin: r=0.384, p<0.001). In addition, fungal relative abundance was not positively 

correlated with ARG relative abundance (gut: r=0.038, p=0.753; skin: r=-0.269, p=0.036) or 

diversity (gut: r=-0.033, p=0.785; skin: r=0.078, p=0.169) in these samples. However, similar to 

what we observed in the soil and ocean samples, sparse partial least squares (SPLS) regression 

analysis revealed that certain fungal phyla are among the phyla that were most strongly associated 
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with bacterial ARG relative abundance (Cryptomycota: r=0.263, p<0.001, q<0.001), ARG diversity 

(Chytridiomycota: r=0.232, p<0.001, q<0.001; Ascomycota: r=0.449 p<0.001, q<0.001) and ARG 

richness (Chytridiomycota: r=0.299, p<0.001, q<0.001; Ascomycota: r=0.366, p<0.001, q<0.001) in 

human skin. In human gut microbiome samples, ARG relative abundance showed no significant 

correlation with any of bacterial or fungal phyla. However, ARG diversity and richness were most 

strongly and significantly correlated with Bacteroidetes (r=0.392, p<0.001, q=0.027) and 

Chytridiomycota (r=0.499, p<0.001, q<0.001), respectively. At the class level, fungi were also 

among the main associated taxa with ARG diversity in the human gut and skin samples 

(Supplementary Table 8). These data suggest that, although the human ARG abundance patterns may 

be confounded by life style factors, such as antibiotics treatment as reported earlier22, certain fungal 

taxa appear to be associated with a greater variety of ARG families and thus higher ARG diversity 

and richness in the human associated microbiomes.  

Investigating antibiotic producing classes in fungal genomes 

One of our questions was whether the association between the relative abundance of fungi and ARGs 

could result from the potential of fungi to produce antibiotics. Unfortunately, the relatively sparse 

existing knowledge about antibiotic biosynthetic gene clusters (BGCs) in fungi is not available in 

systematically structured resources; in addition, prediction of BGCs relies on gene order/genomic 

proximity, which makes it difficult to investigate their presence in environmental metagenome 

samples. Therefore, we inspected the presence of antibiotic production related gene systems in 259 

published fungal genomes (Supplementary Table 12) representing different clades retrieved from 

public whole genome databases using antiSMASH23 (version 4.0) to classify putative secondary 

metabolites. The major groups with strong correlations to ARG abundance were filamentous 

Ascomycota, including Leotiomycetes, Eurotiomycetes, Dothideomycetes and Sordariomycetes 

(Supplementary Table 8). These fungi were significantly enriched (chi-squared=89.40, p<10-15, 

Kruskal-Wallis test) in BGCs known to produce antibiotics (2.20±1.77 BGCs) compared to other 

fungal genomes (0.33±1.64 BGCs), suggesting their higher potential to produce antibiotics. 

Independent of taxonomy, the number of antibiotic producing BGCs in each fungal genome 

correlated significantly with how strong the phyla or classes they belong to correlated to ARGs in our 

global soil dataset (r=0.47, p<10-13; r=0.181, p=0.026, respectively). In particular, Oidiodendron 

(several OTUs of which strongly correlated with ARG abundance in our data; Supplementary Table 

6) exhibited a high number of putative secondary metabolites and antibiotic producing BGCs
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(Supplementary Table 12). Interestingly, BGCs were completely absent in the genome of the phyla 

Glomeromycota and Cryptomycota that showed a very weak correlation with ARGs (Supplementary 

Table 12). These results support our assumption that fungal antibiotic production may affect ARG 

abundance in topsoil.  

Compared to topsoil, the relative abundance Ascomycota was negatively correlated with ARG 

relative abundance in the ocean. Lack of positive correlation between ARG and Ascomycota in the 

ocean may be explained by their different environmental associations as well as composition and 

function of these fungi in the ocean and topsoil (Supplementary Table 9). The relative abundance of 

both Ascomycota and Basidiomycota negatively correlated with mean annual temperature (MAT; r=-

0.47, p<0.001; r=-0.29, p<0.01, respectively) that was positively correlated with ARG abundance in 

the ocean (Fig. 2). In the ocean, Oomycota had a 5 times higher relative abundance than e.g. 

Ascomycota and therefore seem to be the major eukaryotic group. Oomycota are known to have 

strong antagonistic relationship with bacteria and are significantly negatively correlated with 

Ascomycota in our dataset (r=-0.300, p<0.001). Using SEM modelling and after accounting for the 

effect of either MAT or the correlation of Oomycota and ARG relative abundance, there was no 

correlation between the abundance of ARGs and Ascomycota. Despite a strong correlation between 

ARG relative abundance and oomycetes in the ocean, to the best of our knowledge there are no 

convincing records whether or not oomycetes produce antibiotics, although oomycetes are also 

known to have a strong antagonistic relationship with bacteria in several studies, which can suppress 

bacterial growth and fitness24-27. To investigate this further based on genomic analysis, we 

downloaded all oomycetes genomes available in FungiDB (n=20, http://fungidb.org) and used 

antiSMASH to predict 283 BGCs (14.15/genome on average). While the vast majority of discovered 

BGCs (51%) were classified as putative, 4% were classified as NRPS, 6% as Terpene and 9% as 

CF_saccharide (Supplementary Table 19). These classes are among the biosynthetic gene clusters 

that can potentially provide the biosynthetic pathways to produce known antibiotics28. Thus, we 

cannot exclude the possibility that the strong association of oomycetes and ARG relative abundance 

in oceans could stem from oomycetes directly producing antibiotics. Alternatively, oomycetes may 

stimulate other organisms to produce antibiotics, as antibiotic substances production can increase 

bacterial fitness29, to compete with fast-growing oomycetes. Oomycetes may also stimulate other 

groups such as fungi30 and algae31,32 to produce antibiotic compounds.  
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Taken together, our results indicate that the relative size and diversity of environmental resistomes 

are determined by antagonistic interactions with eukaryotic microbes, especially various fungal 

classes, of which some produce antibiotics33-37 , and fungi-like oomycetes. Regardless of whether 

they produce them by themselves or stimulate bacteria to produce antibiotics, these eukaryotes may 

be promising candidates for novel antibiotic discovery in environmental samples. The metagenomics 

analysis outlined here is also applicable to other habitats for identifying ARG-associated organisms. 
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