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A central challenge in pharmaceutical research is to investigate genetic variation

in response to drugs. The Collaborative Cross (CC) mouse reference population

is a promising model for pharmacogenomic studies because of its large amount

of genetic variation, genetic reproducibility, and dense recombination sites. While

the CC lines are phenotypically diverse, their genetic diversity in drug disposition

processes, such as detoxification reactions, is still largely uncharacterized. Here

we systematically measured RNA-sequencing expression profiles from livers of 29

CC lines under baseline conditions. We then leveraged a reference collection of

metabolic biotransformation pathways to map potential relations between drugs and

their underlying expression quantitative trait loci (eQTLs). By applying this approach

on proximal eQTLs, including eQTLs acting on the overall expression of genes and

on the expression of particular transcript isoforms, we were able to construct the

organization of hepatic eQTL-drug connectivity across the CC population. The analysis

revealed a substantial impact of genetic variation acting on drug biotransformation,

allowed mapping of potential joint genetic effects in the context of individual drugs, and

demonstrated crosstalk between drug metabolism and lipid metabolism. Our findings

provide a resource for investigating drug disposition in the CC strains, and offer a new

paradigm for integrating biotransformation reactions to corresponding variations in DNA

sequences.
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INTRODUCTION

Drug disposition encompasses the processes of drug absorption
into the bloodstream, drug metabolism into different chemicals
(mainly in the liver and intestine), distribution of the various
chemicals into different tissues, and removal of the chemicals
from the body through excretion. The organism’s genetic makeup
might play a part in the activity of any of these processes and
might underlie chemical toxicity and adverse drug reactions
(Meyer, 2000). To address this problem, a key goal of predictive
medicine is to identify the DNA loci, termed quantitative trait
loci (QTLs), which can be used to predict the response to a given
medication and its toxicity in a particular patient (e.g., Rost et al.,
2004; Harrill and Rusyn, 2008). This challenge can be easily and
systematically addressed by utilizing specific mouse models in
preclinical pharmacogenetics research.

Mouse pharmacogenetic studies have typically been applied
across F2 progeny and backcross populations (Rusyn et al., 2010;
Frick et al., 2013); across recombinant inbred (RI) lines derived
by crossing two founder strains and inbreeding during many
generations (Cook et al., 2004; Hitzemann et al., 2004); and across
a predefined collection of classical inbred lines (Montgomery
et al., 2013; Yoo et al., 2015). Although these approaches have
proved useful in many studies, they are derived mainly fromMus
musculus domesticus and thus reflect only a partial repertoire of
adverse effects, limiting pharmacogenetic investigation.

A promising new model organism has been provided by
the recently developed Collaborative Cross (CC) strains, a
large, genetically diverse mouse reference population. The
CC panel is a collection of RI mouse lines that combine
the genomes of eight genetically and phenotypically diverse
founder strains—A/J, C57BL/6J [B6], 129S1/SvImJ, NOD/ShiLtJ,
NZO/HlLtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ (Aylor et al.,
2011; Consortium, 2012). Whereas the first five founders are
classical Mus musculus domesticus subspecies, the last three
are wild-derived strains representing the three Mus musculus
subspecies, namely M. m. musculus, M. m. domesticus, and
Mus m. castaneus. Thus, like classical RI strains, CC mice are
genetically reproducible with balanced allele frequencies, but in
addition they incorporate a large amount of genetic variation and
dense recombination sites (Valdar et al., 2006; Roberts et al., 2007;
Yang et al., 2011; Chesler, 2014). The availability of genotyping
data across all CC lines opened the way to analyses of QTLs
in a variety of traits, including behavioral and morphological
phenotypes (Aylor et al., 2011; Chesler, 2014; Mao et al., 2015;
Percival et al., 2016), homeostatic immune processes (Kelada
et al., 2012; Phillippi et al., 2014), susceptibility to infectious
diseases (Durrant et al., 2011; Ferris et al., 2013; Vered et al., 2014;
Graham et al., 2015; Gralinski et al., 2015; Lorè et al., 2015), and
liver-related functionalities (Kelada et al., 2012; Svenson et al.,
2012; Thaisz et al., 2012).

While the CC population has been proven phenotypically
diverse, the extent to which drug disposition varies across
these strains is still largely unknown (Rusyn et al., 2010;
Gelinas et al., 2011; Frick et al., 2013). One of the many
mechanisms through which variation in drug disposition can
arise is the biotransformation of drugs in the liver. In such

biotransformation, drugmetabolizing enzymes (DMEs) and drug
transport proteins (DTPs) catalyze the biochemical modification
and transport of exogenous chemicals and other xenobiotics
(Katz et al., 2008). With regard to hepatic drug metabolism in
the CC lines, two key questions arise: (i) Should a large diversity
be expected in hepatic biotransformation of particular drugs? (ii)
Can CC mice be used to evaluate the crosstalk between drug
metabolism and other functionalities of the liver, especially those
related to lipid and fatty acid metabolism?

Here we exploit transcriptional mechanisms to dissect genetic
variation in hepatic drug metabolism of the CC lines. We focus
on cis-regulatory variants underlying inter-individual variation in
gene expression. Such genetic variants, referred to as “proximal
eQTLs,” are central to the understanding of metabolic diversity
owing to their relatively large genetic effect size (Wittkopp
and Kalay, 2012; Bryois et al., 2014) and the plasticity of
proximal factors over short evolutionary time scales (Wray,
2007). Proximal regulatory variation is known to affect metabolic
traits (e.g., Hsieh et al., 2007; Zhong et al., 2010; Kang et al.,
2012), but the organization and architecture of such elements in
governing hepatic drug metabolism has not yet been subjected to
comprehensive characterization.

We leverage RNA-sequencing technology (Mortazavi et al.,
2008; Rosenkranz et al., 2008; Parkhomchuk et al., 2009) to
generate transcription profiles of the liver tissues from 29 CC
lines (55 individuals). By applying eQTL analysis on these data
we characterized the genetic control over expression of drug
disposition enzymes—either control of the overall expression of
genes or of the expression of particular transcript isoforms. Using
these predictions we compiled a network of connectivity between
genomic loci and the metabolism of specific drugs, highlighting
potential joint genetic effects and drug-drug interactions. Further
analysis of nuclear receptors participating in the regulation of
cellular-biochemical pathways provided DNA variants that affect
the crosstalk between lipid metabolism and drug metabolism.
Thus, our study supports the premise that the CC population is a
valuable model system for the investigation of genetic variation
in response to a wide range of chemicals and drugs, and may
further offer mechanisms by which DNA variation contributes
to the relationship between lipid metabolism and adverse clinical
effects. Moreover, our approach provides a general strategy for
a system-level mapping of eQTL-drug connectivity across a
genetically diverse population.

MATERIALS AND METHODS

CC Lines
The Collaborative Cross (CC) recombinant inbred mouse lines
were used as described elsewhere (Iraqi et al., 2008; Durrant et al.,
2011; Consortium, 2012). Animals were housed on hardwood
chip bedding in open top cages at the animal facility of Tel-
Aviv University (TAU) under a 12-h light/dark cycle. Mice were
given tap water and rodent chow ad libitum throughout the
experiment. Liver tissues were collected from 8- to 10-week old
male CC mice from the TAU cohort at inbreeding generation
between 16 and 42. A total of 55 mice from 29 CC lines were
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used (Table S1). All experimental protocols were approved by
the Institutional Animal Care and Use Committee (IACUC) at
TAU (approved protocol M-13-033) according to the national
guidelines.

RNA Extraction, RNA-Seq Library
Preparation, and Sequencing
The liver tissues were dissected and subsequently stored in
sterilized tubes at −196◦C (in liquid nitrogen). The RNA was
extracted using the RNeasy Plus kit procedure (Qiagen). RNA
quality was tested on a 2100 BioAnalyzer (Agilent); in all
samples, RNA Integrity number (RIN) exceeded 7. The RNA-
Seq libraries were prepared using the TruSeq Stranded mRNA
library preparation kit (Illumina). Libraries were pooled and
sequenced on the Illumina HiSeq 2000 and 2500 sequencers with
Illumina v3 sequencing chemistry. Paired-end sequencing was
performed by reading 50 bases at each end of a fragment. Overall,
each sample consisted of 24–37.5M RNA-sequencing fragments
with an average of 31.5M fragments. This data is accessible
through GEO Series accession number GSE77715. A detailed
description of our data analysis appears below (see a summary
of the computational pipeline in Table S2).

RNA-Seq Quantification
RNA-Seq data was mapped and quantified using RSEM version
1.2.18 (Li and Dewey, 2011) with the mouse genome (UCSC,
mm9, NCBI37) and annotation file (Ensembl version 37.67).
The reference was created by the RSEM rsem-prepare-reference
command, followed by calculation of the expression level of genes
using the rsem-calculate-expression command. The analysis was
applied with default parameters and using Bowtie 2 version 2.1.0
(Langmead and Salzberg, 2012). Overall, the average percentage
of unmapped fragments was 11.9%, (min= 9.4%, max= 24.3%);
the average percentage of fragments aligned to a single gene
was 59.9% (min = 49.6%, max = 69.5%), and among them,
fragments aligned to just one isoform were 32.6% (min= 26.9%,
max= 38.7%).

Total expression levels were measured by RSEM’s FPKM
metric, defined as the number of fragments mapped to the
genomic region of a gene per kilobase of the gene’s exons and
permillionmapped fragments. An isoform-ratio level, in contrast,
is defined as the percentage of detectable fragments mapped to
a given alternatively spliced isoform of a gene, out of the total
number of fragments mapped to that gene (the RSEM’s IsoPct
metric). The expression trait of a gene refers to either the overall
expression (a total-expression trait) or the percentage of a specific
isoform (an isoform-ratio trait). In the following we describe
the transformation and association test steps, which are applied
separately for each trait. For simplicity, we omit the index of
the gene (either a total-expression trait or an isoform-ratio trait)
whenever possible.

Data Transformation
For a given expression trait, denote its level in individual i by vi.
The maximal level of a trait, denoted vM , is max {vi}

n
i= 1, where n

is the number of individuals. The bin size δ of a trait is defined as
max

{

0.5, vM
200

}

, where the first term (0.5) represents an accuracy

threshold and the second term represents 0.5% of the maximum
level.

Let v∗i be the rounded level of vi to the accuracy of bin size
δ. Based on these rounded levels, the van der Waerden normal
scores transformation (Lehmann, 1975; Aylor et al., 2011) is
defined by

ui = φ−1

(

r∗i
n + 1

)

,

where ui is the adjusted level of the trait in individual i, φ−1 (p) is
the quantile function of the normal distribution with probability
p, and r∗i is the rank of v∗i among the n values

{

v∗1, v
∗
2, . . . , v

∗
n

}

with ties resolved by the average rank. Throughout this study,
we refer to the adjusted traits {ui}

n
i= 1 rather than to the original

measurements.

Association Tests
An association score between a given expression trait and a
given genome interval was calculated by regressing the trait on
the contribution of their eight CC founder strains as previously
described (Mott et al., 2000). More formally, for a given genome
interval and a trait, the association score is the likelihood ratio
(LR) between the null model ui = µ + βmi + εi and the genetic
model:

ui = µ +

8
∑

k= 1

αk gk,mi
+ βmi + εi, (1)

where mi is the CC line of the i-th individual; gk,mi
is the

haplotype probability of the k-th founder (k ∈ {1, ..., 8}) in CC
line mi, µ is the intercept value, αk is the genetic fixed effect of
the k-th founder, βm is the random effect of CC line m, and an
error term εi is assumed to be normally distributed ε ∼ N(0, σ 2).
No other covariates were used. The mixed model regression was
implemented in R by using the lme4 package version 1.1-7 (Bates
et al., 2015).

The false discovery rate (FDR) was estimated by comparing
the LR values in real data to the distribution of the LR
values using randomly permuted datasets. Throughout this
study, the permutation FDR was calculated as Cperm/Creal where
Creal and Cperm denote the number of traits with LR values
exceeding a certain threshold in the original (real) dataset and
in the permuted dataset, respectively (Cperm is averaged over
100 permuted datasets). In order that the permutations will
specifically randomize the fixed effect (the genetics) rather than
the random effect, the shuffling was applied on the CC line labels.

We applied the association tests to genes that are expressed in
the liver (vM ≥ 2) and to a single isoform-ratio traits from each
of these genes: the isoform with the highest number of different
rounded levels in the set

{

v∗i
}n

i=1
. Since we are interested in the

variation in expression and to reduce the running time of the
analysis, we further excluded traits with a low (<12) number of
different rounded levels across the 55 individuals. Altogether, the
association testes were applied on 5950 total-expression traits and
4712 isoform-ratio traits.

The association tests were applied on genotyping dataset
that was obtained from the UNC systems genetics repository
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(http://csbio.unc.edu/CCstatus) and included measurements
from MegaMUGA—a 77K marker genotyping array based
on the Illumina Infinium platform. The genotyping data
was computationally validated using comparison with the
polymorphic loci in the RNA-Seq data (Figure S1). For a given
genome interval, the haplotype probabilities gk,m of each of
founder k in each CC line m were calculated using the HAPPY
package version 2.4 (Mott et al., 2000). Altogether, the association
tests were applied on 23,217 genome intervals for which the
haplotype probabilities were calculated. Unless stated otherwise,
the analysis was focused on proximal genome intervals. To that
end, association scores were calculated using genomic intervals
whose distance to the gene’s transcription start site is less than
5Mbp.

Throughout the manuscript, we use the following
terminology: a proximal eQTL is defined as a nearby
genome interval whose FDR is lower than 0.01 (based on
100 permutations). There are two types of proximal eQTLs:
total-expression eQTLs that are associated with the expression
level of total-expression traits, and isoform-ratio eQTLs that are
associated with the percentage of alternatively spliced isoforms
(see Tables S3, S4 for full lists).

We note that it is possible to use the optimized regression
parameters (from equation 1) to determine the contribution of
each founder to the overall regulatory variation. As previously
described (Aylor et al., 2011; Durrant et al., 2011), we define the
founder effect as

αk

max{abs(αk)}
8
k= 1

: the higher the (absolute) founder

effect on a certain eQTL target, the stronger the contribution of
the DNA changes in the eQTL region of this founder strain.

Construction of an eQTL-Drug
Connectivity Map
The eQTL-drug connectivity map was generated in several steps.
In step 1 we assembled a reference collection of manually
curated drug-specific sets of enzymes. Each set in this collection
includes a group of genes that play a role in the metabolic
reactions of a particular drug, based on direct experimental
evidence. The reference collection consists of 881 gene sets
relating to 165 different drugs, which were assembled from the
Kyoto Encyclopedia of Genes and Genomes (KEGG) and from
the IPA database (QIAGEN, Redwood City, CA). In step 2,
additional enzymes were added to each set based on indirect
evidence. Specifically, each of the manually curated sets was
further expanded with the alternative genes of the same chemical
reaction (that is, with the same EC numbers). Altogether, steps 1
and 2 produced a reference collection of drug-specific gene sets,
where the assignment of a gene to a particular set is based on
either direct (step 1) or indirect (step 2) experimental evidence.
Next, in step 3 we removed genes that were not associated with
a proximal eQTL. In particular, given the reference collection
from step 2, we retained only those genes that were significantly
associated with at least one proximal eQTL (using the same
thresholds as detailed above; see final collection in Tables S5, S6).

Building on this collection, the eQTL-drug connectivity map
consists of three types of nodes: drugs with at least one non-
empty curated gene set, genes in these non-empty sets, and the

proximal eQTLs of these genes. The map contains edges between
each drug node and its corresponding nodes of genes, as well
as edges between each gene node and the nodes of its proximal
eQTLs.

Demonstration of Genetic Variation in
Splicing Events
To demonstrate the alternative splicing events of a particular
gene in a given sample, reads were aligned to the genome using
Tophat version 2.0.9 (Kim et al., 2013) with –max-intron-length
20,000 (thus avoiding most cases of aligning the same fragment
to two nearby genes). Uniquely mapped reads were extracted by
filtering out those reads carrying poor mapping quality (<10).
Using the TopHat alignment, the IGV software (Thorvaldsdóttir
et al., 2013) was used to show the reads’ coverage together with
the amount of splice junctions (see details below).

RESULTS

Characterization of Proximal eQTLs Acting
on Hepatic Drug Disposition Enzymes
To investigate transcription diversity in the livers of CC mice,
we sequenced total RNA from the livers of 29 distinct CC lines
(1–3 individuals per strain, 55 individuals in total; Table S1). On
the basis of these data we quantified the total expression of each
gene (“total-expression traits”) as well as the relative expression
of the annotated isoforms (“isoform-ratio traits”; see Materials
and Methods and Table S2). We found that the global expression
profiles are similar between individuals of the same strains for
both total-expression and isoform-ratio traits (Figures S2, S3);
this dataset is therefore amenable to our study. In the following
we focus on 5950 total expression traits and 4712 isoform-ratio
traits that were highly variable across the CC mice.

We tested the association of each trait separately against all
polymorphisms. A genome-wide map indicates, as expected,
that this analysis has no spurious trans-eQTL bands (Figure S4)
and do not show inflation of the association test statistics
(Figure S5). The analysis is focused on proximal eQTLs, using
a cutoff of 5Mbp as evidence for cis regulatory variation. This
permissive genomic range was selected to account for the lack of
precision in the associated genome intervals (Figure S6).We used
permutation to establish the null distribution of the association
test statistics and then exploited the null distribution to calculate
a permutation-based false discovery rate (“permutation FDR”)
score (see Materials andMethods). At a permutation FDR of 0.01
we identified proximal eQTLs associated with the total expression
of 365 genes (“total-expression eQTLs”) and associated with
the expression of 243 specific transcript isoforms (“isoform-
ratio eQTLs”), a total of 608 significantly associated traits (see
Materials and Methods and Tables S3, S4). We note that the
similar numbers of total-expression eQTLs and isoform-ratio
eQTLs is in accordance with previous studies in human cohorts
(Gonzàlez-Porta et al., 2012; Battle et al., 2014). Of the 3400
genes found to have dual annotation (both total-expression and
isoform-ratio traits), in 43 we obtained both total-expression
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eQTL and isoform-ratio eQTL, not necessarily in the same
genomic interval.

To characterize biochemical networks in the context of
inherited transcriptional variation, we examined the 608 eQTL-
associated traits and found them to be enriched in a curated
list of biotransformation reactions from the “Ingenuity Pathway
Analysis” (IPA) database (P < 0.03, hyper-geometric test).
Specifically, 40 drug disposition genes were found to be
associated with a proximal eQTL, which could be further
classified according to their particular type of enzymatic reaction
(Table 1):

(i) Functionalization reactions by oxidation, reduction
and hydrolysis, which either activate or detoxify the
drug. Among the eQTL-associated functionalization
DMEs, oxidation is catalyzed by cytochrome P450
(Cyp2a/2c/2d/3a), alcohol and aldehyde dehydrogenases
(Adhfe1 and Aldh8a1/16a1), thiol-disulfide oxidoreductase
(Glrx2), and FMO (Fmo1); reduction is catalyzed by
aldo-keto reductases (Akr1c13/19); and hydrolysis is
catalyzed by various esterases (Ces1g/2h/3a, Siae, Sulf2),
epoxide hydrolase (Ephx2), dihydropyrimidinase (Dpys),
glucuronidase (Gusb), and glyoxalase (Glo1).

(ii) Conjugation reactions that transfer a functional group from
a cofactor to a substrate chemical, resulting in detoxification
followed by excretion. The eQTL-associated conjugation
DMEs catalyze the transfer of various functional groups,
including UDP-glucuronosyl, amino acid, N-acetyl, methyl
and glutathione-S (Ugt1a/Ugt3a, Ccbl1/2, Nat8, Tpmt, and
Gsta2/m6/z1/Mgst3, respectively).

(iii) Transport reactions, mediated by DTPs that have a role in
the facilitated carrying of drugs across cellular membranes
(Katz et al., 2008; Penner et al., 2012). The eQTL targets in
this class include two types of DTP families: an ATP-binding
cassette (Abcc6) and a solute-linked carrier (Slco1a1).

(iv) Transcription regulation. The identified eQTL targets
include CAR, a nuclear receptor that regulates the
transcription of drug disposition enzymes.

Mapping the Connectivity between eQTLs
and Drug Metabolism
To obtain a global perspective on the participation of eQTLs in
drug metabolism we used expert-curated drug-specific sets of
enzymes, where each set is a collection of enzymes that play a role
in the biotransformation of one particular drug (see Materials
and Methods). By analyzing these sets we identified 63 drugs
whose biotransformation is perturbed by at least one proximal
eQTL (Table S5) and of which 49 are affected by two or more
eQTLs that reside in a distinct genomic location (at least 10 Mb
apart; Table S6). We organized this information as a network,
referred to as the “eQTL-drug connectivity map” (Figure 1A).
The map is composed of three types of nodes: drugs, eQTLs
and enzymes. Each drug is connected to its metabolizing enzyme
nodes and each enzyme is connected to its underlying eQTL
nodes.

Characterization of drugs in terms of their perturbing eQTLs
provides potential joint effects that may underlie the response to

TABLE 1 | Summary of proximal eQTLs underlying the biotransformation

of drugs in livers of the CC mouse population.

Reaction Enzyme class Enzyme eQTL

Functionalization:

oxidation

Cytochromes P450 (CYPs) Cyp2a22 chr7:28

Cyp2c40* chr19:40

Cyp2c44 chr19:40

Cyp2d11 chr15:84

Cyp2d12 chr15:86

Cyp3a13 chr5:138

Cyp3a16 chr5:147

Cyp3a25** chr5:147

Alcohol dehydrogenase Adhfe1* chr1:12

Aldehyde dehydrogenase Aldh8a1 chr10:22

Aldh16a1 chr7:50

Thiol-disulfide oxidoreductase Glrx2** chr1:146

Flavin-containing monooxygenase

(FMO)

Fmo1 chr1:160

Functionalization:

reduction

Aldo-keto reductase Akr1c13 chr13:3

Akr1c19 chr13:5

Functionalization:

hydrolysis

Carboxylesterase (CES) Ces1g chr8:99

Ces2h chr8:112

Ces3a* chr8:108

Sialic acid acetylesterase Siae chr9:40

Sulfatase (esterase) Sulf2 chr2:167

Epoxide hydrolase Ephx2 chr14:62

Dihydropyrimidinase Dpys* chr15:39

Glucuronidase Gusb* chr5:130

Glyoxalase Glo1** chr17:32

Conjugation UDP-glucuronosyltransferase (UGT) Ugt1a6a* chr1:92

Ugt1a6b** chr1:90*,92

Ugt1a10 chr1:92

Ugt3a1 chr15:11

Ugt3a2 chr15:9

Methyltransferase Tpmt** chr13:51

N-acetyl transferase Nat8 chr6:86

Amino acid (AA) transferase Ccbl1* chr2:30

Ccbl2* chr3:143

Glutathione S-transferase (GST) Mgst3 chr1:170

Gsta2* chr9:82

Gstm6 chr3:105

Gstz1 chr12:90

Transport ATP-binding cassette Abcc6 chr7:51

Solute-linked carrier Slco1a1 chr6:142

Transcription

factors

Nuclear receptor Nr1i3 (CAR)* chr1:174

Shown for each drug disposition reaction (column 1) are various enzyme classes

(column 2), the identified eQTL-associated genes in each class (column 3), and the top-

ranking proximal eQTL of each gene (genomic positions; column 4. The second number

indicates the distance in Mb from the start of the chromosome). Expression of each

enzyme is associated with an isoform-ratio eQTL (asterisk), total-expression eQTL (no

asterisk), or both (two asterisks). Overall, we found 30 total-expression eQTLs and 15

isoform-ratio eQTLs that underlie the expression of 40 different drug disposition enzymes.
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FIGURE 1 | The hepatic eQTL-drug connectivity map reveals the organization of proximal regulatory variants acting on drug disposition processes. (A)

Hepatic eQTL-drug connectivity map. A network view of exogenous chemicals and drugs (orange nodes) and drug disposition enzymes (white nodes with blue

borders) with significant association to proximal eQTLs (blue diamonds). Edges correspond to a known role of an enzyme in the metabolic biotransformation of a given

chemical. Solid or dashed lines indicate direct or indirect evidence, respectively. (B) Zoom-in on the underlying metabolic reactions of two representative exogenous

chemicals: trichloroethylene (TCE, left) and irinotecan (right). Chemicals and drugs are shown as orange rectangles; enzymes are shown as white rectangles; eQTLs

are marked by blue diamonds, and eQTL-associated enzymes are drawn with a blue border. Plot (A) summarizes the eQTL-drug connectivity in these pathways.

Shown are isoform-ratio eQTL (asterisk), total-expression eQTL (no asterisk), or both (two asterisks). CYPs, cytochromes P450; CES, carboxylesterase; UGTs,

UDP-glucuronosyl transferases; GSTs, glutathione S-transferases.
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administration of a drug. For example, trichloroethylene (TCE)
is a small molecule (C2HCl3) with carcinogenic potential. In
the connectivity map, TCE is connected to three eQTL targets
(cytochrome P450 [CYPs], glutathione S-transferases [GSTs] and
amino acid [AA]-transferases). The connectivity map is based on
the known biochemical pathway involving the same combination
of eQTL targets (Figure 1B, left). The biochemical pathway
suggests a potential process by which joint genetic effects may
influence the response to TCE.

The irinotecan pathway provides another example of potential
genetic interactions within the eQTL-drug connectivity map
(Figure 1B, right). Irinotecan is a drug used for the treatment
of cancer (Nagar and Blanchard, 2006), and there are known
individual differences in susceptibility to its effect (Nagar and
Blanchard, 2006; Guo et al., 2007; Marsh and Hoskins, 2010).
The pathway consists of activation of irinotecan to SN-38 (by
members of the carboxylesterases [CES] family) and deactivation
of SN-38 into SN-38G (by the UDP-glucuronosyltransferase
[UGTs] and the glucuronidase families). Overall, whereas
the eQTL-drug connectivity map (Figure 1A) summarizes the
identity of the relevant metabolizing enzymes, mechanistic
visualization (Figure 1B) suggests the existence of genetic
interactions between different eQTLs along the cascade of
metabolic reactions.

In addition, the connectivity map indicates that some of
the associated enzymes (8 of 23; 34%) participate in the
biotransformation of two or more drugs, highlighting potential
regulatory variation that may lead to drug-drug interactions.
One example is the solute-linked carrier Slco1a1, whose proximal
regulatory variation probably has an effect on at least seven drugs,
including lovastatin, bosentan and cimetidine. Another example
is the family of UDP-glucuronosyl transferases (UGTs), which is
connected to 11 different drugs. This suggests specific proximal
regulatory variation that has an influence on a large repertoire of
drugs.

We note that it is possible to identify groups of CC lines
on the basis of their co-variation in the expression of drug-
specific metabolizing enzymes. For example, as in the case of
the irinotecan pathway (Figure S7), there is a clear grouping of
the CC lines based on the co-variation of their expression across
the relevant enzymes (e.g., a distinct expression of lines IL-670
and IL-785 compared to lines IL-611 and IL-3438 across the
expression of Ces2h/3b, Ugt1a10/6a/6b, and Gusb). Based on this
grouping it is possible to select a non-redundant subset of lines
that covers a large variety of responses (e.g., by choosing a single
line from each group). Because distinct drugs initiate different
biotransformation pathways perturbed by distinct combinations
of eQTLs, this strategy may provide a tailored drug-specific
selection of CC lines, opening the way to future expression-
based selection of representative CC lines that can be used to test
adverse effects in pharmacogenetic studies.

Genetic Variation in Alternative Splicing of
Hepatic Drug Disposition Enzymes
Our data showed that a substantial fraction of the identified
associations are a result of splicing variability. Among 608

associated traits, we found 243 isoform-ratio traits (∼40%;
Tables S3, S4). Furthermore, we observed a similar percentage
of isoform-ratio traits within the associated drug deposition
genes (33%, 15 from 45 traits; Table 1). In the TCE pathway,
for instance, out of seven associated genes we identified four
(57%) whose association was due to variation in splicing events
spanning four different metabolic transformations (ending
with TCE oxide, chloral, DCVG and DCVT; Figure 1B, left).
Similarly, among six associated genes in the irinotecan pathway,
four are controlled at the level of alternative splicing (Ces3a,
Gusb, Ugt1a6a/b, 66%; Figure 1B, right). These results are
comparable with the reported isoform-ratio percentages of
38% (496 out of 1290) and 44% (529 out of 1191) in
human Caucasian and Yoruba cohorts (60 and 69 individuals,
respectively, Gonzàlez-Porta et al., 2012), and are in agreement
with studies indicating that isoform-ratio eQTLs are prevalent
but less abundant than total-expression eQTLs (e.g., Battle et al.,
2014).

We then turned to characterizing representative examples of
isoform-level associations. For each eQTL-associated gene we
first selected founder strains that differ substantially in their
effects, and then chose CC lines that carry the haplotype of
the selected founders in the associated locus (eQTL) of the
gene. We note that CC lines for a gene are selected because
they carry the genetic information of founders, which leads to
a major variation in the fraction of expression of at least one
isoform; the selected CC lines should therefore show a distinct
distribution of the spliced junctions. Here we focus on two genes,
Cyp3a25 and Gsta2. For each of these genes we first exemplify
the abovementioned CC selection procedure and then show the
splice junctions in each of the selected strains.

1. Cyp3a25 is a functionalization enzyme that oxidizes a variety
of compounds including xenobiotics and steroids. We found
that the founder B6 and A/J strains differ substantially in
their effects on at least one isoform of this gene (Figure 2A,
bottom left). We therefore distinguish between CC lines that
carry the B6 haplotype (IL-557, IL-1452, IL-2011, IL-2126,
IL-4156 strains) and those carrying the A/J haplotype (IL-
1141, IL-72, IL-611, IL-4032, IL-4052, IL-4457 strains) in
the genomic region of Cyp3a25 (Figure 2A, left). Specifically,
we focus on two representative B6-carrying lines (IL-2011
and IL-2156) and two A/J-carrying lines (IL-72 and IL-
611). Figure 2B displays the read coverage of the exons and
the numbers of junction reads of the selected strains. We
found multiple reads aligned to the junction-spanning exons
5 and 7 in B6-carrying strains (56 and 65 reads in lines
IL-2011 and IL-2156, respectively). Notably, the numbers of
these exon-skipping reads was substantially lower in the A/J-
carrying individuals (5 and 12 reads in lines IL-72 and IL-611,
respectively). The widespread exon-skipping events observed
in B6-carrying strains raise the possibility that these events
reflect a higher level of expression in B6-carrying than in A/J-
carrying strains. However, we observed the opposite effect,
with a higher coverage level and a higher number of non-
skipping splicing reads in the A/J-carrying individuals. For
instance, 729 and 963 junction reads between exons 6 and 7
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FIGURE 2 | Genetic variation in alternative splicing of drug disposition enzymes. (A) Haplotype probabilities of the eight founder lines (columns) in 29 CC lines

(rows), calculated in the isoform-ratio eQTLs of two drug disposition genes, Cyp3a25 (left) and Gsta2 (right). The gray scale indicates haplotype probabilities, ranging

between zero (white) and 1 (dark gray). The calculated effect of each founder is shown in white bars (bottom). Groups of CC lines with the largest (positive and

negative) founder effect of their haplotype are marked in brown and green (B6- and A/J-carrying lines; Cyp3a25) or brown and blue (B6- and CAST/PWK-carrying

lines; Gsta2). Double daggers indicate two representative CC lines in each of these groups, which were used for displaying the raw sequencing reads in plots (B,C).

(B,C) Raw reads of selected strains for the genes Cyp3a25 and Gsta2. The read‘s coverage over exon is displayed as bar graph, and the number of reads across

splice junctions (junction depth) are displayed by arcs. Arcs with junction depth < 5 were omitted. The known isoforms are indicated in black (bottom). (B) The

Cyp3a25 locus, focusing on exons 5, 6, and 7 in CC individuals that carry the B6 haplotype (brown) and the A/J haplotype (green) in the associated eQTL. (C) Entire

Gsta2 locus (excluding exon 1 of the longest isoform) in CC individuals that carry the B6 haplotype (brown) and the PWK or CAST haplotype (blue) in the associated

locus. B6, C57BL/6J; 129S, 129S1/SvIm; NOD, NOD/ShiLtJ; WSB, WSB/EiJ; NZO, NZO/HILtJ; CAST, CAST/EiJ; PWK, PWK/PhJ.

were mapped in the two A/J-carrying strains compared to 198
and 235 junction reads in B6-carrying ones. This confirms that
the larger numbers of exon 6-skipping events in B6-carrying
strains are not merely a result of the overall level of expression.

2. Gsta2 is a conjugation enzyme that adds a reduced glutathione
to hydrophobic electrophiles. Relying on the observation that
the founder effect of the B6 line differs substantially from

the PWK and CAST lines (Figure 2A, right), we focused on
two B6-carrying CC lines (IL-611 and IL-3575), one CAST-
carrying line (IL-1513) and one PWK-carrying line (IL-2680;
Figure 2C). We observed alternative 5′ start sites in which
only the B6-carrying individuals have alternative upstream
start sites. This could not be ascribed merely to the higher
overall expression of Gsta2 in the B6-carrying individuals,
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since the coverage of reads (across all exons) is lower in
B6-carrying than in CAST/PWK-carrying individuals. The
difference between the haplotypes can be attributed to an
alternative location of the 5′ start site, or alternatively,
to a haplotype-specific 5′–3′ RNA degradation. Previously
annotated isoforms do not fully explain the observed reads in
the PWK and CAST CC lines.

Substantial Transcriptional Diversity in the
Crosstalk between Drug Metabolism and
Lipids Metabolism
We next analyzed regulatory programs of ligand-activated
transcription factors called nuclear receptors (NRs). NRs were
selected not only because they play a major role in transcription
regulation, but also since many DMEs and DTPs are induced
by their own substrates through the activity of NRs. Chemical
signals (ligands) of NRs consist of exogenous drugs and
xenobiotics, as well as endogenous small molecules such as
steroid hormones and cholesterol (e.g., Evans and Mangelsdorf,
2014). Using the extensive mapping of regulatory programs
within the curated IPA, we identified seven different NRs (or
receptor complexes) whose targets are enriched among the 608
associated traits (Figure 3). Specifically, we found enrichment
of targets in xenobiotics- and drug-activated NRs, including the
xenobiotics sensor PXR—with or without its heterodimerization
partner RXRα (P < 0.0024, 0.0158, respectively; hyper-geometric
test)—and the xenobiotics sensor CAR as an heterodimer with
RXRα (P < 0.0165). We also found that the hepatic eQTL targets
were enriched with known targets of RORα, RORγ, and PPARα,
three NRs that are activated by cholesterol and fatty acid ligands
(P < 0.0012, 0.0012, 0.0081, respectively).

The map of NR-dependent eQTL targets shows a clear overlap
between targets of xenobiotics-sensitive regulators and targets of
lipid-sensitive regulators (Figure 3). Specifically, six of 16 genes
that are regulated by xenobiotics sensors (PXR and CAR) are also
regulated by lipid sensors (RORα, RORγ, and PPARα). A close
examination of the map showed that the overlap between lipid
metabolism and drug metabolism is even more prominent: the
knownDME genes Sulf2,Cyp3a25,Cyp2c40,Gstz1, andMgst3 are
targeted by lipid-sensing nuclear receptors; similarly, two genes
that are controlled by xenobiotics-activated receptor are well-
established lipid metabolizing enzymes (Ugt1a6 and Cyp2c44).

These results are consistent with known biochemical
reactions that may act on unrelated compounds. For example,
Cyp3a16 has a role in degradation of steroids, in addition
to its role in oxidation of a variety of drugs, including
tamoxifen, paclitaxel, haloperidol and tretinoin; similarly,
Ugt1a6b participates in hepatic degradation of C18-steroids and
also in conjugation of levothyroxine, nicotine and irinotecan
(Figure 1A). Furthermore, our analysis is consistent with
previous reports, both in human and mouse, where disordered
lipid metabolism has an effect on clinical drug disposition and
the other way around. For example, non-alcoholic fatty liver
disease (NAFLD) patients exhibit altered metabolism of drugs
(Buechler and Weiss, 2011), and DTPs are down-regulated in
non-alcoholic steatohepatitis (NASH) subjects (Lake et al., 2011).
Furthermore, several genetic modifiers of NAFLD and NASH

have a documented effect on the efficacy of drugs (reviewed in
Naik et al., 2013). Our results in the CC panel demonstrate the
prevalence of genetic variation acting on the lipid-drug crosstalk.
CC mice can therefore be used to investigate the relationships
between these factors and their roles in the interaction between
lipid metabolism and metabolism of drugs and xenobiotics.

DISCUSSION

A central challenge in pharmaceutical research has been to
investigate genetic variation in response to drugs, chemicals and
xenobiotics. The panel of CC lines is a promising model for
pharmacogenomic studies because of the large amount of genetic
variation and the ability to investigate the molecular response
to drugs within specialized internal tissues. However, the effect
of genetic variation on drug disposition enzymes remain to
be elucidated. Here we defined the diversity and complexity
of genetic variation on the expression of drug disposition
genes across the CC lines. Our results indicate a previously
unknown overrepresentation of hepatic drug disposition genes
that are affected by proximal regulatory variation (P < 0.03;
Table 1). Further inspection showed the complexity of inter-
relationships between regulatory variants, highlighting various
potential interactions between drugs due to shared eQTLs
(Figures 1–3). This analysis, therefore, provides an informative
view to guide future pharmacogenetics and mechanistic studies
across the CC strains. For example, we found a significant effect
of lipid metabolism on pharmacokinetic parameters (Figure 3).
This suggests that the CC mice are a suitable model for studying
the lipid-drug crosstalk in human metabolic disorders.

Measuring toxicity and adverse effects across a large
population of genetically distinct individuals is costly. Our
analysis offers a potential strategy for selecting a subset of
CC lines (designed for a specific drug) that can be used
in pharmacogenomic studies. In particular, a given drug
corresponds to a group of eQTL targets that play a role in
deposition of the drug (e.g., six DMEs in the irinotecan pathway;
Figure 1B). The transcription profiles of CC lines across the
genes in this group may point to a small subset of non-redundant
CC lines (e.g., for the irinotecan pathway, a single CC line
from each of the eight groups in Figure S7). In subsequent
pharmacogenetic studies of this drug, only this subset of CC
lines is analyzed. This strategy is in contrast to the standard
approach of choosing the lines according to genotyping. The two
selection methods complement each other, but the expression-
based approach may reveal, in addition, the functional effects of
candidate genomic loci.

Although it is not yet known whether the selection of CC
mice based on proximal eQTLs reflects drug toxicity and adverse
effects in vivo, it provides a plausible strategy of a rationalized
selection of strains that (i) relies on variation in transcript
isoforms in addition to the overall expression of genes; (ii)
is tailored to each specific drug; and (iii) allows selection of
additional CC mice not included in the reference database
(e.g., using the inferred trait levels based on the optimized
parameters in Equation 1). Future studies should determine
whether an expression-based CC selection strategy is predictive
of drug toxicity and adverse outcome. Amore complete approach
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FIGURE 3 | Genetic variation in the crosstalk between drug and lipid metabolism. Three chemical and drug-sensing nuclear receptors (NRs; orange nodes)

and three lipid-sensing NRs (pink nodes), shown together with their transcriptional regulation (edges) on eQTL-associated target genes (blue-border nodes). Targets in

the crosstalk between drug and lipids metabolism (either based on prior knowledge or based on the transcriptional control in this network) are drawn with thickened

border. Out of 46 NR-dependent eQTL targets, 16 targets are involved in the lipid-drug crosstalk.

will require integration with additional genomic data, including
proteomics, trans-acting polymorphic loci, and epigenetic data.

AUTHOR CONTRIBUTIONS

All authors listed, have made substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

This work was supported by the European Commission
[FP7/2007-2013, under grant agreement no. 262055 (ESGI)], by
the Israeli Centers of Research Excellence (I-CORE): Center No.
41/11, by the Broad-ISF grant 1168/14, and by the Wellcome
Trust grants 090532/Z/09/Z, 085906/Z/08/Z, 083573/Z/07/Z, and
075491/Z/04. Research in the IG lab was supported by the
European Research Council (637885), and by the Israeli Science
Foundation (ISF) grant 1643/13. YS was partially supported
by the Edmond J. Safra Center for Bioinformatics at Tel Aviv
University IG is a Faculty Fellow of the Edmond J. Safra Center

for Bioinformatics at Tel Aviv University and an Alon Fellow. RS
was supported in part by the Raymond and Beverly Sackler Chair
in Bioinformatics.

ACKNOWLEDGMENTS

Sequencing and primary data quality control was performed
at the Genomics Unit of the Centre for Genomic Regulation
(CRG) in Barcelona, Spain. We thank Anna Menoyo, Anna
Ferrer, Magda Montfort, Irene González, Manuela Hummel, and
Sarah Bonnin for technical assistance, Avital Brodt and Roni
Wilentzik for computational analyses, and Shirley Smith for
scientific editing. We thank Tel-Aviv University for core funding
and technical support.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fgene.
2016.00172

Frontiers in Genetics | www.frontiersin.org 10 October 2016 | Volume 7 | Article 172

http://journal.frontiersin.org/article/10.3389/fgene.2016.00172
http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Nachshon et al. Genetic Variation in Disposition of Drugs

REFERENCES

Aylor, D. L., Valdar, W., Foulds-Mathes, W., Buus, R. J., Verdugo, R. A., Baric, R.

S., et al. (2011). Genetic analysis of complex traits in the emerging Collaborative

Cross. Genome Res. 21, 1213–1222. doi: 10.1101/gr.111310.110

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-

effects models using lme4. J. Stat. Softw. 67, 1–48. doi: 10.18637/jss.v067.i01

Battle, A., Mostafavi, S., Zhu, X., Potash, J. B., Weissman, M. M., McCormick,

C., et al. (2014). Characterizing the genetic basis of transcriptome diversity

through RNA-sequencing of 922 individuals. Genome Res. 24, 14–24. doi:

10.1101/gr.155192.113

Bryois, J., Buil, A., Evans, D. M., Kemp, J. P., Montgomery, S. B., Conrad, D.

F., et al. (2014). Cis and trans effects of human genomic variants on gene

expression. PLoS Genet. 10:e1004461. doi: 10.1371/journal.pgen.1004461

Buechler, C., and Weiss, T. S. (2011). Does hepatic steatosis affect drug

metabolizing enzymes in the liver? Curr. Drug Metab. 12, 24–34. doi:

10.2174/138920011794520035

Chesler, E. J. (2014). Out of the bottleneck: the Diversity Outcross and

Collaborative Cross mouse populations in behavioral genetics research.Mamm.

Genome 25, 3–11. doi: 10.1007/s00335-013-9492-9

Consortium, C. C. (2012). The genome architecture of the Collaborative

Cross mouse genetic reference population. Genetics 190, 389–401. doi:

10.1534/genetics.111.132639

Cook, D. N., Wang, S., Wang, Y., Howles, G. P., Whitehead, G. S., Berman, K. G.,

et al. (2004). Genetic regulation of endotoxin-induced airway disease.Genomics

83, 961–969. doi: 10.1016/j.ygeno.2003.12.008

Durrant, C., Tayem, H., Yalcin, B., Cleak, J., Goodstadt, L., de Villena, F.

P., et al. (2011). Collaborative Cross mice and their power to map host

susceptibility to Aspergillus fumigatus infection. Genome Res. 21, 1239–1248.

doi: 10.1101/gr.118786.110

Evans, R. M., and Mangelsdorf, D. J. (2014). Nuclear receptors, RXR, and the big

bang. Cell 157, 255–266. doi: 10.1016/j.cell.2014.03.012

Ferris, M. T., Aylor, D. L., Bottomly, D., Whitmore, A. C., Aicher, L. D.,

Bell, T. A., et al. (2013). Modeling host genetic regulation of influenza

pathogenesis in the collaborative cross. PLoS Pathog. 9:e1003196. doi:

10.1371/journal.ppat.1003196

Frick, A., Suzuki, O., Butz, N., Chan, E., and Wiltshire, T. (2013). In vitro and

in vivo mouse models for pharmacogenetic studies. Methods Mol. Biol. 1015,

263–278. doi: 10.1007/978-1-62703-435-7_17

Gelinas, R., Chesler, E. J., Vasconcelos, D., Miller, D. R., Yuan, Y., Wang, K.,

et al. (2011). A genetic approach to the prediction of drug side effects:

bleomycin induces concordant phenotypes in mice of the collaborative cross.

Pharmgenomics. Pers. Med. 4, 35–45. doi: 10.2147/pgpm.s22475

Gonzàlez-Porta, M., Calvo, M., Sammeth, M., and Guigó, R. (2012). Estimation of

alternative splicing variability in human populations.Genome Res. 22, 528–538.

doi: 10.1101/gr.121947.111

Graham, J. B., Thomas, S., Swarts, J., McMillan, A. A., Ferris, M. T., Suthar,

M. S., et al. (2015). Genetic diversity in the collaborative cross model

recapitulates human West Nile virus disease outcomes.MBio 6:e00493-15. doi:

10.1128/mBio.00493-15

Gralinski, L. E., Ferris, M. T., Aylor, D. L., Whitmore, A. C., Green, R.,

Frieman, M. B., et al. (2015). Genome wide identification of SARS-CoV

susceptibility loci using the Collaborative Cross. PLoS Genet. 11:e1005504. doi:

10.1371/journal.pgen.1005504

Guo, Y., Lu, P., Farrell, E., Zhang, X., Weller, P., Monshouwer, M., et al. (2007).

In silico and in vitro pharmacogenetic analysis in mice. Proc. Natl. Acad. Sci.

U.S.A. 104, 17735–17740. doi: 10.1073/pnas.0700724104

Harrill, A. H., and Rusyn, I. (2008). Systems biology and functional genomics

approaches for the identification of cellular responses to drug toxicity. Expert

Opin. Drug Metab. Toxicol. 4, 1379–1389. doi: 10.1517/17425255.4.11.1379

Hitzemann, R., Reed, C., Malmanger, B., Lawler, M., Hitzemann, B., Cunningham,

B., et al. (2004). On the integration of alcohol-related quantitative trait loci

and gene expression analyses. Alcohol. Clin. Exp. Res. 28, 1437–1448. doi:

10.1097/01.ALC.0000139827.86749.DA

Hsieh, T. Y., Shiu, T. Y., Huang, S. M., Lin, H. H., Lee, T. C., Chen, P. J., et al.

(2007).Molecular pathogenesis of Gilbert’s syndrome: decreased TATA-binding

protein binding affinity of UGT1A1 gene promoter. Pharmacogenet. Genomics

17, 229–236. doi: 10.1097/FPC.0b013e328012d0da

Iraqi, F. A., Churchill, G., andMott, R. (2008). The Collaborative Cross, developing

a resource for mammalian systems genetics: a status report of the Wellcome

Trust cohort.Mamm. Genome 19, 379–381. doi: 10.1007/s00335-008-9113-1

Kang, H. P., Morgan, A. A., Chen, R., Schadt, E. E., and Butte, A. J. (2012).

“Coanalysis of GWAS with eQTLs reveals disease-tissue associations,” in

AMIA Joint Summits on Translational Science Proceedings. AMIA Summit on

Translational Science (San Francisco, CA), 35–41.

Katz, D. A., Murray, B., Bhathena, A., and Sahelijo, L. (2008). Defining drug

disposition determinants: a pharmacogenetic-pharmacokinetic strategy. Nat.

Rev. Drug Discov. 7, 293–305. doi: 10.1038/nrd2486

Kelada, S. N., Aylor, D. L., Peck, B. C., Ryan, J. F., Tavarez, U., Buus, R. J., et al.

(2012). Genetic analysis of hematological parameters in incipient lines of the

collaborative cross. G3 (Bethesda). 2, 157–165. doi: 10.1534/g3.111.001776

Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and Salzberg, S. L. (2013).

TopHat2: accurate alignment of transcriptomes in the presence of insertions,

deletions and gene fusions.Genome Biol. 14:r36. doi: 10.1186/gb-2013-14-4-r36

Lake, A. D., Novak, P., Fisher, C. D., Jackson, J. P., Hardwick, R. N.,

Billheimer, D. D., et al. (2011). Analysis of global and absorption, distribution,

metabolism, and elimination gene expression in the progressive stages of

human nonalcoholic fatty liver disease.DrugMetab. Dispos. 39, 1954–1960. doi:

10.1124/dmd.111.040592

Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie

2. Nat. Methods 9, 357–359. doi: 10.1038/nmeth.1923

Lehmann, E. L. (1975). Nonparametrics: Statistical Methods Based on Ranks. San

Francisco, CA: Holden-Day.

Li, B., and Dewey, C. N. (2011). RSEM: accurate transcript quantification from

RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323.

doi: 10.1186/1471-2105-12-323

Lorè, N. I., Iraqi, F. A., and Bragonzi, A. (2015). Host genetic diversity influences

the severity of Pseudomonas aeruginosa pneumonia in the Collaborative Cross

mice. BMC Genet. 16:106. doi: 10.1186/s12863-015-0260-6

Mao, J. H., Langley, S. A., Huang, Y., Hang, M., Bouchard, K. E., Celniker, S. E.,

et al. (2015). Identification of genetic factors that modify motor performance

and body weight using Collaborative Cross mice. Sci. Rep. 5:16247. doi:

10.1038/srep16247

Marsh, S., and Hoskins, J. M. (2010). Irinotecan pharmacogenomics.

Pharmacogenomics 11, 1003–1010. doi: 10.2217/pgs.10.95

Meyer, U. A. (2000). Pharmacogenetics and adverse drug reactions. Lancet 356,

1667–1671. doi: 10.1016/S0140-6736(00)03167-6

Montgomery, M. K., Hallahan, N. L., Brown, S. H., Liu, M., Mitchell, T. W.,

Cooney, G. J., et al. (2013). Mouse strain-dependent variation in obesity

and glucose homeostasis in response to high-fat feeding. Diabetologia 56,

1129–1139. doi: 10.1007/s00125-013-2846-8

Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., and Wold, B. (2008).

Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat.

Methods 5, 621–628. doi: 10.1038/nmeth.1226

Mott, R., Talbot, C. J., Turri, M. G., Collins, A. C., and Flint, J. (2000). Amethod for

fine mapping quantitative trait loci in outbred animal stocks. Proc. Natl. Acad.

Sci. U.S.A. 97, 12649–12654. doi: 10.1073/pnas.230304397

Nagar, S., and Blanchard, R. L. (2006). Pharmacogenetics of uridine

diphosphoglucuronosyltransferase (UGT) 1A family members and its

role in patient response to irinotecan. Drug Metab. Rev. 38, 393–409. doi:

10.1080/03602530600739835

Naik, A., Belic, A., Zanger, U. M., and Rozman, D. (2013). Molecular

interactions betweenNAFLD and xenobioticmetabolism. Front. Genet. 4:2. doi:

10.3389/fgene.2013.00002

Parkhomchuk, D., Borodina, T., Amstislavskiy, V., Banaru, M., Hallen, L.,

Krobitsch, S., et al. (2009). Transcriptome analysis by strand-specific

sequencing of complementary DNA. Nucleic Acids Res. 37:e123. doi:

10.1093/nar/gkp596

Penner, N., Woodward, C., and Prakash, C. (2012). “Drug metabolizing enzymes

and biotransformation reactions,” in ADME-Enabling Technologies in Drug

Design and Development, eds D. Zhang and S. Surapaneni (Hoboken, NJ: John

Wiley & Sons, Inc.).

Percival, C. J., Liberton, D. K., Pardo-Manuel de Villena, F., Spritz, R., Marcucio,

R., and Hallgrímsson, B. (2016). Genetics of murine craniofacial morphology:

diallel analysis of the eight founders of the Collaborative Cross. J. Anat. 228,

96–112. doi: 10.1111/joa.12382

Frontiers in Genetics | www.frontiersin.org 11 October 2016 | Volume 7 | Article 172

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Nachshon et al. Genetic Variation in Disposition of Drugs

Phillippi, J., Xie, Y., Miller, D. R., Bell, T. A., Zhang, Z., Lenarcic, A. B., et al. (2014).

Using the emerging Collaborative Cross to probe the immune system. Genes

Immun. 15, 38–46. doi: 10.1038/gene.2013.59

Roberts, A., Pardo-Manuel de Villena, F., Wang, W., McMillan, L., and

Threadgill, D. W. (2007). The polymorphism architecture of mouse genetic

resources elucidated using genome-wide resequencing data: implications for

QTL discovery and systems genetics. Mamm. Genome 18, 473–481. doi:

10.1007/s00335-007-9045-1

Rosenkranz, R., Borodina, T., Lehrach, H., and Himmelbauer, H. (2008).

Characterizing the mouse ES cell transcriptome with Illumina sequencing.

Genomics 92, 187–194. doi: 10.1016/j.ygeno.2008.05.011

Rost, S., Fregin, A., Ivaskevicius, V., Conzelmann, E., Hörtnagel, K., Pelz,

H. J., et al. (2004). Mutations in VKORC1 cause warfarin resistance and

multiple coagulation factor deficiency type 2. Nature 427, 537–541. doi:

10.1038/nature02214

Rusyn, I., Gatti, D.M.,Wiltshire, T., Kleeberger, S. R., and Threadgill, D.W. (2010).

Toxicogenetics: population-based testing of drug and chemical safety in mouse

models. Pharmacogenomics 11, 1127–1136. doi: 10.2217/pgs.10.100

Svenson, K. L., Gatti, D. M., Valdar, W., Welsh, C. E., Cheng, R., Chesler,

E. J., et al. (2012). High-resolution genetic mapping using the Mouse

Diversity outbred population.Genetics 190, 437–447. doi: 10.1534/genetics.111.

132597

Thaisz, J., Tsaih, S. W., Feng, M., Philip, V. M., Zhang, Y., Yanas, L., et al. (2012).

Genetic analysis of albuminuria in collaborative cross and multiple mouse

intercross populations. Am. J. Physiol. Renal Physiol. 303, F972–F981. doi:

10.1152/ajprenal.00690.2011

Thorvaldsdóttir, H., Robinson, J. T., and Mesirov, J. P. (2013). Integrative

Genomics Viewer (IGV): high-performance genomics data visualization

and exploration. Brief. Bioinformatics 14, 178–192. doi: 10.1093/bib/

bbs017

Valdar, W., Flint, J., and Mott, R. (2006). Simulating the collaborative cross:

power of quantitative trait loci detection and mapping resolution in large

sets of recombinant inbred strains of mice. Genetics 172, 1783–1797. doi:

10.1534/genetics.104.039313

Vered, K., Durrant, C., Mott, R., and Iraqi, F. A. (2014). Susceptibility to Klebsiella

pneumonaie infection in collaborative cross mice is a complex trait controlled

by at least three loci acting at different time points. BMC Genomics 15:865. doi:

10.1186/1471-2164-15-865

Wittkopp, P. J., and Kalay, G. (2012). Cis-regulatory elements: molecular

mechanisms and evolutionary processes underlying divergence. Nat. Rev.

Genet. 13, 59–69. doi: 10.1038/nrg3095

Wray, G. A. (2007). The evolutionary significance of cis-regulatory mutations.Nat.

Rev. Genet. 8, 206–216. doi: 10.1038/nrg2063

Yang, H., Wang, J. R., Didion, J. P., Buus, R. J., Bell, T. A., Welsh, C. E., et al. (2011).

Subspecific origin and haplotype diversity in the laboratory mouse. Nat. Genet.

43, 648–655. doi: 10.1038/ng.847

Yoo, H. S., Bradford, B. U., Kosyk, O., Uehara, T., Shymonyak, S., Collins,

L. B., et al. (2015). Comparative analysis of the relationship between

trichloroethylene metabolism and tissue-specific toxicity among inbred

mouse strains: kidney effects. J. Toxicol. Environ. Health A 78, 32–49. doi:

10.1080/15287394.2015.958418

Zhong, H., Beaulaurier, J., Lum, P. Y., Molony, C., Yang, X., Macneil,

D. J., et al. (2010). Liver and adipose expression associated SNPs are

enriched for association to type 2 diabetes. PLoS Genet. 6:e1000932. doi:

10.1371/journal.pgen.1000932

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Nachshon, Abu-Toamih Atamni, Steuerman, Sheikh-Hamed,

Dorman, Mott, Dohm, Lehrach, Sultan, Shamir, Sauer, Himmelbauer, Iraqi and

Gat-Viks. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) or licensor are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Genetics | www.frontiersin.org 12 October 2016 | Volume 7 | Article 172

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive

	Dissecting the Effect of Genetic Variation on the Hepatic Expression of Drug Disposition Genes across the Collaborative Cross Mouse Strains
	Introduction
	Materials and Methods
	CC Lines
	RNA Extraction, RNA-Seq Library Preparation, and Sequencing
	RNA-Seq Quantification
	Data Transformation
	Association Tests
	Construction of an eQTL-Drug Connectivity Map
	Demonstration of Genetic Variation in Splicing Events

	Results
	Characterization of Proximal eQTLs Acting on Hepatic Drug Disposition Enzymes
	Mapping the Connectivity between eQTLs and Drug Metabolism
	Genetic Variation in Alternative Splicing of Hepatic Drug Disposition Enzymes
	Substantial Transcriptional Diversity in the Crosstalk between Drug Metabolism and Lipids Metabolism

	Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


