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Life is change – dynamic modeling quantifies it 

Martin Falcke 

Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13156 Berlin, Germany 

The essence of life is change, as can be seen in processes as diverse as metabolism [1], beating of the 
heart [2], reproduction and evolution, or the thinking process of the human brain [3]. The patterns 
and rhythms of our lives are intrinsically linked to constant changes in our bodies and environments 
at all scales from the states of molecules, to cells, organs, organisms and entire ecosystems. 
Inanimate nature also undergoes change, obviously – it is considered after all to be the source of life 
– but there is a significant difference. Inanimate systems can attain a thermodynamic equilibrium and 
a sort of stasis. In the living world, the end of change means the end of life. 

Science aims to capture an impression of change, to measure it, record it or scientifically formulate it. 
However, all the experimental tools and devices we have to do so capture merely snapshots of the 
state of a system at a moment in time. Even the fastest high-speed cameras record a series of 
snapshots, and it is only through the neuronal processing underlying human vision that we 
experience the sequence of snapshots as continuous change much like a movie. Hence, all our 
measurements and videos show sequences of states, not the changes themselves. A simple example 
such as a moving body illustrates the challenge of capturing dynamics: What changes is the position 
of the object. Looking at a specific position, the object is for some length of time not yet there or 
already past it. Only for a point in time it actually occupies this position. So how can we draw value 
from the snapshots we measure, if they are valid only for a moment? We do so only by assuming that 
the snapshots are connected by a continuous transition. 

 

  

 

 

When we deduce a continuous time course of observables from our sequence of snapshots, we can 
draw confidence (in a reflection of our systems behaviour) from mathematics. The mathematical 
formulation of change starts from our ability to record snapshots, or in our example, positions. It 
determines the difference of two positions in relation to the difference points in time at which these 
positions were measured (see Figure 1). The ingenious step of abstraction accomplished by 
differential calculus (I. Newton, G.W. Leibniz late 17th century, A.-L. Cauchy early 19th century) was to 

Figure 1 Derivatives quantify change, if they exist. The macroscopic example shows the position during motion. The 
position at time t1 is p1, analogously p2. To capture change, we calculate (p1-p2)/(t1-t2). If we choose both t1 and t2 
closer to t, the difference t1-t2 approaches 0. So does p1-p2. The ratio (p1-p2)/(t1-t2) attains a value which we call the 
derivative of the position. It is equal to the velocity at time t. Excitation energy levels of an electron in an atom 
represent the microscopic example. The transition from e1 to e2 happens at time t. Here again, t1-t2 approaches 0, if 
we move both t1 and t2 closer to t. However, e1-e2 stays finite and does not approach 0. The value of (e1-e2)/(t1-t2) 
diverges to infinity. We conclude that the derivative does not exist. 



 2 

Large ensembles of molecules and individual ones have different relationships to time. The 
change of state in time can be predicted for macroscopic objects, but not for microscopic 
ones. There is something of a parallel in cultural history: A paradigm shift in the self-
perception of humans from ‘one of many in an ensemble’ to ‘many unique individuals’ (the 
emergence of personality) coincides with a similar radically new  perception of time. The 
perception of time expressed in early religions was cyclic – day, year, life span. There was 
neither history nor development. At the same time, human beings were considered as one of 
many. These religions did not assume that the individual is noticed as such by the deity, and 
consequently individuality or personality was not a value in itself. Judaism established the 
direct dialogue between the Jewish god and each individual human being. The person was 
noticed as such by god, individuality became a value. At the same time, Judaism broke out of 
the cyclic view on time and changed its perception to a directed history with a beginning and 
an endpoint. The discovery of the individual changed the perception of time as the discovery 
of the microscopic world changed scientific ideas on dynamics.  

decrease the increment of time between the measurements towards 0, which turns the ratio of the 
differences into the derivative of the position with respect to time [4]. Differential calculus provided 
us with a quantitative scientific definition of change and created classical mechanics - a theory 
revealing the mathematical structure behind mechanical observations, and a theory with thus far 
unprecedented explanatory power. 

This calculus enables us also to predict all later states of a system if we know its state at one moment 
in time [5]. This predictability follows from the existence of derivatives (see Fig. 1) [5]. Measurable 
quantities of macroscopic objects like position or temperature change continuously and hence, their 
time derivatives exist and the time course of their states can be predicted [6]. 

Microscopic objects such as molecules or small groups of molecules don't behave this way. They 
jump between states that are assigned discrete values, like `open’ or ‘closed’ for ion channels or 
different levels of excitation for electrons in molecules [7]. Derivatives do not exist at the time of the 
transition (Fig. 1). Neither is the state of microscopic objects predictable. They are in a specific state 
with some probability but not with predictable certainty [7]. Notably, the time derivatives of these 
probabilities exist in the microscopic world, and their values can be predicted [8]. Thus, mathematics 
captures change either as differential equations for the state of macroscopic objects or as stochastic 
process in the case of microscopic ones. 

The lack of certainty on the state of a microscopic object involves frequent changes of state. Indeed, 
a single molecule in a solution changes its state, position or velocity incessantly due to interactions 
with all the other molecules in its vicinity. The resulting fast random dynamics has the molecules 
explore the whole range of states compatible with the macroscopic properties of the solution – all 
positions, velocities, energy levels etc. [7,8]. This exploration of all possible microscopic states is 
called ergodicity [7,8]. At the same time, the emerging macroscopic properties like temperature and 
concentrations change much more slowly or remain constant [8]. 

 

We have dedicated this issue of ‚Current Opinion in Systems Biology‘ to the dynamic mathematical 
modelling in the life sciences since dynamics are intrinsic to life, and the differential equations and 
stochastic processes used by mathematical models are their only quantitative formulation. Dynamic 

Box 1: A feuilleton on time and individuality. 
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modelling has been successfully applied to biological concepts on all structural levels. In some 
examples, dynamic theory has been pivotal in understanding of processes of life or has predicted the 
outcome of experiments. 

Modelling is particularly useful for spatio-temporal processes like cell polarization and waves. 
Complex patterns formed through waves – like e.g. rotating spirals – can be only explained by 
dynamic theory [9-14]. They occur as the propagation of a specific state. Examples are the 
depolarized state of the membrane potential during propagation of action potentials along axons 
[13,14], an increase of the cAMP concentration spreading through populations of Dictyostelium 
discoideum [12], a range of high cytosolic Ca2+ concentration travelling inside cells like oocytes 
[11,15], hepatocytes, myocytes and others and even intercellularly in astrocyte networks, epithelia, 
liver and during development [16,17]. The contribution by Rappel and Edelstein-Keshet illustrates the 
state of modelling of cell polarization as one example of a spatio-temporal phenomenon [18]. 

Dynamic modelling is mandatory for oscillatory, repetitive irregular or chaotic behaviour. Empirical 
experimental methods can identify components of the system but only mathematical models allow 
establishment of the conditions required for oscillations. The most spectacular examples have been 
presented in the field of neurobiology. The action potential of single neurons may consist of 
sequences of depolarization spikes, bursts with a variety of internal dynamics [19-21] or even chaotic 
behaviour [22]. Dynamic theory provided a classification and systematic understanding of these firing 
patterns in terms of bifurcations of stationary states and limit cycles.  

Two classical systems of modelling in cell biology are represented by intracellular Ca2+ dynamics and 
p53 oscillations. New ideas of specifying their dynamics have recently been published [23-25]. In 
both cases, modelling has matured to generating hypotheses and suggesting experiments pivotal for 
mechanistic understanding. In both cases, noise is at the centre of discussion at present. Repetitive 
pulses may occur due to oscillatory dynamics or due to an excitable regime with repeated noise 
initiating spikes. While the difference in the time courses of the pulsing concentration may appear of 
little significance, the difference of predicted parameter dependencies between the two 
mathematical assumptions is substantial. The contributions by Sneyd and Dupont [26] and Batchelor 
and Loewer [27] review the state of modelling for these two systems. Martinez-Corral and Garcia-
Ojalvo present a review on how this pulsatile signalling controls its effectors [28]. 

Mathemtical models are a means to integrate data from different sources and experiments. At the 
same time, they can be formulated in a modular and iterative way and thus in the end capture very 
complex systems and problems. Kirschner et al. review such an approach for disease modelling, 
specifically M. tuberculosis (Kirschner et al.). 

Frequently, mathematical models provided the concept for understanding cell behaviour and 
complex data. One of the most successful concepts was the prediction of ultrasensitivity by 
Goldbeter and Koshland [29]. They discovered a principle that applies to many binary biological 
processes and helps decision-making processes for example on cell fate or metabolic states. This 
general principle has been experimentally confirmed in many contexts by now. 

What are the current challenges of dynamic modelling? I would like to mention here only two fields 
of research: (the growing number of layers of) gene transcription and translation regulation and cell-
to-cell variability. Their conceptual importance to biology is self-evident. It seems likely that they will 
also gain conceptual importance to biology’s mathematical formulation, since recent data indicate 
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that the relation between erratic single cell behaviour and reliable organ function mirrors the 
powerful concepts from statistical physics we have mentioned above. 

In terms of dynamical systems theory, the state of each cell can be characterized by a point in a 
coordinate system the axes of which represent the dynamic variables like concentrations, volume, 
membrane potential, etc. The coordinate system spanned by all dynamical variables is called phase 
space. Each cell type (and their states like cancerous, senescent, …) defines an attractor, which is a 
sub-region of the phase space comprising the values actually realized by cellular dynamics [30,31]. 
This is the basis of Waddington’s landscape concept [32] in mathematical terms. Given the 
combinatorial complexity of the genome of a species together with the nonlinear dynamics of 
cellular processes, the number of possible attractors for a given cell would be so large that reliable 
selection of a specific attractor – being a specific cell state or cell type – appears unlikely. Epigenetics 
taught us that most of the time the majority of all possible combinations are not realized. That 
separates cell states from each other with respect to the expressed and functional proteome and 
thus renders them unique and distinguishable. In some cases, distinction of cell states might be 
difficult due to frequent differentiation process [33] and epigenetic heterogeneity [34]. But the 
questions are now: Can we identify attractors/cell states with epigenetic states, or do epigenetic 
states in general allow for several attractors [30,35-37]? Dynamic systems theory allows for both 
possibilities, but in the former case understanding state changes would be identical with 
understanding the change of epigenetic states. This is a current challenge for epigenetic modelling. 
The contribution by Ringrose and Howard reviews modelling of epigenetic and gene regulatory 
processes involved in these dynamics [38]. 

The same concept also offers a new angle on understanding differentiation. We know from dynamic 
theory that several attractors may coexist under the same environmental conditions. Switching 
between these attractors may occur along different trajectories in phase space, some more likely 
than others, but does not require a specific pathway. It thus accounts for basic observations in cell 
biology like redundancy of pathways or processes, and multifactorial causalities [36]. The switch may 
be caused by noise (biochemical, transcriptional, etc.) or transient changes of relevant parameters 
[39-42]. Of course, this includes state changes due to regulation through signalling pathways and 
other more targeted processes (i.e. rather bifurcations in mathematical terms). The contribution by 
Jolly and Levine reviews modelling in that context, specifically modelling of the epithelial-
mesenchymal transition. 

Cell-to-cell variability is a basic observation in each lab, but despite its ubiquity it has gained 
attention only recently with the advent of single cell biology. Variability is substantial with respect to 
the proteome [43,44], the transcriptome[44], signalling [23,45] and function [46,47]. Starting from a 
functional man made engineering design, function would be lost, if we increase or decrease the 
number of its components in an unrelated way by a factor of 2. However, this is less than the 
proteomic variability we find in cells [30,43,44]. Given such a great variability on the level of the cell’s 
proteome, what are the design principles functional cells obey? It will probably take a while until we 
understand the underlying principles. However, we can start right now to use observed variability as 
a selection criterion for models. 

It appears to be sensible to relate cell variability to the attractor concept. The range of variability 
corresponds to the extension of cell state attractors in phase space in this view. Experimental 
exploration of these ideas revealed that individual cells do not occupy a single fixed point but move 
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about the attractor belonging to their cell state [30,35,39,40]. Hence, cell variability is not a static 
phenomenon. This is very evocative of ergodicity and indeed, this concept has been linked to these 
observations [44]. Ergodicity comes along with unpredictability of the microscopic states – the cell 
state in our case. Will we gain major insights trying to understand the state of a single cell? Or do we 
not rather reach predictable results by looking at the property of the attractor confining single cell 
behaviour? 

How do attractors become tangible or observable? Cell variability offers an easily accessible way of 
exploring attractor properties. In each experiment recording single cell data, we get as many records 
of single cell behaviour as there are cells in the experiment. Relating a dynamic property of each cell 
to another property of the same cell reveals attractor features. If these dynamic properties are 
protein concentrations [30], we directly obtain a map of parts of the attractor in the concentration 
space [30]. Thus protein concentration distributions are a macroscopic characterization of attractors 
[35]. The contribution by Komin and Skupin elaborates on this idea.  

Mapping the attractor on the molecular level is experimentally elaborate. We can also choose an 
easier approach. The existence of an attractor is equivalent to the existence of algebraic relations 
between protein concentrations or other dynamic variables describing cell behaviour. These dynamic 
variables include functional or operational properties like spike frequencies in neurons or cell 
velocities of motile cells. If we find an algebraic relation between them, we have found a property 
defining the attractor (see e.g. [23] for an example from signalling or [47] from cell mechanics). This 
relation is at the same time an operational rule or input-output relation of the cell. 

In the long term, the task of mathematical modelling is to turn biology into a more quantitative 
science. This requires concepts as general as possible from which we can derive equations describing 
cell behaviour, and it requires mathematical properties to become part of the definitions of cell types 
and basic observations. These quantitative definitions have to account for variability. The attractor 
concept and the operational relations and distributions defined by attractors may become a 
quantitative definition of the cell type, pathway or cellular subsystem accommodating cell variability 
(see e.g. the Eqs. (1, 2) in[23] or Figure 4 in [47]). 

These are fascinating times with respect to the appearance of mathematically motivated concepts 
for biology. The teaser in box 1 relates intellectual history to how we might experience them: 
Individuality and the perception of progress are related and individuals change faster than society. 
Many individual labs have picked up these concepts already and put them to the test. It will require 
more individual efforts to verify their applicability and - if successful - to reveal their potential to turn 
cell biology into a much more quantitative science. 
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