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Abstract

Peptide vaccination in cancer therapy is a promising alternative to conventional methods. However, the parameters for this
personalized treatment are difficult to access experimentally. In this respect, in silico models can help to narrow down the
parameter space or to explain certain phenomena at a systems level. Herein, we develop two empirical interaction
potentials specific to B-cell and T-cell receptor complexes and validate their applicability in comparison to a more general
potential. The interaction potentials are applied to the model VaccImm which simulates the immune response against solid
tumors under peptide vaccination therapy. This multi-agent system is derived from another immune system simulator (C-
ImmSim) and now includes a module that enables the amino acid sequence of immune receptors and their ligands to be
taken into account. The multi-agent approach is combined with approved methods for prediction of major
histocompatibility complex (MHC)-binding peptides and the newly developed interaction potentials. In the analysis, we
critically assess the impact of the different modules on the simulation with VaccImm and how they influence each other. In
addition, we explore the reasons for failures in inducing an immune response by examining the activation states of the
immune cell populations in detail. In summary, the present work introduces immune-specific interaction potentials and
their application to the agent-based model VaccImm which simulates peptide vaccination in cancer therapy.
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Introduction

Cancer is still one of the major causes of death in industrial

nations, although in principle the immune system is able to

eradicate a tumor. Bearing that in mind, many studies have tried

to trigger an anticancer immune response using different methods,

e.g. adoptive cell transfer, cytokine therapy or vaccination

schedules [1]. Immune therapy is promising, but its success has

been limited so far. The main reason is that the mechanisms of the

tumor-immune-interplay are still poorly understood. A huge

amount of, sometimes conflicting, data has accumulated, which

can be difficult to interpret. Therefore, it is desirable to have a

simplified model able to highlight at the system level the main

processes of the phenomenon. In addition, in silico experiments are

far less expensive, less time consuming and a lot more flexible in

terms of parameter changes.

We have described the main theoretical modeling techniques,

differential equations and rule-based models, and their application

to tumor immunology elsewhere [2]. For this project, we have

chosen a rule-based model because of its capability to characterize

every single cell or molecule in its location, developmental state

and specificity.

The aim of our present study is to support peptide vaccination

approaches in cancer therapy by modeling the specific tumor-

immune interaction in a realistic fashion. For that purpose, we

integrated a previously published model of the tumor-immune

interplay [3] with a detailed description of the immune receptor-

ligand interactions based on structural and sequence information.

To our knowledge, this is the first approach simulating peptide

vaccination in cancer treatment that takes the peptide sequence

into account explicitly. An analogical approach designed for

generic infections has been described by Rapin et al. [4].

Rule-Based Modeling for Simulating the Immune System
Rule-based models are composed of discrete agents identifiable

within a spatial environment. The agents interact, move and

change their state according to behavioral rules in discrete time

steps.

One of the first approaches to simulating the immune system

using a cellular automaton was introduced in 1992 by Celada and

Seiden [5]. Their cellular automaton called ImmSim used very

simple rules but was able to reproduce several phenomena in

immunology, e.g. clonal expansion of B- and T-cells after

stimulation or the different time-lines of the first and second
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immunization. To account for specificity of the immune receptors,

they developed a representation in the form of bit-strings that had

to be complementary to favor an interaction between the immune

cells [6]. Within the model, they examined optimal ranges to

induce a sufficient immune response for some generic parameters

such as the number of major histocompatibility complexes

(MHCs) per individual or the number of self-peptides compared

to the whole diversity of protein sequences. The ImmSim model

has been extended and improved by several research groups (see

below); the present study itself is based on an implementation of

the Celada-Seiden ImmSim automaton.

Since 1992 the agent-based modeling community in theoretical

biology has grown. Apart from ImmSim, other rule-based immune

simulations have recently been developed which are briefly

reviewed here.

The Basic Immune Simulator aims at understanding the

interplay between the innate and the adaptive immune response

[7]. It is an agent-based model composed of three virtual spaces,

the parenchymal tissue, the secondary lymph node and the

lymphatic/humoral circulation. The immune response to a

localized viral infection is simulated, during which an immunity

gain or loss or a hyper-response might occur. The Basic Immune

Simulator was updated in 2010, now including new cell types and

enhanced behavioral rules [8]. Using the new version, a network

analysis was applied defining the cell types as nodes and their

interaction as edges.

SIMMUNE is more a modeling environment than a model of a

certain phenomenon [9]. Its purpose is to investigate how context

adaptive behavior might emerge from local cell-cell and cell-

molecule interactions. The model is composed of a cellular

automaton on a molecular level. Molecules can be defined that

interact according to the behavior they get equipped with. These

entities move within a discrete lattice, which can be subdivided

into different compartments. Since it takes a generic approach to

the modeling of cell biology, SIMMUNE is able to simulate a wide

area of signal cascades, not only those related to immunology.

SIMISYS is focused on the different stages of bacterial infection

[10]. The model is based on a cellular automaton and composed

of two different grids representing a blood vessel and a lymph

node. By means of the simulation, the authors want to learn more

about the interplay between the innate and adaptive immune

system.

Another rule-based study is the tumor-immune model by Mallet

and De Pillis [11]. They use a hybrid form of a cellular automaton

with partial differential equations. The purpose of this model is to

examine the effects of cytotoxic lymphocytes and natural killer

cells in the early stages of tumor growth under limited nutrient

supply.

The ImmSim model has also been enlarged, refined and applied

to a variety of phenomena. Castiglione et al. translated ImmSim to

ANSI C language and applied their refined model, C-ImmSim, to

several immunological phenomena, such as Epstein-Barr virus

infection [12], TH1/2 differentiation [13], HIV-infection [14] and

immune therapy of cancer [3]. C-ImmSim applied to cancer

simulates a solid tumor under immune therapy, including all main

mechanisms of the humoral and cellular adaptive immune

response. Lollini et al. used the architecture of C-ImmSim to

build SimTriplex, a model for HER2/neu transgenic mice treated

with the Triplex cell vaccine [15]. This model was extended and

applied to lung cancer metastasis in MetastaSim, which is a hybrid

agent-based/differential equation model [16].

For our research interest of studying peptide vaccination in

cancer treatment, the model C-ImmSim was the most suitable.

Indeed it provides all the important behavioral rules for immune

and cancer cells. The only major drawback of C-ImmSim is that

the immune receptors are modeled as bit-strings, having no direct

translation to amino acid sequences. Therefore, we decided to

extend C-ImmSim, producing a sequence-based version, Vac-

cImm, where all calculations depend on the amino acid sequence

of immune receptors, MHCs and antigens. In VaccImm,

experimental and clinical data of cancer targets, expression data

or MHC-genotypes are directly integrated into the model and the

simulation predicts the success of peptide vaccination taking the

amino acid sequence into account.

In order to understand the architecture of the model, C-

ImmSim is described in more detail in the next chapter.

Afterwards, the adoption of amino acid sequences in place of

bit-strings is discussed.

C-ImmSim
Our present model VaccImm is based on C-ImmSim [3], an

agent-based model written in ANSI C language. C-ImmSim is

composed of a Cartesian 3D lattice that contains cancer cells and

several types of immune-cells moving from one lattice point to

another in discrete time steps corresponding to 8 hours of real life.

The different types of immune cells can be classified as helper T-

cells (TH), cytotoxic T-cells (TC), B-cells, macrophages and

dendritic cells (DCs). In addition, the model includes different

classes of molecules comprising antibodies, antigens, Interleukin-2

(IL-2) and a danger signal that represents a general activator signal

for macrophages. These cells and molecules can interact according

to behavioral rules simulating the phenomena of an adaptive

immune response against cancer.

The lymph node close to the tumor is modeled explicitly by the

lattice that contains all cell types and molecules. In contrast, the

thymus selection is simulated implicitly, as all T-cells are probed

for their reactivity against MHC and self-peptides in positive and

negative selection before being introduced into the simulation.

All specific interactions of the adaptive immune response

depend on the complementarity of bit-strings in C-ImmSim. To

be more explicit, each immune cell receptor, MHC, antigen or

MHC-presented peptide is represented by a string composed of

zeros and ones, and whenever an immune receptor meets a

possible ligand, the complementarity of the bit-strings defines their

interaction probability. Whereas this way of representing the

molecular specificity is very generic and computationally easy, it is

very distant from real protein-protein interactions. The develop-

ment of a sequence-based definition of molecules is therefore an

important step toward the generation of more realistic models.

From Bit-Strings to Amino Acids
Rapin et al. have extended C-ImmSim to a sequence-based

version for simulating generic infectious diseases [4]. In contrast,

our extension, VaccImm, is focused on peptide vaccination in

cancer therapy and therefore has to fulfill several different needs.

To turn the bit-string model into a sequence-based model,

amino acid sequences need to be introduced for all specific

interactions between an immune receptor and a ligand. In

addition, in C-ImmSim the interaction strength is based on the

complementarity of bit-strings. In VaccImm, the interaction

probabilities dependent on amino acid sequence had to be

developed. Rapin et al. used the Miyazawa-Jernigan potential [17]

for that purpose. In the present work we demonstrate that this

approach does not clearly differentiate observed immune receptor-

ligand complexes from random complexes. For that reason, we

developed new interaction potentials specific to B-cell and T-cell

receptors that are able to clearly differentiate experimentally

observed from random complexes.

Immune-Specific Interaction Potentials for VaccImm
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Results

Development of an Interaction Potential for Immune
Receptor-Ligand Binding

An essential step in the adaptive immune response is the

recognition of a target cell by the immune cell mediated by the

immune receptor binding to its matching ligand. Both the

interaction of a T-cell receptor with a peptide-MHC complex

and a B-cell receptor with an antigen are very complex in nature

and still a matter of research [18,19]. Therefore, it is desirable to

have a universal function differentiating binding from non-binding

immune complexes.

In the present study, we develop a separate empirical pair-wise

interaction potential (IP) between the immune receptor and its

ligand for both the B-cell and the T-cell receptors. The IP is based

on an analysis of crystal structures from the Protein Data Bank

[20] using a similar method to that used by von Eichborn et al.

[21]. We compared the amino acid pairs within the interface of

observed crystal structures of immune receptor complexes to those

of random structures built to represent non-binding receptor

ligand pairs. From this calculation, we gained an IP specific for the

type of immune receptor-ligand-complex; IPT for T-cell receptors

and IPB for B-cell receptors (Fig. 1 and Fig. S1).

Before the analysis, structures were separated into training

(90%) and validation (10%) sets and then all complexes were

scored using IPT or IPB. The scores of training and validation sets

of the crystal and artificial structures were compared to scores that

were gained using the well known Miyazawa-Jernigan potential

[17], as Rapin et al. [4] used the Miyazawa-Jernigan potential to

score the immune receptor-ligand interaction. Our analysis shows

that for the peptide/MHC-TCR interaction the Miyazawa-

Jernigan potential is not able to differentiate between crystal and

artificial structures, while the sets can be clearly differentiated

using IPT (Fig. 2A). The area under curve (AUC) was calculated

with the Mann-Whitney test for the structures scored with IPT

yielding an AUC of 0.93 and a P-value below 0.01, so the

differentiation is highly significant.

For the BCR-antigen interaction, the Miyazawa-Jernigan

potential again does not differentiate between the crystal and the

artificial structures while IPB does (Fig. 2B). As the standard

deviation is very large when using IPB, we looked for any

characteristics of the structures to explain this phenomenon. We

found that the standard deviation can be considerably decreased if

the data sets are subdivided into sets with high and low glycine

frequencies within the antigen interface (Fig. 2C+D and Fig.

S2,S3). The limit was set at 6.9% glycine within the interface of the

antigen, as this is the frequency of glycine on protein surfaces. The

separation resulted in two data sets of nearly equal size. The

Mann-Whitney test yields an AUC of 0.93 for the high glycine

data set (IPB high) and 0.88 for the low glycine data set (IPB low),

while the P-value is below 0.01 for both. The reason for this

difference in high and low glycine content in the interface of an

antigen might be that the higher glycine content allows sharper

turns in the backbone and that could lead to a slightly different

mechanism of recognition by antibodies.

Application of the Interaction Potential in VaccImm
The newly developed IP was applied to the agent-based

simulation VaccImm, an extension of C-ImmSim [3], along with

approved prediction methods for MHC-peptide binding (see

Materials and Methods).

VaccImm accounts for the most important immune cell

populations in their different activation states. In this section, we

analyze these output-curves of the cell counts over time. Figure 3

depicts example curves of cell counts resulting from a successful

(right panel) and a failing (left panel) peptide vaccination therapy.

The difference between the two simulations is that the peptides of

the successful treatment were emulsified in adjuvant while the

peptides of the failed treatment were not. To initiate or boost the

immune response, adjuvant is often added for immunization [22].

Cancer epitopes are naturally of low immunogenicity as they result

from the body’s own proteins that are usually not recognized as

foreign.

Without adjuvant, the cancer cells double within one year

(Fig. 3A), while a successful treatment is able to eradicate the

tumor within less than four months (Fig. 3B). In successful immune

therapy, matching T-cell and B-cell receptors recognize the

antigen and TC-cells, TH-cells and B-cells get activated and

replicate, as seen in Figure 3. In contrast, peptide vaccination

without adjuvant is not able to activate TH-cells, TC-cells nor B-

cells for proliferation. Also the antigen presenting cells (APCs)

behave differently in the two settings. In both cases, DCs present

Figure 1. Interaction Potential IPT for MHC-Peptide/TCR Complexes. A: The newly developed interaction potential IPT for MHC-peptide/TCR
complexes. B: Color code and color frequency for interaction potential map.
doi:10.1371/journal.pone.0023257.g001

Immune-Specific Interaction Potentials for VaccImm

PLoS ONE | www.plosone.org 3 August 2011 | Volume 6 | Issue 8 | e23257



peptides on their MHC I and MHC II, but without a stimulating

signal from the adjuvant this leads to anergy rather than to

activation of the T-cells. Macrophages are not recruited to present

peptides on their MHC II without adjuvant stimulation. In

successful treatment, presentation of both APC types on MHC

peaks when the antigen is injected but cell counts decrease

immediately afterwards because activated TC-cells kill the APC.

Impact of IPT on the Simulation with VaccImm
The most important step of the immune response against a

tumor is the recognition of a cancer epitope on MHC I by TC-

cells that will result in the lysis of tumor cells under activating

conditions. However, the bottleneck of cancer immunotherapy is

that most of the TC-cells that could possibly recognize the cancer

cells are eliminated in the thymus as they are reactive against self-

peptides. If a matching TC-cell survives thymus selection, lowering

of the tumor burden by the TC-cell clone depends on several other

factors e.g. the MHC-binding properties of the cancer epitope, the

way of antigen encounter by the TC-cell, its spatial environment

and the cytokine interplay. To analyze the impact of IPT and

thymus selection on the simulation, we compared their calculated

reactiveness.

Different antigens were evaluated for their score using IPT and

the T-cell reactivity they induced in the agent-based model

simulation. For that purpose, a set of about 15,000 TCR sequences

was randomly generated. In the first step, the antigens were sorted

by the highest IPT- score they gained when probed against the

whole TCR set (Fig. 4A). In the second step, all TCRs that would

not survive thymus selection, because of their complementarity to

self peptides, were eliminated and the antigens were scored again

with the reduced TCR set (Fig. 4B). In the third step, the entire

simulation was executed for all the antigens using VaccImm

(Fig. 4C). The reactiveness against cancer cells was defined as the

reduction of tumor size compared to unlimited growth, with 100%

reactiveness leading to complete tumor eradication.

In thymus selection, strongly self-reactive TC-cells are eliminated,

that is why several scores are lowered after thymus selection

(Fig. 4A+B). Nevertheless, the same overall trend was observed for

stronger and weaker immunogenic antigens. In the simulation, only

very few antigens are able to induce a sufficient immune response to

reduce or eradicate the tumor (Fig. 4C). Antigens having a low score

from IPT are not recognized by TC-cells because of their low

interaction probability. However, some antigens with high interaction

probabilities calculated from IPT are also not able to induce a

Figure 2. Evaluation of the Miyazawa Jernigan Potential and the Newly Developed Potentials IPT, IPB, IPB high and IPB low. Mean scores
of MHC/peptide-TCR crystal and random structures for training (90% of structures) and validation set (10% of structures) are depicted. Scores
observed using the newly developed interaction potentials and the Miyazawa-Jernigan interaction potential [17] are compared. A: Scores of MHC/
peptide-TCR complexes using IPT. B: Scores of antibody/antigen complexes (all) using IPB. C: Scores of antibody/antigen complexes with antigens of
high glycine frequency (.6.9%) within the interface using IPB high. D: antibody/antigen complexes with antigens of low glycine frequency (,6.9%)
within the interface using IPB low. * indicates P-value of crystal and random set below 0.01 using Mann-Whitney test. M-J-potential: Miyazawa-Jernigan
potential.
doi:10.1371/journal.pone.0023257.g002

Immune-Specific Interaction Potentials for VaccImm
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Figure 4. Comparison of IPT, Thymus Selection and Simulation. Scores for different antigens using IPT are compared with (A) a random
sample of about 15,000 TCRs , (B) all TCRs from the set that survived the thymus selection and (C) with the reactiveness against cancer cells in the
simulation with VaccImm. The antigens in all three diagrams are sorted by their IPT-score including all TCRs. Antigens inducing an immune response
against the tumor, are marked with *. Simulation data were obtained from 100 simulations per column. The MHC-genotype is HLA_A02/HLA_DRB3.
For all experiments one hundred initial cancer cells were simulated within 5 ml of blood that were treated with peptide injections starting at time
point zero and being repeated five times at an interval of 28 days. The antigens were chosen from over-expression data in prostate tumors. One MHC
I-binding peptide and one MHC II-binding peptide were injected.
doi:10.1371/journal.pone.0023257.g004

Figure 3. Peptide Vaccination With and Without Adjuvant. Cell counts are depicted for cancer cells (A/B), cytotoxic T-cells (C/D), helper T-cells
(E/F), B-cells (G/H), dendritic cells (I/J) and macrophages (K/L) over one year of simulated time. One time step equals 8 hours. Left panel: No adjuvant
was added; right panel: Adjuvant was included. For both experiments one hundred initial cancer cells were simulated within 5 ml of blood that were
treated with peptide injections starting at time point zero and being repeated five times at an interval of 28 days. The MHC-genotype of this virtual
individual is HLA_A80/HLA_B56/HLA_DQA2_DQB2/HLA_DRB3. The antigen A2SUH6_HUMAN (Survivin variant 3 alpha) was chosen from over-
expression data in prostate tumors. Two MHC I-binding peptides and two MHC II-binding peptides were injected.
doi:10.1371/journal.pone.0023257.g003

Immune-Specific Interaction Potentials for VaccImm
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sufficient immune response. This result underlines that the complete

immune cell and signal molecule interplay needs to be investigated for

understanding the tumor-immune-interaction.

In the next section, we analyze the failing antigen treatments in

more detail.

Reasons for Failures in Treatment
In order to better understand the reasons why the immune

system failed to successfully fight the tumor for most of the antigen

injections, we took a closer look at the immune cell populations

(Fig. 5). A successful treatment was defined as a simulation with a

smaller tumor size after one year of simulated time with respect to

the beginning of treatment.

Interestingly, we found that the resulting patterns can be

separated into two groups: In the first group, a sufficient immune

response was induced in less than 50% of the simulations (frequent

failures, Fig. 5a) and in the second group in more than 50% (rare

failures, Fig. 5b). In both groups, peptide presentation on MHC I

and II by DCs and macrophages was successful in 75% to 100% of

the simulations. Consequently, this part of the immune response

was not the main bottleneck in the treatment. In the frequent

failures, no active TC-cells and almost no active TH-cells were

observed. For the rare failures, active TC-cells were observed in

more than 80% of the failing simulations. We did take a closer

look at these TC-cell populations, searching for a reason why they

were not able to eradicate the tumor. We found that these TC-cell

populations were either very small (composed of only one or two

cells) or started dividing at a later stage of the simulation such that

the tumor size could not be decreased before the end of the

simulation (data not shown).

These observations indicate that the rare failures would occur with

an even lower frequency if the simulations were carried out over a

longer time period. In contrast, the frequent failures are prone to failing

to induce an immune response either because their antigens are too

closely related to self-peptides or because the TC-cells did not

encounter the antigen in a sufficiently activating environment.

Simulation Run Time and Error Propagation from the
Interaction Potential

VaccImm is able to simulate up to one million initial cancer

cells treated with a maximum of ten peptides. One run of the

simulation takes from several seconds to a few minutes on a single

core of a 3 GHz Intel Core 2 Duo CPU depending on the input

parameters chosen.

Before starting the simulation, peptide sequences binding to

MHC I and MHC II are predicted within a few seconds. The

VaccImm simulation itself can be divided into two parts, thymus

selection of initial population of T lymphocytes and spatial

dynamics within the agent-based model accounting for the whole

immune response. Having a simulation with standard configura-

tion (see Table 1), the two parts require about the same amount of

CPU time. In general, however, while the time for thymus

selection increases with the number of self-peptides and the

number of different MHC-alleles, the time for the agent-based

simulation increases with cell numbers, simulated time and

volume. Some benchmark experiments with their simulation times

are given in Table 1.

To investigate the error propagation from the IP to the

simulation, an example was chosen where the tumor is almost

eradicated. The interaction probability calculated using IPT, IPB

high and IPB low was increased or decreased in a stepwise manner

and the impact on the final number of cancer cells and the time it

takes to reduce the cancer cell number compared to the initial

tumor size was analyzed (Fig. 6). Increasing the interaction

probability led to a gradual decrease in the time to reduce the

tumor size while the tumor was almost or completely eradicated

with an increase in the interaction probability of 10% and more.

Decreasing the interaction probability increased the time to reduce

the tumor and the relative number of cancer cells at the end of the

simulation. At a 15% decrease of the interaction probability, the

mean number of cancer cells was not reduced compared to the

beginning of the simulation. Decreasing the interaction probability

by 20% or more leads to tumor reduction in less than 50% of the

simulations.

From these results we can deduce that a bias in IPT, IPB high and

IPB low will affect the results of the simulation. A qualitative

difference in the outcome, as having or not having an induction of

the immune response, will probably occur from a bias larger than

10–15%.

Discussion

In this work, we developed new IPs between an immune

receptor and its ligand from a statistical analysis of crystal

Figure 5. Reasons for Failures in Treatment. The propensity to obtain certain activation states of the immune cell populations is depicted.
Experiments are grouped into frequent failures (A) that induce a sufficient immune response in less than 50% of the simulations and rare failures (B)
with more than 50% sufficient responses. Abbreviations: TC active: active cytotoxic T-cells. TH active: active helper T-cells. DC presI/DC presII:
dendritic cells presenting peptides on MHC I/MHC II. MA presII: macrophages presenting peptides on MHC II.
doi:10.1371/journal.pone.0023257.g005

Immune-Specific Interaction Potentials for VaccImm
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structures for B-cell and T-cell receptors. It was shown that the

newly developed IPs are able to differentiate naturally observed

from randomly generated immune complexes, in contrast to the

Miyazawa-Jernigan potential [17]. We believe that our empirically

developed potentials account for specific properties of the

respective immune receptor interactions, that are not included in

general potentials like the Miyazawa-Jernigan potential.

In the second step, the newly developed IPs were applied to the

agent-based model VaccImm, an extension of C-ImmSim [3].

There is one other agent-based model that includes the amino acid

sequence in calculation; the model of Rapin et al. [4] simulates the

immune response against infections and was developed indepen-

dently from VaccImm. While Rapin et al. took a more general

approach to infectious diseases; we focused on the specific needs of

peptide vaccination in cancer therapy.

Prediction methods for complex protein-protein interactions,

such as our newly developed IPs, always have a limited accuracy.

Therefore, we investigated what impact a systematic error in the

IPs would have on the VaccImm simulation. As demonstrated, a

bias in the IPs will surely affect the simulation, but qualitative

changes in the outcome are not expected as long as the bias in the

interaction prediction stays below 10%.

In contrast to the former versions of C-ImmSim, and similarly

to the new published version [4], VaccImm predicts reactivity of

the immune system against real amino acid sequences of any

injected peptide. The model includes several core phenomena of

the immune system, e.g., the humoral and cellular branch, clonal

expansion of single immune cells, thymus selection of T-cells and

spatial interactions of autonomous cells with distinct specificity.

Still, some properties of the immune-cancer interplay might be

underrepresented in the current version of the model and we are

planning to extend VaccImm in that direction. The most

important features we are planning to include in the future are

the different types of cytokines, the influence of regulatory T-cells

(Tregs) and the mutation of cancer cell epitopes.

Cytokines have an essential role in facilitating communication

between immune cells, most of them acting within short ranges

[23]. Thus far, only IL-2 and a general danger signal are included

in the simulation, but agent-based models are particularly tailored

Table 1. Computational Cost of the Simulation.

Configuration
Computational
Time [s]

Standard* 21

Initial tumor size [cells]: 10 000 33

Initial tumor size [cells]: 100 000 129

Initial tumor size [cells]: 1 000 000 855

Simulated Space [ml]: 10 82

Simulated Space [ml]: 20 165

Simulated Space [ml]: 20, Initial tumor size [cells]: 100 000 250

2 MHC-I binding peptides, 2 MHC-II binding peptides 40

3 MHC-I binding peptides, 3 MHC-II binding peptides 73

4 MHC-I binding peptides, 4 MHC-II binding peptides 100

5 MHC-I binding peptides, 5 MHC-II binding peptides 117

2 MHC-I alleles, 2 MHC-II alleles 31

3 MHC-I alleles, 3 MHC-II alleles 57

6 MHC-I alleles, 6 MHC-II alleles 45

2190 time steps 25

4380 time steps 34

*The standard configuration for the simulations is: Uniprot-ID 2B1D_HUMAN, 1
MHC-I allele, 1 MHC-II allele, 1 MHC-I binding peptide, 1 MHC-II binding peptide,
5 ml simulated space, 1095 time steps, 100 cancer cells as initial tumor size. All
changes to this configuration are mentioned in the table.
doi:10.1371/journal.pone.0023257.t001

Figure 6. Error Propagation from IP to Simulation. The relative number of cancer cells after one year of treatment compared to the tumor size
at the beginning of the simulation is depicted (red bars) along with the average number of time steps needed to reduce the tumor size (green bars).
All interaction probabilities in the simulation calculated with IP were multiplied with the bias in IP shown on the y-axis. Data were obtained from 100
simulations per column. The MHC-genotype is HLA_A02/HLA_DRB1-1. For all experiments one hundred initial cancer cells were simulated within 5 ml
of blood that were treated with peptide injections starting at time point zero and being repeated five times at an interval of 28 days. The antigen
B7Z8B0_HUMAN was chosen from over-expression data in prostate tumors. One MHC I-binding peptide and one MHC II-binding peptide were
injected.
doi:10.1371/journal.pone.0023257.g006
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to take into account local effects of molecules in a spatial

environment. Consequently, we are planning to include a more

detailed representation of cytokines in the model in the future.

Examples for important cytokines in the cancer-immune interplay

to be included soon are the transforming growth factor-b [24] or

interferon-c [25].

Tregs are an immune cell population suppressing the immune

response, presumably with the main function to prevent

autoimmune diseases [26]. Their immunosuppressive effect

hinders the immune response against cancer [27]. Therefore,

our plan is to include this cell type in the next version of VaccImm.

Our current model does not account for mutation or changes in

gene expression of the tumor. The genome of a tumor is often

unstable and many different mutations or gene rearrangements

result in a huge diversity of tumor cells that do not present the

same epitopes on their MHCs. It is frequently observed,

particularly under treatment, that some tumor cells change their

behavior or their expression pattern, thereby circumventing

eradication; a phenomenon called tumor escape [28]. For this

purpose, we plan to include tumor epitope mutation and changes

in the antigen expression levels.

The present model is a first step towards in silico experiments

predicting T-cell reactivity taking into account the amino acid

sequence. Expanding knowledge in tumor immunology will help

to further improve our model. As VaccImm is very flexible and its

architecture is separated into different modules, it can be easily

extended or refined with new experimental data.

Materials and Methods

Peptide Binding to MHC Complexes
The first step necessary for T-cell recognition is the processing

of a protein to a peptide and its presentation on a MHC complex

by the target cell. This process has been evaluated in great detail

by several research groups. It has been found that key residues

exist at distinct places within the peptide that are most important

for binding to the MHC [29]. From the accumulated MHC

binding and elution data, several methods have been generated to

predict which part of the protein sequence will be presented by a

certain MHC. For simulation, we used two well-known position-

specific scoring matrices to predict peptide-MHC binding, namely

smmpmbec (http://tools.immuneepitope.org) for MHC I binding

and arb [30] for MHC II binding.

Development of an Interaction Potential for Immune
Receptor-Ligand Binding

A separate empirical pairwise interaction potential between the

immune receptor and its ligand was developed for both the B-

and T-cell receptor, based on crystal structures from the Protein

Data Bank [20] using a similar method to that used by von

Eichborn et al. [21]. A statistical analysis was drawn from 237

antibody-antigen and 33 MHC-TCR non-redundant crystal

structures. Interacting amino acid pairs between receptor and

ligand were defined as all residues having no more than 8 Å

distance between their Ca atoms. We compared the observed

crystal structures to random structures built to represent non-

binding receptor ligand pairs. To generate the random structures,

the peptide sequences of the MHC-peptide complex or the

antigen were replaced by random sequences with the same amino

acid distribution that was observed on general protein surfaces.

The number of interacting pairs was counted for both the crystal

and the random structures and the numbers were subtracted

using the formula:

M(x, y)~Ccrystall(x, y){Crandom(x, y) Vx, y[AA

where M is the interaction potential scoring matrix and Ccrystal

and Crandom are the counts for crystal and random structures,

respectively. From this calculation, we gained an interaction

potential (IP) specific for the type of immune receptor-ligand-

complex; IPT for T-cell receptors and IPB for B-cell receptors.

Within IPT and IPB, positive values represent an increased

likelihood of observing the corresponding amino acid pair in the

interface of the complex, while negative values represent a

decreased likelihood. IPT and IPB were normalized to a

maximum value of 1.0 and then used to score the crystal and

artificial structures for validation.

Application of the Interaction Potential to the Simulation
Whenever an active T-cell meets an APC presenting a peptide

on a matching MHC type, their interaction probability is

calculated using IPT. To define which residues of the immune

receptor and the ligand are in contact with each other, we created

contact matrices from crystal structures analogously to the work of

Rapin [4]. Again, the interacting amino acid pairs between

receptor and ligand were defined as all residues having at most 8 Å

distance between their Ca atoms. For each crystal structure, a

matrix composed of ones and zeros representing interacting and

non-interacting residues was created. In a next step the interaction

probability was calculated as the sum of the IPT matrix values for

all interacting residues that is normalized by the number of

interactions.

As the number of MHCs with known structure is limited, MHC

sequences not having been crystallized were mapped to the closest

related MHC structures for the definition of the contact residues.

Contact matrices were built from MHC-peptide-TCR complexes

containing HLA_A02 (pdb-ID: 1OGA), HLA_B08 (1MI5),

HLA_B35 (3MV7), HLA_B44 (3DXA), and HLA_DRB1-4

(1J8H). For the interaction between a BCR or an antibody and

its antigen, we used one high-resolution structure of an antibody

binding to a peptide (2B1H) to create the contact matrix, as the

injected antigens are peptides and their tertiary structure can

probably be neglected.

Steps of the Simulation
Starting the simulation, the different behaviors and movements

of the cells are executed in discrete time steps. For the purpose of

modeling peptide vaccination to treat cancer with VaccImm, the

timeline of observed phenomena is as follows:

1. The peptides are injected emulsified in adjuvant. The adjuvant

is modeled as a danger signal activating macrophages.

2. APCs take up the peptides by phagocytosis. In the case of

macrophages and DCs, phagocytosis is unspecific, while B-cells

have to recognize the antigen for ingestion. The probability of

recognition is calculated using the B-cell contact matrix and

IPB high or IPB low depending on the antigen.

3. Peptides are processed and presented by the APCs. The

probability of presenting a certain peptide by a specific MHC is

calculated using the position-specific scoring matrices described

above.

4. The peptides presented on MHC I and MHC II can be

recognized by TC- and TH-cells, respectively. The probability

for recognition is calculated using IPT together with the contact

matrix for the respective MHC. Reacting T-cells will be

activated to duplicate and create memory cells.

Immune-Specific Interaction Potentials for VaccImm
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5. The humoral and the cytotoxic immune response begin.

Activated TC-cells might recognize the cancer cells, while the

probability of interaction is calculated again via IPT and the

respective contact matrix. Successful interactions between TC-

cells and cancer cells will kill the cancer cells and therefore the

tumor will be eliminated. B-cells stimulated by TH-cells start

duplicating into memory cells and antibody-producing plasma

cells. Plasma cells secrete antibodies that clear the antigen.

This model is quite generic and flexible and captures the main

mechanisms in the tumor-immune interaction. As an output of the

model, cell lines and their respective activation states can be

followed over time.

Input Data
For VaccImm, all sequence-based input parameters needed to

be changed with respect to C-ImmSim. Within the present

analysis, we focus on urological tumors of kidney and prostate, but

the program is very general and able to simulate any solid tumor.

As input, the model needs the amino acid sequences of the

cancerous proteins, the MHC alleles, and the self-peptides used in

thymus selection.

Cancerous proteins were selected based on expression data from

patients suffering from prostate or kidney tumors. [31]. Any gene

that is over-expressed at least 2 times in the analyzed cancerous

tissue with respect to healthy control tissue was chosen as a cancer

target. The respective protein sequences were collected from the

UniProt. [32]. Peptides presented on MHC I or MHC II

originating from the protein sequences were predicted using

prediction algorithms (consensus [33] for MHC I, smm_align [34] for

MHC II) from the Immune Epitope Database [35]. These

predicted peptides are presented by the MHCs in the simulation.

The same peptide sequences are used for injection in immune

therapy within the simulation. As short peptides usually do not fold

into complex secondary structures, the injected peptides are used

directly as epitopes for recognition by B-cells and antibodies.

One part of the simulation is the selection of T-cells within the

thymus. If any T-cell receptor is strongly reactive to self-peptides,

the T-cell will be eliminated. To define the self-peptides, we

downloaded all peptide sequences eluted or known to bind to

MHC I or MHC II from the IEDB [35]. To decrease the number

of self-peptides and therefore increase the speed of the simulation,

we used only the 50 self-peptide sequences most similar to each

injected peptide. All other self-peptide sequences having a lower

similarity will not interfere with the injected peptides and thus are

neglected.

The MHC sequences for all different alleles were downloaded

from the UniProt [32], 61 for MHC I and 20 for MHC II. All

TCR and BCR sequences were generated at random when the

respective cell was introduced into the simulation.

Any other parameter not pertaining to the amino acid sequence

implementation are left unchanged with respect to C-ImmSim [3].

Supporting Information

Figure S1 Interaction Potential IPB for All Antibody/
Antigen Complexes. A: The newly developed interaction

potential IPB for all antibody/antigen complexes. B: Color code

and color frequency for interaction potential map.

(TIFF)

Figure S2 Interaction Potential IPB high for Antibody/
Antigen Complexes, High Glycine Frequency. A: The

newly developed interaction potential IPB high for antibody/

antigen complexes with antigens of high glycine frequency

(.6.9%) within the interface. B: Color code and color frequency

for interaction potential map.

(TIFF)

Figure S3 Interaction Potential IPB low for Antibody/
Antigen Complexes, Low Glycine Frequency. A: The newly

developed interaction potential IPB low for antibody/antigen

complexes with antigens of low glycine frequency (,6.9%) within

the interface. B: Color code and color frequency for interaction

potential map.

(TIFF)
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