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Abstract

Background: Up until recently the only available experimental (high resolution) structure of a G-protein-coupled receptor
(GPCR) was that of bovine rhodopsin. In the past few years the determination of GPCR structures has accelerated with three
new receptors, as well as squid rhodopsin, being successfully crystallized. All share a common molecular architecture of
seven transmembrane helices and can therefore serve as templates for building molecular models of homologous GPCRs.
However, despite the common general architecture of these structures key differences do exist between them. The choice
of which experimental GPCR structure(s) to use for building a comparative model of a particular GPCR is unclear and
without detailed structural and sequence analyses, could be arbitrary. The aim of this study is therefore to perform a
systematic and detailed analysis of sequence-structure relationships of known GPCR structures.

Methodology: We analyzed in detail conserved and unique sequence motifs and structural features in experimentally-
determined GPCR structures. Deeper insight into specific and important structural features of GPCRs as well as valuable
information for template selection has been gained. Using key features a workflow has been formulated for identifying the
most appropriate template(s) for building homology models of GPCRs of unknown structure. This workflow was applied to a
set of 14 human family A GPCRs suggesting for each the most appropriate template(s) for building a comparative molecular
model.

Conclusions: The available crystal structures represent only a subset of all possible structural variation in family A GPCRs.
Some GPCRs have structural features that are distributed over different crystal structures or which are not present in the
templates suggesting that homology models should be built using multiple templates. This study provides a systematic
analysis of GPCR crystal structures and a consistent method for identifying suitable templates for GPCR homology modelling
that will help to produce more reliable three-dimensional models.
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Introduction

G-protein-coupled receptors (GPCRs) are the largest family of

integral membrane receptors, transducing a wide variety of signals,

and make up roughly 3% of genes in the human genome [1]. A

vast number of mutations have been identified in GPCRs (both

activating and inactivating) which are responsible for more than

30 different human diseases [2] such as cancer [3,4], diabetes [5],

hyperthyroidism [6], ovarian hyperstimulation syndrome [7,8],

congenital stationary night blindness [9] as well as being

implicated in causing obesity [10]. It is estimated that 30–50%

of current drug targets are GPCRs [11,12], which is in contrast to

the small proportion of genes in the human genome that are

predicted to encode GPCRs, illustrating the importance of these

proteins both medically and pharmaceutically.

Knowledge of the three-dimensional structure of GPCRs is

important for understanding the molecular mechanism underlying

diseases and syndromes caused by mutations in these receptors, as

well as for the structure-based design of small molecules acting as

therapeutic treatments. Currently structural data are restricted to

four members of GPCR family A: Rhodopsin [13–17], Beta-1

adrenergic receptor [18], Beta-2 adrenergic receptor [19,20] and

Adenosine A2a receptor [21]. All were crystallised with inverse

agonists or antagonists and therefore represent inactive confor-

mations. The recent publication of the opsin structure [22] and

opsin bound to a G-protein derived synthetic peptide [23]

represent activated states, providing important information about

the structural changes associated with activation of GPCRs. All of

these GPCR structures are characterised by seven transmembrane

helices (TMHs) and an eighth helix which lies approximately

parallel to the intracellular membrane. Despite this conservation in

overall architecture, the orientation and length of the helices vary

to some extent [14,17] and considerable structural diversity is

observed in the three intracellular and extracellular loops [24,25]

that connect the seven TMHs [26]. Furthermore, differences are

also observed in the orientation of sidechains (including highly
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conserved amino acids) [18,27] and the presence and extent of

helical distortions (kinks and bulges) [28].

Even with the recent progress that has been made in GPCR

structural biology and reported improvements in GPCR expression

protocols [29,30], it is unlikely that the large gap in experimental

GPCR structural space will be filled in the near future. To some

extent however, the deficit in GPCR experimental structure data

can be met by building molecular models of GPCRs of unknown

structure by comparative (or homology) modelling. Up until 2007,

comparative models of GPCRs had to be built using bovine

rhodopsin as a template [31,32]. Today there is the choice of five

different GPCRs for building comparative models of GPCRs [33] in

the inactive state and the two opsin structures for building

comparative models of GPCRs in an active state.

Focusing on the aim of building a comparative model of a

GPCR, it is not clear which GPCR structure(s) should be used as

the template in order to maximise the accuracy of the model. This

is an important issue as homology models have application in

virtual screening studies, docking experiments (small molecule and

protein-protein interactions) as well as being used to generate

hypotheses about intra- and inter-molecular mechanisms. Hanson

and Stevens have recently reviewed experimentally determined

GPCR structures [26]. However, their structural analyses were

brief and the implications for comparative model building were

not addressed. The aim of this study is to provide a rational

workflow for selecting the most appropriate template(s) for

building comparative models of GPCRs with no experimentally

determined structure. Here we have compared the available

GPCR structures (in inactive conformations) and identified key

distinguishing structural features. Combining these structural

analyses with quantitative analyses of sequence similarities

between the template structures has allowed us to develop

workflows for template selection for each of the seven TMHs

and helix 8. We have applied these workflows to an exemplary set

of 14 GPCRs that are members of GPCR family A and which

have been functionally characterised e.g. through mutagenesis

experiments. Our results suggest that comparative models of

GPCRs might be best built using a multiple template approach,

producing chimeric GPCR models. This work provides the first

rational analysis of available GPCR structures for homology

modelling in light of the recent increase in available templates.

Furthermore, our work provides a valuable protocol for producing

more accurate and consistent GPCR models.

Results

A set of potential template structures was created using five

GPCRs with experimental structures (Table 1). A second set of

GPCRs was created comprising 14 disease-associated proteins of

unknown structure and for which mutation data are available

(Table 2). These 14 GPCRs span the four main phylogenetic

groups of GPCR family A: a (amine, opsin and MECA), b
(peptides), c (chemokine) and d (glycoprotein and nucleotide

receptors) [34].

Structural diversity of the five known GPCR structures
Superimposing the five template GPCR structures using the

seven highly conserved residues in the transmembrane helices as

reference points resulted in root mean squared deviations

(RMSDs) ranging from 0.63 Å (between Beta-1 adrenergic

receptor [tB1AR] and Beta-2 adrenergic receptor [hB2AR]) to

Table 1. GPCRs with experimentally determined structures
that were used in the analysis.

Protein name
Gene
name Species from

PDB
code

Unique
identifier

Adenosine-2A receptor AA2AR Homo sapiens 3EML hAA2AR

Beta-1 adrenergic receptor B1AR Meleagris gallopavo 2VT4 tB1AR

Beta-2 adrenergic receptor B2AR Homo sapiens 2RH1 hB2AR

Rhodopsin RHO Todarodes pacificus 2Z73 sRHO

Rhodopsin RHO Bos taurus 1U19 bRHO

doi:10.1371/journal.pone.0007011.t001

Table 2. GPCRs of unknown structure that were used in the analysis.

Protein name Gene name Species from Unique identifier Disease association

Rhodopsin RHO Homo sapiens hRHO Congenital night blindness [77], Retinitis
pigmentosa [78]

Muscarinic acetylcholine receptor M1 ACM1 Homo sapiens hACM1 Schizophrenia [79]

Dopamine D2 receptor DRD2 Homo sapiens hDRD2 Schizophrenia [80]

Vasopressin V1a receptor V1AR Homo sapiens hV1AR Autism [81]

Vasopressin V2 receptor V2R Homo sapiens hV2R Nephrogenic diabetes insipidus [5],

C-C chemokine receptor type 5 CCR5 Homo sapiens hCCR5 Insulin-dependent diabetes mellitus type 22
[82]

Melanocortin receptor 4 MC4R Homo sapiens hMC4R Obesity [10]

Cannabinoid receptor 1 CNR1 Homo sapiens hCNR1 Obesity in men [83]

Cannabinoid receptor 2 CNR2 Homo sapiens hCNR2 Osteoporosis [84]

P2Y purinoreceptor 1 P2RY1 Homo sapiens hP2RY1 Thrombosis risk [85]

P2Y purinoreceptor 12 P2RY12 Homo sapiens hP2RY12 Bleeding disorder [86]

Follicle-stimulating hormone receptor FSHR Homo sapiens hFSHR Ovarian hyperstimulation syndrome [7]

Lutropin-choriogonadotropic hormone receptor LHCGR Homo sapiens hLHCGR Leydig-cell tumour [3]

Thyroid-stimulating hormone receptor TSHR Homo sapiens hTSHR Hyperthyroidism [6], thyroid carcinoma [87]

doi:10.1371/journal.pone.0007011.t002

GPCR Structure Analyses

PLoS ONE | www.plosone.org 2 September 2009 | Volume 4 | Issue 9 | e7011



4.03 Å (between bovine rhodopsin [bRHO] and squid rhodopsin

[sRHO]) for the common core of the seven TMHs and helix 8

(Table S1 supporting information). This established method of

superimposing GPCR structures [35] allowed us to quickly

generate superimposed co-ordinates of the template structures

that could then be used to improve a multiple sequence alignment

(MSA).

The identified boundaries of the seven TMHs and helix 8 (see

Table S2) were used together with the superimposed structures to

identify the common helical regions. It should be noted that

carrying out superimposition of the five templates using the

common helical regions improved the RMSDs obtained, with

values ranging from 0.61 Å (between tB1AR and hB2AR) and

3.57 Å (between bRHO and sRHO) (Table S3). The transmem-

brane helices are relatively well conserved in conformation, with

the intracellular and extracellular loops being much more variable

(Figure 1)–this is also evident in the MSA of the five template

structures (Figure 2) and the MSA of the five template structures

and 14 target GPCRs (Figure S1, supporting information).

Sequence similarity between template and target GPCRs
Apart from hRHO, the differences in sequence similarity

between each target GPCR and the five template structures are

small, ranging from 3% to 11% (Table 3)–see materials and

methods for a definition of percentage of sequence similarity. Like-

wise, when restricting the comparisons to individual helices, the

differences in sequence similarity between each target GPCR and

the five templates structures are also small (Table 4 and supporting

Text S1), although the sequence similarity values of these helical

regions tend to be higher.

In conclusion, across the different TMHs and helix 8, there is no

apparent consensus about which template has the highest

sequence similarity (except for hRHO)–see Figure S2. These

results indicate that there is no clear answer as to which template

to use for homology model building based on sequence similarity

alone. Therefore these results suggest that structural information

needs to be included in the decision process of template selection

for homology model building.

Structural features to guide template selection
We performed detailed analyses of the superimposed three-

dimensional structures of the five templates in order to identify

structural features that could be incorporated into a modelling

workflow. Features such as helix distortions (kinks and bulges),

helix extensions, disulphide bridges and secondary structure within

loops were considered. Comparison of these structural features in

the five templates reveals three possibilities of occurrence (Table 5):

I. Shared by all (such as Pro distortions in TMHs 4, 5, 6 and 7

and a conserved disulphide bridge between TMH3 and

ECL2).

II. Shared by a subset of the templates (such as a specific loop

conformation).

III. Some are unique to particular templates.

The most distinct features are observed in the intracellular and

extracellular loops (Figure 3). Differences in the conformation of

loops were rationalized, as illustrated by ICL2:

N ICL2 is helical in human Adenosine-2A receptor (hA2AAR)

and tB1AR but is coil-like in the three other templates

(Figure 4). In the former two structures an Arg sidechain in

TMH4 forms a hydrogen bond with a mainchain carbonyl

atom of the ICL2 helices, capping the helix C-termini

(Figure 4A&B). Additionally, a Tyr sidechain within the

ICL2 helices forms a hydrogen bond with the Asp residue of

the DRY motif in TMH5, perhaps further helping to stabilise

these loop structures.

Figure 1. Structural superimposition of the five GPCR structures used in the analysis. The overall topology of the templates are
remarkably similar, with the transmembrane helices superimposing relatively well in most cases (although there appears to be more variation at the
extracellular side of membrane surface). hAA2AR is represented in purple, tB1AR in blue, hB2AR in green, sRho in yellow and bRho in red. All structure
images were produced using Pymol [75].
doi:10.1371/journal.pone.0007011.g001

GPCR Structure Analyses
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N Although hB2AR also has a basic polar residue (Lys) at the

corresponding position to the Arg residues and forms a

hydrogen bond to a mainchain carbonyl group in ICL2, its

shorter length may not be sufficient to stabilise the loop in a

helical conformation (Figure 4C); the distance between the

donor and acceptor atoms is somewhat longer in hB2AR

(3.36 Å) compared with tB1AR (2.40 Å) and hA2AAR

(3.07 Å). Furthermore, the Asp of the DRY motif forms a

hydrogen bond with a Ser and not the corresponding Tyr of

ICL2. In fact, molecular dynamics simulations have suggested

that hB2AR is also able to adopt a helical ICL2 conformation

and form the ionic lock in the inactive state and that this

Figure 2. The structure-based sequence alignment of the five template GPCRs. The sequences correspond to the structures in the PDB
files. The local structural environment of each residue (derived from the crystal structures) is displayed using JOY annotation [76]. The helical regions
(shown in red) tend to be less variable than the loop regions (shown in black).
doi:10.1371/journal.pone.0007011.g002

GPCR Structure Analyses
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inactive conformational equilibrium in hB2AR may form the

basis for the differential basal activity observed relative to

tB1AR and hAA2AR [36]. Dror et al suggested that

differences in ICL2 helix stability may underlie this difference

in basal activity [36]; we propose that the lack of the helix-

capping Arg residue in hB2AR and the presence of a Lys

residue instead may provide such a basis for differences in

ICL2 helix stability. For the purpose of our study we have used

the conformation observed in the crystal structure.

N sRHO has a coil-like ICL2 and even though it does have an

Arg residue at the corresponding position to those in hAA2AR

and tB1AR, the Arg seems unable to form a hydrogen bond

with the backbone of ICL2 due to repulsion by a Lys

sidechain. Additionally, there is no polar sidechain to interact

with the Asp of the DRY motif.

N bRHO has a coil-like ICL2 and has neither a capping helix C-

termini interaction nor a hydrogen bond between the Glu of

the ERY motif and ECL2.

Therefore, we suggest that the ICL2 helical structures observed

in hAA2AR and tB1AR are indicated by the presence of a Tyr at

position 156, the absence of a basic sidechain at position 159 and an

Arg at position 164 in the MSA (Figure 4); the occurrence of these

residues in target GPCRs would require either hAA2AR or tB1AR

to be used for modelling this loop. For instance, using these criteria

Table 3. Sequence similarity scores between the 14 target
GPCRs and five template structures for the region ranging
from the start of TMH1 to the end of helix 8.

hAA2AR tB1AR hB2AR sRHO bRHO

hRHO 38 37 36 49 97

hACM1 31 34 34 29 26

hDRD2 33 38 37 27 29

hV1AR 33 34 32 36 35

hV2R 31 34 33 37 35

hCCR5 36 39 39 36 38

hMC4R 41 39 39 34 32

hCNR1 38 37 35 34 31

hCNR2 37 39 35 35 32

hP2RY1 29 37 37 40 37

hP2RY12 31 37 35 31 32

hFSHR 39 32 35 37 35

hLHCGR 36 33 34 37 36

hTSHR 37 33 33 35 34

The highest scoring template(s) are indicated by bold font.
doi:10.1371/journal.pone.0007011.t003

Table 4. Sequence similarity scores between each template
structure and each target GPCRs for TMH2.

hAA2AR tB1AR hB2AR sRHO bRHO

hRHO 46 40 40 36 96

hACM1 56 62 65 42 43

hDRD2 59 62 59 39 56

hV1AR 39 39 36 39 45

hV2R 39 36 33 39 39

hCCR5 59 59 56 42 43

hMC4R 46 43 50 45 56

hCNR1 42 45 51 48 36

hCNR2 36 45 39 48 30

hP2RY1 31 43 40 45 37

hP2RY12 40 40 37 33 37

hFSHR 43 50 56 39 34

hLHCGR 43 43 50 42 34

hTSHR 43 43 46 39 28

The highest scoring template(s) are indicated by bold font.
doi:10.1371/journal.pone.0007011.t004

Table 5. Structural features observed in the five GPCR crystal
structures.

hAA2AR tB1AR hB2AR sRho bRho

TMH1 Pro distortion +

Gly-Gly bulge +

ICL1 310 helix + + +

TMH2 Pro distortion + + + +

Gly-Gly distortion +

Bulge due to insertion +

ECL1 Disulphide bridge to ECL2 +

Beta-strand (indicated by
above disulphide bridge)

+

TMH3 Conserved Cys forms
disulphide bridge to ECL2

+ + + + +

Second disulphide bridge
to ECL2

+

Gly bend + +

ICL2 Helical + +

Tyr forming h-bond to Asp
in DRY motif

+ +

TMH4 Pro distortion + + + + +

Bulge due to insertion + +

ECL2 Disulphide bridge to TMH3 + + + + +

Beta-sheet + +

Alpha-helix + +

Beta-strand +

Intra-ECL2 disulphide bridge + +

Disulphide bridge to ECL1 +

Second disulphide bridge
to TMH3

+

TMH5 Pro kink + + + + +

Helix extension +

ICL3 Partial structure + + +

TMH6 Pro kink + + + + +

Helix extension +

ECL3 TMH6-ECL3 disulphide bridge +

310 helix +

TMH7 Pro kink + + + + +

Helix 8 Insertion + + +

+ indicates the presence of a particular structural feature.
doi:10.1371/journal.pone.0007011.t005
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Figure 3. Key structural features identified in the five template GPCR structures. A) hAA2AR B) tB1AR C) hB2AR D) sRHO and E) bRHO.
Features causing distortion of the transmembrane helices (TMHs) include: Pro distortions (sidechains shown in blue), insertions (backbone shown in
purple) and Gly distortions (backbone shown in magenta). At the extracellular membrane side (EC) a number of disulphide bridges are observed
(sidechains shown in turquoise) although only that formed by cysteine residues in TMH3 and ECL2 is conserved in all five templates. The b-strands
formed by ECL1 and ECL2 in A (shown in green) are unique to this structure. ECL2 forms helical structures in B and C (shown in red) and b-sheets in D and
E (shown in green). At the intracellular membrane side (IC), ICL1 (shown in yellow) and ICL2 (shown in orange) are helical in A–C and A–B respectively and
are characterised by hydrogen bonds between polar sidechains. There are numerous helical structures that are unique to D: TMHs 5 and 6 are extended
relative to the other structures (shown in orange); short 310 helices are observed in ECL3 and after helix 8 (shown in yellow); an a-helix is observed at the
C-terminal end of the polypeptide chain (shown in red). The membrane surfaces are indicated by a dashed line (approximate position).
doi:10.1371/journal.pone.0007011.g003
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Melanocortin receptor 4 (hMC4R) and Cannabinoid receptor 2

(hCNR2) are predicted to have helical ICL2 conformations. In

hMC4R the predicted helix-capping Arg in TMH4 has been

associated with morbid obesity when mutated (R165W) and

functional experiments have shown that this mutation reduces

receptor activation [37]. Further work has shown that this loss in

activity is likely due to reduced expression at the cell membrane

[38]. Loss of the helix-capping interaction in R165W may affect the

correct trafficking of this receptor, providing a possible mechanism

for the observed malfunction of this mutant.

In the next step of our analysis, our intention was to identify

which of the structural features in Table 5 are present in our set of

14 target GPCRs by comparing the amino acid sequences in the

MSA (Figure S1) and tallying the results for each target GPCR

(Text S2). However, some features such as the presence of

secondary structure within loops and helix extensions could not be

determined from sequence comparisons alone (indicated by a ‘?’ in

the tables within Text S2).

Similarity to the extensions of helix 5 and 6 in sRHO was

assessed by calculating the sequence similarity (Tables S4 and S5).

See Figure S1 for the sequence regions used for these calculations.

Where a target GPCR shows highest sequence similarity to sRHO

(and not bRHO) and the sequence similarity is . = 50% then we

suggest that sRHO should be used as a template for TMHs 5 and

6. However, it should be noted that helix 5 becomes extended in

opsin compared to rhodopsin [23], indicating a structure-function

relationship rather than a sequence-structure relationship. There-

fore the sequence similarity results can serve only as guiding

information as to the existence of extended TMHs 5 and 6.

The contribution of structural features to receptor
conformation

It is unclear which of the features summarised in Table 5 have a

large effect on receptor function and overall structure and which

have moderate effects. Therefore in order to assess the impact of

these features on the template structures, the root mean squared

deviation (RMSD) was calculated between each TMH of each of

the 5 templates; Table 6 shows a sample of these results (TMH2),

with the remaining TMH RMSDs being found in Text S3). In the

case of TMH2, it is clear that the insertion in sRHO relative to the

other four templates and the disulphide bridge between ECL1 and

ECL2 make a larger contribution to the structural diversity of

TMH2 than the Gly-Gly bulge in bRHO (Figure 5 and Table 5).

Integration of results into workflow for comparative
modelling template selection

We have integrated all the analyses (sequence similarity scores,

structural features and RMSD calculations) to develop workflows

for the selection of templates for homology model building of each

of the seven TMHs and helix 8 (Figure 6). For example Figure 6B

shows the suggested template selection workflow for TMH2 and is

essentially a formalization of the results detailed in Table 4, Table 6

and Figure 5. Using these workflow schemes, we suggest the most

suitable template to use for modelling each TMH and helix 8 of

the 14 target GPCRs (Table 7). In some instances, more than one

template is suggested by the workflows. In these cases we have

selected one (shown as italic in Table 7) based on either similarity

to a flanking TMH, higher resolution or to optimize the space

Figure 4. Structural and sequence diversity of ICL2 between the five template GPCRs. Both A) hAA2AR and B) tB1AR have helical structures
(shown in orange) within ICL2. In both of these structures an Arg residue caps the ICL2 helix C-termini and a Tyr sidechain forms a hydrogen bond with
an Asp sidechain in TMH3. This combination of constraining hydrogen bond interactions is not observed in C) hB2AR, D) sRHO and E) bRHO where ICL2 is
of an irregular coil-like conformation (orange). F) Shows a section of the MSA covering ICL2 and the flanking helix termini. Those residues involved in
hydrogen bond interactions in A–E are highlighted in grey boxes. It appears that the presence of both a Tyr at position 156 and an Arg at position 164 as
well as the absence of a basic sidechain at position 159 can be used as markers for the presence of helical structures in ICL2.
doi:10.1371/journal.pone.0007011.g004
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between helices (i.e. avoid clashes or narrow gaps). Our analysis

suggests that multiple templates should be used for homology

model building of 13 of the 14 target GPCRs (human Rhodopsin

(hRHO) is the exception due to its extremely high sequence

similarity with bRHO). We also observe that for certain TMHs,

particular template GPCRs are suggested for modelling most of

the target GPCRs e.g. for TMHs 4 and 5 sRHO or bRHO are

suggested for all cases, due mainly to the fact that none of the 14

target GPCRs have structural features that are observed in tB1AR,

hB2AR or hAA2AR. TMH5 of hAA2AR, tB1AR and hB2AR

superimpose relatively well, except for the extracellular portion,

where hAA2AR diverges from the adrenergic structures. We

propose that the difference observed in TMH5 of hAA2AR

relative to the adrenergic structures is due to constrictions imposed

by the conformation of ECL2 in these three structures, a key

indicator of which is the presence of particular disulphide bridges.

As none of the 14 target GPCRs has Cys residues at the ECL2

disulphide bridge positions, then either bRHO or sRHO are

predicted to be the best templates. Of course, when building

homology models using the combinations of TMHs shown in

Table 7, the templates need to be superimposed first (e.g. using the

seven highly conserved residues as reference points). By doing so,

the orientation of the helices relative to one another is maintained.

Modelling the intracellular and extracellular loops
The loop regions of GPCRs tend to be less conserved than the

TMH regions and in some cases are structurally diverse in the

available GPCR structures e.g. ECL2. Therefore, comparative

modelling of these loop regions presents a more difficult task than

for the TMHs. In fact, it is not possible to use any of the five

GPCR structures to model loops in the targets when:

1. Structural data are unavailable (e.g. ICL3 is missing in

hAA2AR and hB2AR due to fusion with T4 lysozyme).

2. A target differs in length to all the available template structures.

ICL3 is the most extreme example, being more than 100

residues long in Muscarinic acetylcholine receptor M1

(hACM1) and Dopamine D2 receptor (hDRD2).

3. A target has a similar length to an available template structure

but it is missing a structural feature e.g. the TMH6-ECL3

disulphide bridge in hAA2AR.

In all of these three cases it will be necessary to use fragment-

search based methods [39,40] or ab initio based methods [35] for

predicting these loop conformations. Indeed it has already been

demonstrated that a more accurate model of the binding pocket

and better docking of the ligand was achieved for hB2AR when

ECL2 was built ab initio rather than using bRHO as a template

[41].

For most of the 14 targets, ICL1 and ECL1 can be modelled

with reasonable confidence, due to the similarity in length and

conformation. In such cases, the template prediction for the

flanking TMHs should be used to guide the loop template

selection. The presence of certain conformations e.g. helical, b-

strand etc can be predicted by particular amino acids. For

instance, the helices observed in ECL2 of tB1AR and hB2AR are

probably constrained by the intra-ECL2 disulphide bridge and the

b-strand structure observed in hAA2AR is probably constrained

by a disulphide bridge between ECL1 and ECL2. Therefore

similarly positioned cysteines in a template would indicate that the

adrenergic structures or adenosine structure should be used to

model ECL2. Alternatively, where a template is not able to form

either of these disulphide bridges and where sequence similarity to

the rhodopsin structures is observed alongside experimental

Figure 5. Structural diversity of TMH2 in the five template
GPCRs. A) tB1AR (blue) hB2AR (green) and bRHO (red) have similar
conformations, with hAA2AR (purple) and sRHO (yellow) diverging at
the extracellular end. B) sRHO has an insertion (Pro) relative to the other
structures, which causes a bulge in the helix. The kink in hAA2AR may
be accentuated due to the presence of a Cys residue forming a
disulphide bridge with ECL2. C) Multidimensional scaling of the
distances between TMH2 of the five template structures (distance is
measured by RMSD [Table 6]). The stress value was 0.09. Colouring is
the same as in A and B.
doi:10.1371/journal.pone.0007011.g005

Table 6. The RMSD of residues in TMH2.

hAA2AR tB1AR hB2AR sRHO bRHO

hAA2AR 0.00 2.19 2.10 2.65 2.93

tB1AR 2.19 0.00 0.61 2.65 3.57

hB2AR 2.10 0.61 0.00 2.57 2.81

sRHO 2.65 2.65 2.57 0.00 3.57

bRHO 2.93 3.57 2.81 3.57 0.00

doi:10.1371/journal.pone.0007011.t006
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Figure 6. Integrated workflows for template selection. Shows the decision process for selecting which template should be used for modelling
A) TMH1 B) TMH2 C) TMH3 D) TMH4 E) TMH5 F) TMH6 G) TMH7 and H) helix 8. For each helix the presence of particular features in a target GPCR are
identified using a multiple sequence alignment with the five template GPCRs. Structural features include: a Gly-Gly bulge/distortion, a Pro distortion,
insertions, disulphide bridges (SS-bridges), a Gly bend and sequence similarity to the helix extensions of sRHO. Where a target GPCR does not have
any of the features then a template is chosen based on the sequence similarity score (seq sim).
doi:10.1371/journal.pone.0007011.g006
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evidence of a b-hairpin conformation of ECL2, then we suggest

that ECL2 should be built as a b-hairpin using rhodopsin as a

template. For instance, a sheet-like fold of ECL2 and its general

localization between the transmembrane helices in C-C chemo-

kine receptor type 5 (CCR5) is consistent with results concerning

different accessibility of two antibodies versus the two different

strands of the sheet [42–44]. However, where neither the potential

disulphide bridge forming cysteines are observed nor a b-hairpin

conformation implicated, then we suggest that ECL2 be modelled

de novo.

Additionally, where available, experimental data can be used to

constrain the conformation of loops. For example:

1. There is evidence that a disulphide bridge is present in ECL3

of MC4R [45] and

2. The NMR solution structure of ICL3 in Vasopressin V2

receptor (hV2R) was recently published [46], negating the

requirement for modelling this portion of the receptor.

Therefore, the decision of how best to model the intracellular

and extracellular loops needs to be done on a case-by-case basis.

Our suggestions are detailed in Table S6.

Identification of conserved water molecules stabilizing
GPCR structure

Water molecules can have important roles in stabilizing protein

structure and therefore where possible, buried water molecules

that form stabilizing interactions in template structures should be

incorporated into homology models before minimization.

Campillo and colleagues performed an analysis of water

molecules in the vicinity of highly conserved amino acids in three

crystal structures of bovine rhodopsin [47]. They identified six

water molecules that were present in all three crystal structures

and that were in the environment of certain conserved amino

acids, speculating that these water molecules are likely to be

present throughout the rhodopsin family of GPCRs.

In fact, we find that only four of these water molecules are also

observed in any of the other four template structures (Table S7).

The first of these water molecules (P6.50) is located in a small

cavity between TMHs 6 and 7, stabilizing the Pro induced

distortion of TMH6 and linking TMHs 6 and 7. This water

molecule is observed in all of the template structures except

tB1AR, indicating a conserved role in stabilizing GPCR structures

(it should be noted that tB1AR has the lowest resolution of all the

five template structures).

The second conserved water molecule is observed in hB2AR,

sRHO and bRHO, located close to the Pro induced kink of

TMH7. In all three of these structures this water molecule forms a

hydrogen bond to the mainchain amide group of the highly

conserved N7.49 as well as to the sidechain of the highly conserved

D2.50.

Similar to the previous water molecule, the third conserved

water molecule is observed in hB2AR, sRHO and bRHO and is

located close to the Pro induced kink of TMH7. In all three of

these structures this water molecule forms a hydrogen bond to the

sidechain of the highly conserved N7.49 and the sidechain of the

highly conserved D2.50 therefore linking TMH2 and 7.

The fourth conserved water molecule is observed in all of the

templates except hAA2AR, although the network of interactions

varies from structure to structure. However, in all four structures

there is a water molecule that forms a hydrogen bond to the

sidechain of the highly conserved W6.48 and either directly to

mainchain or sidechain atoms groups in TMH7 or indirectly via a

network of water-mediated hydrogen bonds (sRHO).

It appears that each of these four conserved water molecules has

a role in linking TMHs and stabilizing helix distortions. The role

of these waters in signal transduction is discussed by Angel et al

[48]. Therefore, it is suggested that these particular water

molecules should be incorporated when building homology models

of GPCRs, as recently demonstrated by a MC4R model where

functional data were consistent with the interaction sites of the

water molecules [49].

Discussion

In this work we have carried out extensive sequence and

structural comparative analyses of the available crystal structures

Table 7. The template suggestions for each of the 14 target GPCRs.

Target GPCR ID TMH1 TMH2 TMH3 TMH4 TMH5 TMH6 TMH7 H8

hRHO bRHO bRHO bRHO bRHO bRHO bRHO bRHO bRHO

hACM1 hB2AR hB2AR tB1AR sRHO sRHO sRHO hAA2AR hAA2AR

hDRD2 hB2AR tB1AR tB1AR sRHO bRHO sRHO hAA2AR bRHO hAA2AR

hV1AR hAA2AR tB1AR sRHO tB1AR sRHO bRHO tB1AR hAA2AR bRHO sRHO

hV2R hB2AR sRHO tB1AR hB2AR sRHO bRHO tB1AR hAA2AR bRHO

hCCR5 tB1AR tB1AR tB1AR bRHO bRHO tB1AR hAA2AR bRHO

hMC4R hAA2AR hB2AR tB1AR sRHO bRHO hAA2AR hAA2AR hAA2AR

hCNR1 tB1AR sRHO tB1AR sRHO bRHO tB1AR hAA2AR hAA2AR

hCNR2 tB1AR sRHO tB1AR sRHO bRHO tB1AR hAA2AR sRHO bRHO

hP2RY1 hAA2AR tB1AR tB1AR sRHO bRHO bRHO tB1AR hAA2AR sRHO sRHO

hP2RY12 hB2AR tB1AR tB1AR sRHO bRHO tB1AR
hB2AR

hAA2AR bRHO

hFSHR tB1AR hB2AR tB1AR hB2AR sRHO bRHO hB2AR sRHO hAA2AR

hLHCGR tB1AR hB2AR tB1AR hB2AR sRHO bRHO hB2AR sRHO hAA2AR

hTSHR tB1AR hB2AR hB2AR sRHO bRHO hB2AR sRHO hAA2AR

Where two templates are suggested by a workflow, the preferential choice is shown in italics.
doi:10.1371/journal.pone.0007011.t007
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of GPCRs. These analyses have allowed us to identify particular

residues, motifs, or intra-molecular interactions that serve as

predictors for the presence of certain structural features observed

in the crystal structures. We have incorporated these predictors

into a workflow for identifying which of the template structures

should be used for building homology models of a set of GPCRs of

unknown structure. We have shown that the decision of which

single template to use when building a homology model of a

GPCR of unknown structure is not straightforward. It has been

shown previously that in the absence of an established modelling

protocol, serious flaws are observed in structural models of GPCRs

[50]. This work provides the first comprehensive analysis of

currently available GPCR structures for aiding the selection of

templates for GPCR homology modelling. Our analyses show that

in general, multiple templates should be selected, based upon the

presence or absence of structural features in TMHs or loops.

Structural features are better predictors than sequence
similarity

If sequence similarity of the entire serpentine domain (the

region from the start of TMH1 to the end of TMH7) and helix 8 is

used as the sole criteria for homology modelling template selection

then a template may be selected that lacks a particular functionally

important structural feature. For instance, hACM1 is most similar

to tB1AR and hB2AR across the entire serpentine domain and

helix 8 (Table 1). However, using either of the two adrenergic

structures to build a homology model of hACM1 would result in

TMH5 and 6 not being built with the predicted extensions.

Likewise, the template structure may contain structural features

that the target GPCR does not contain, in which case a feature

may be introduced that does not exist in the GPCR of interest. For

instance, across the entire serpentine domain and helix 8, human

P2Y purinoreceptor 12 (hP2RY12) is most similar to tB1AR

(Table 3). However, using the tB1AR structure to build a

homology model of hP2RY12 would result in a helical

conformation for ICL2, whereas in fact it is unlikely to be so

due to the lack of particular polar sidechains that constrain this

loop in a helical conformation in hAA2AR and tB1AR (the Arg in

TMH4 that is observed to cap helical ICL2 and the Tyr that

interacts with the Asp/Glu of the (D/E)RY motif). These

examples illustrate that particular structural features can be better

predictors of overall GPCR structure than sequence similarity.

Comparison of Table 7 and Figure S2 further highlights the

TMHs of the 14 target GPCRs that are poorly predicted by

sequence similarity alone.

Conserved proline distortions in the TMHs complicate
GPCR homology modeling

There are multiple target GPCRs that do not have a Pro at a

corresponding position to the Pro distortions observed in TMHs 2

and 5 of the template GPCRs (either the target does not have a

Pro at all or the Pro is in a shifted position relative to all of the five

templates). Therefore, there is the possibility that TMH distortions

may be incorrectly introduced into a model. In fact, structural and

evolutionary analysis of the Pro pattern of TMH2 in family A

GPCRs suggests that an insertion/deletion has led to two different

(bulged or kinked) structures for TMH2 that are indicated by the

relative position of the Pro in a MSA [28]. Where a Pro is shifted

in a target GPCR relative to the template GPCRs, the helix

distortion will also be shifted and therefore this will require careful

manipulation. Where a Pro is missing in a target GPCR, it might

be assumed that the distortion of the TMH should be removed.

However, studies have indicated that although mutation to a Pro

in a TMH initially induces a kink, further mutations act to stabilize

the kink through packing interactions, at which point the Pro is no

longer required to maintain the kink [51,52]. Therefore, we

speculate that even though particular target GPCRs do not have a

Pro in TMH2 or 5 like in the template GPCRs, they may still have

a vestigial non-Pro kink. In light of this, we suggest that when

modelling these non-Pro containing target GPCRs both kinked

and non-kinked helices should be considered and assessed on a

case-by-case basis using mutagenesis data.

Directing future structural studies of GPCRs
For some particular portions of the 14 target GPCRs, it will not

be possible to model the structure through homology to the five

templates (see entries marked ‘-’ in Table S6). The identification of

these non-homologous regions demonstrates how our analyses can

be used to improve structural knowledge in the future. It would be

sensible for future crystallization studies to focus on those GPCRs

that contain unique features not observed in current experimental

structures e.g. the extremely large ICL3 observed in hACM1 and

hDRD2 or where uncertainty exists about TMH distortions due to

lack of a Pro in particular GPCRs. It is highly likely that there are

other conformations of ECL2 apart from the three observed in the

five templates e.g. neither hCNR1 nor hCNR2 have the conserved

cysteines that form a disulphide bridge between ECL2 and TMH3

in most family A GPCRs. Careful consideration of the

‘‘uniqueness’’ of GPCRs relative to the five templates before

selecting one for crystallization studies could help to increase the

novelty and impact of newly acquired structural data. Where the

identified ‘‘unique’’ features are shared with other GPCRs of

unknown 3D structure then an experimental structure will provide

valuable information for building homology models of these

related GPCRs.

Opsin versus rhodopsin structure
Our analysis relates only to template selection for modelling the

inactive conformation of GPCRs. The publication of the crystal

structure of opsin bound to the extreme C-terminal segment of the

alpha subunit of transducin provides the opportunity for building

comparative models of GPCRs in a (partially) active state [23].

Although it has recently been demonstrated that an inactive

structure of hB2AR can be used to retrieve agonists and

antagonists through virtual screening [53], the availability of an

active GPCR structure is an exciting development for pharmaco-

logical research of GPCRs as an active (or even partially active)

conformation of these receptors adds valuable information for

structure-based drug design and mechanistic studies. However, it

remains to be seen whether the mechanisms underlying GPCR

activation are similar throughout this superfamily. Perhaps the

repertoire of activated GPCR conformations is more diverse than

currently observed for inactive GPCR conformations. For

instance, experimental evidence suggests that there are conforma-

tional differences between active GPCR structures with respect to

the activating ligand [54] or the interacting G-protein subtype

[55,56]. The partially active opsin structure may also be suitable

for comparative modelling of basally active GPCRs [57].

However, the structural basis of basal activity in some GPCRs

may actually be rather less distinct than the tilting and

restructuring of helices observed in opsin compared to rhodopsin;

the difference in basal activity between hB2AR (high) and tB1AR

(low) has been attributed to lack of helical structure in ICL2 in the

former, resulting in altered interactions with the DRY motif [21]

and perhaps to Ga [36]. The question of whether opsin is a

reliable template for modelling activated and basally active
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GPCRs is therefore open to discussion and is likely to remain so

until additional crystal structures of active GPCRs emerge.

We have performed a rigorous and systematic analysis of the

available experimental GPCR structures, identifying common,

different and unique sequence and structural motifs that can be

used to guide template selection for homology modelling. Our

analysis indicates that in general, the structural features of target

GPCRs cannot be captured using only one of the experimental

GPCR structures as a template for homology modelling.

Consequently, we suggest that the use of multiple templates when

building comparative models of GPCRs is likely to lead to more

accurate results. Indeed, a recent study demonstrated that

automated modelling of human neurokinin-1 (NK1) receptor

was enriched by a factor of 2.6 when a combination of bRHO and

hB2AR were used to construct models rather than when used as

single templates [58]. The recent blind assessment of methods for

GPCR structure modelling revealed that the best predictions relied

on homology modelling approaches and that progress in the

GPCR homology model building field will require improvements

in the current prediction methods to ‘‘add value’’ to the best

available templates [59]. The mutagenesis data stored in GPCR

databases such as the SSFA [60], GRIS [61] and GPCRDB [62]

provide a means of verifying homology models through identifi-

cation of structure-function relationships of particular sidechains

[58,63]. We believe that our analysis of the recently solved GPCR

structures contributes to a more consistent method for GPCR

template selection that opens new ways to fundamentally improve

the quality of GPCR homology model building.

Materials and Methods

Dataset
The amino acid sequences and three dimensional structures of

the template GPCRs used for analysis were obtained from the

Protein Data Bank (http://www.rcsb.org/pdb) [64]. Where more

than one experimental structure was available for a particular

GPCR the structure with the highest resolution was used. Where

more than one chain was found in a PDB file, the longest chain

appearing first in the file was chosen for further analysis. A set of

14 target GPCRs was constructed whereby each member is found

in humans, has been shown to be associated with a particular

disease and has no experimentally determined structure. Recep-

tors were chosen so that each of the four main phylogenetic groups

of GPCR family A were represented in our target dataset

(including the most populated cluster within each group) [34].

The sequences of the fourteen target GPCRs were downloaded

from UniProt (http://www.uniprot.org) [65].

Superimposition of template structures
The template structures were superimposed using Sybyl 8.0

(Tripos Inc., St. Louise, Missouri, 63144, USA). The highly

conserved residues found within each transmembrane helix (as

defined by the Ballesteros-Weinstein nomenclature [66]) were used

as the reference points for structural superimposition of backbone

atoms.

Defining the boundaries of the seven transmembrane
helices and helix eight

We first identified the boundaries of each of these helices in each

of the template structures. This was achieved by looking at the

hydrogen bonds formed between mainchain atom groups within

the structure. The N-terminal boundary of a helix was defined as

the first residue of a helix to form an intra-helical mainchain-

mainchain hydrogen bond via its mainchain carbonyl atom group.

The C-terminal boundary of a helix was defined as the last residue

of a helix to form an intra-helical mainchain-mainchain hydrogen

bond via its mainchain amide atom group.

Sequence alignment
The multiple sequence alignment (MSA) of the template and

target GPCR sequences was produced using a two tier approach.

Firstly, ClustalW was used to create an automatic alignment of all

of the template and target GPCR sequences [67]. Then the MSA

was manually refined, taking into account the structural

superimposition of the templates.

Sequence similarity calculations
Pairwise sequence similarity calculations were performed

between each template sequence and each target sequence. Due

to the variation within the extracellular and intracellular loop

regions, we restricted the similarity analysis to the seven TMHs

and helix eight. For each of these helices, we set the leftmost

boundary (i.e. the start position) as that of the template whose helix

starts last in the MSA and the rightmost boundary (i.e. the end

position) as that of the template whose helix ends first in the MSA.

In some instances the amino acid sequence of the crystal

structure differs from the corresponding wild-type sequence. In

those cases where the GPCR was fused to T4 lysozyme at ICL3

(hAA2AR; hB2AR), the T4 lysozyme sequence was removed.

Where point mutations were introduced into a GPCR, the mutant

residue type was used in the sequence alignment rather than the

wild-type residue.

The percentage sequence similarity (PSS) between two sequenc-

es was calculated by:

PSS~
S

NzG
� 100 ð1Þ

Where S is the number of similar positions (defined by a

BLOSUM62 matrix score of .0 [68]), N is the number of aligned

positions and G is the number of internal gap positions.

Structural similarity analyses
The RMSD of the TMH backbone atoms was calculated for

each pair of template structures using the McLachlan algorithm

[69] as implemented in the program ProFit (Martin, A.C.R.,

http://www.bioinf.org.uk/software/profit/). For each TMH we

set the N-terminal boundary (i.e. start position) as that of the

template whose helix starts last in the structural superposition and

the C-terminal end (i.e. end position) as that of the template whose

helix ends first in the structural superposition.

Identification of unique structural features in template
GPCRs

The superimposed structures were compared manually to

identify differences (structural features) that could be incorporated

into our modelling workflow assessment. We considered features

such as helix kinks and bulges [70,71], extension of helices [17],

disulphide bridges [72,73] and the conformation and secondary

structure of loops [24,74].
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of the 14 target GPCRs.
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Table S7 Conserved water molecules observed in the five

template structures.
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Figure S1 The multiple sequence alignment of five template and

14 target GPCRs.
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Figure S2 The highest sequence similarity templates for each of

the TMHs and helix 8.
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Text S1 The sequence similarity scores between the five

template structures and each of the 14 target GPCRs for

TMH1, TMH3-7 and helix 8.
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Text S2 The prediction of structural features present in the five

template structures in the 14 target GPCRs.
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five template GPCR structures for TMH1, TMH3-7 and helix 8.
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