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A key goal of developmental biology is to understand how a single cell 
transforms into a full-grown organism comprising many different cell types. 
Single-cell RNA-sequencing (scRNA-seq) is commonly used to identify cell 
types in a tissue or organ1. However, organizing the resulting taxonomy of cell 
types into lineage trees to understand developmental origin of cells remains 
challenging. Here we present LINNAEUS (LINeage tracing by Nuclease-Activated 
Editing of Ubiquitous Sequences)—a strategy for simultaneous lineage tracing 
and transcriptome profiling in thousands of single cells. By combining scRNA-
seq with computational analysis of lineage barcodes, generated by genome 
editing of transgenic reporter genes, we reconstruct developmental lineage 
trees in zebrafish larvae, and in heart, liver, pancreas and telencephalon of adult 
fish. LINNAEUS provides a systematic approach for tracing the origin of novel 
cell types, or known cell types under different conditions. 

 

Measuring lineage relationships between cell types is important for understanding 

fundamental mechanisms of cell differentiation in development and disease2,3. In early 

development and in adult systems with a constant turnover of cells, short-term lineage 

predictions can be computed directly on scRNA-seq data by ordering cells along 

pseudo-temporal trajectories according to transcriptome similarity4-6. However, the 

developmental origin of cells in the adult body cannot be identified using these 
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approaches alone. Several approaches for lineage tracing exist. Genetically encoded 

fluorescent proteins are widely used as lineage markers7,8, but due to limited spectral 

resolution, optical lineage tracing methods have mostly been restricted to relatively 

small numbers of cells. Pioneering studies based on viral barcoding9,10, transposon 

integration sites11, microsatellite repeats12, somatic mutations13,14, Cre-mediated 

recombination15, and genome editing of reporter constructs16,17 have used sequence 

information to increase the diversity of lineage labels. However, these methods have 

not been coupled with single-cell transcriptome sequencing and therefore do not 

provide any information on cell type. 

Here we present LINNAEUS for simultaneous measurement of single-cell 

transcriptomes and lineage markers in vivo. The approach is based on the observation 

that, in the absence of a template for homologous repair, Cas9 produces short 

insertions or deletions at its target sites, which are variable in their length and 

position16,18,19. We reasoned that these insertions or deletions (hereafter referred to as 

genetic “scars”) constitute heritable cellular barcodes that can be used for lineage 

analysis and read out by scRNA-seq (Fig. 1a). To ensure that genetic scarring does 

not interfere with normal development, we targeted an RFP transgene in the existing 

zebrafish line zebrabow M, which has 16-32 independent integrations of the transgenic 

construct20. Since these integrations are in different genomic loci (as opposed to being 

in tandem), we could make sure that scars cannot be removed or overwritten by Cas9-

mediated excision. We injected Cas9 and an sgRNA for RFP into 1-cell stage embryos 

in order to mark individual cells with genetic scars at an early time point in development 

(Fig. 1b). Loss of RFP fluorescence in injected embryos served as a direct visual 

confirmation of efficient scar formation (Supplementary Fig. 1). At a later stage, we 

dissociated the animals into a single cell suspension and analyzed the scars by 

targeted sequencing of RFP transcripts (Online Methods). Simultaneously, we 

sequenced the transcriptome of the same cells by conventional scRNA-seq using 

droplet microfluidics21 (Fig. 1c and Supplementary Fig. 2, 3). 

We analyzed single cell transcriptomes of >70,000 single cells from dissociated 

larvae at 5 days post fertilization (dpf). On average, we detected ~3000 unique 

transcripts from ~700 detected genes per cell (Supplementary Data 1). Unsupervised 

clustering of single cell transcriptomes22 revealed 70 groups of cells with distinct gene 

expression programs (Fig. 1d, Supplementary Fig. 4). We assigned these clusters to 

cell types based on differentially expressed genes (Supplementary Fig. 5, 
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Supplementary Data 2, Online Methods). We found that Cas9 generated hundreds of 

unique scars per animal when targeting a single site in RFP (Fig. 1e, f, Supplementary 

Fig. 6), suggesting that analysis of genetic scars constitutes a powerful approach for 

whole-organism lineage analysis. Bulk analysis of 32 individual larvae revealed that 

some scar sequences are more likely to be created than others, probably through 

mechanisms like microhomology-mediated repair23 (Fig. 1e). The scars with the 

highest intrinsic probabilities may be created multiple times per embryo and are 

therefore uninformative for lineage reconstruction. We therefore excluded the most 

frequent scars (p>0.01) from further analysis. We found that scarring continued until 

around 10 hours post fertilization, a stage at which zebrafish already have thousands 

of cells (Fig. 1g). Thus, our injection-based approach for Cas9 induction allowed us to 

label cells in an important developmental period during which the germ layers are 

formed and precursor cells for most organs are specified. 

We detected variable numbers of scars in single cells, with the average number 

of scars per cell ranging from ~2 for erythrocytes to ~5 for epidermal cells.  

(Supplementary Data 3). This indicated that some lineage information was lost due to 

the sparsity of scRNA-seq data. To investigate this issue in more detail, we analyzed 

single cells from the offspring of Cas9-injected fish (Supplementary Fig. 7). In these 

fish, all cells (independent of the cell type) have the same scar profile, as they are 

derived from the same pair of germ cells. This analysis confirmed that scar detection 

efficiencies are cell type dependent, which probably reflects differences in cell size or 

promoter strength. Furthermore, we observed some variance in scar detection 

efficiency between the different transgenic integrations, which may be linked to 

genomic features of the integration sites. Notably, we did not find any highly expressed 

scars that were undetectable in specific cell types, suggesting that developmental 

silencing of specific integrations is no major concern. 

To validate that genetic scars contain useful information about lineage 

relationships, we calculated enrichment or depletion of scar connections between pairs 

of cell types (Supplementary Fig. 8; Online Methods). Clustering cell types by scar 

connection strength revealed three groups, each of which contains either mostly 

ectodermal or mesendodermal cell types (Supplementary Fig. 9). We suggest this 

pattern was caused by a small number of scars that were created during the first cell 

divisions and then expanded locally. These groups of cell types form contiguous 

domains on the zebrafish fate map24, but do not strictly correspond to germ layers, 
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since the domain boundaries of scar clones do not necessarily align with the 

boundaries between germ layers.  

 Next, we set out to analyze the data at higher resolution and reconstruct lineage 

trees on the level of single cells instead of cell types. As our previous filtering of 

frequent scars removed scars that may have been created multiple times, the lineage 

tree should fulfil the maximum parsimony principle, with every scar being created 

exactly once. Indeed, maximum parsimony approaches have previously been used for 

inferring trees from CRISPR/Cas9 lineage data16. Earlier studies indicated that missing 

data does not need to be detrimental to maximum parsimony tree building methods25. 

However, such studies typically focused on a regime with an order of magnitude less 

taxa than we have cells, and more characters than we have scars. Using two simulated 

datasets, we found that Camin-Sokal maximum parsimony failed to reconstruct the 

correct tree for our system (Supplementary Fig. 10, 11). While it might be possible to 

solve this issue using modified versions of maximum parsimony or other established 

tree reconstruction algorithms, we developed an algorithm that is custom-tailored to 

our experimental system. Our custom-built strategy also facilitated integration of a 

filtering step to remove spurious connections. We therefore developed a computational 

method that fulfills the maximum parsimony criterion and allows for reconstruction of 

the correct tree in our system even if not all scars are detected in every cell 

(Supplementary Fig. 10, Online Methods, Supplementary Note 1). Our algorithm is 

based on the observation that there is a correspondence between the underlying 

lineage tree and the resulting scar network graph, a representation of all pairwise 

combinations of scars that are experimentally observed together in single cells (Fig. 

2a). If all scar connections are detected, the scar that is created first has the most 

connections in the scar network graph, followed by scars that were created next, 

enabling lineage tree reconstruction in an iterative manner (Fig. 2b). To remove 

spurious connections, caused by cell doublets for example, scar connections that do 

not occur in enough cells were not taken into consideration (Online Methods, 

Supplementary Note 1). Using a simulated dataset with realistic parameters, we found 

that our computational method correctly reconstructed lineage trees (Supplementary 

Fig. 11). Finally, we placed all single cells in the lineage tree based on the detected 

scars (Fig. 2c). Scar dropouts meant that we did not have full lineage information about 

every single cell. However, the reconstructed lineage tree allowed us to infer a large 

part of the missing scar information (Supplementary Fig. 12). The resulting single cell 
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lineage trees were then converted to a condensed representation for easier 

interpretation (Fig. 2d). 

For the 5 dpf larvae we found that, as expected, the major developmental 

lineages shown in Fig. 1d separated at least partially from each other in the 

reconstructed lineage trees (Fig. 2e, Supplementary Fig. 13, 14). This data can be 

explored at different levels of granularity, and we decided to next focus on the cell 

types of the lateral plate mesoderm (Fig. 2f). We found that the different blood cell 

types have a shared lineage, but we observed that the erythrocytes are also found in 

an additional branch that does not contain any immune cells. This observation probably 

reflects the transition from primitive to definitive hematopoiesis in early zebrafish 

development, as primitive hematopoiesis produces mostly erythrocytes, whereas 

definitive hematopoietic stem cells are capable of generating all blood cell types26. The 

primitive and definitive hematopoietic stem cells are known to have different 

developmental origins. We found that the putative definitive hematopoietic cells have 

a shared lineage origin with endothelial cells (Fig. 2f, Supplementary Fig. 14), which is 

to be expected, as the definitive hematopoietic stem cells (but not the primitive ones) 

are derived from endothelial cells of the dorsal aorta. For endodermal and 

neuronal/neural crest cell types, we observed a similar structure of partially cell-type 

specific lineage branches (Supplementary Fig. 15). Due to the stochastic nature of cell 

labeling in LINNAEUS, scar creation is not synchronized with mitosis. It is therefore 

important to note that reconstructed lineage trees do not necessarily contain all cell 

divisions (Supplementary Fig. 11). Furthermore, early zebrafish development is highly 

variable27. We can therefore not expect to find exact correspondence of early lineage 

trees for all cell types in different animals. 

In another set of experiments, we applied LINNAEUS to dissected organs of 

adult fish (Supplementary Data 4 and 5). Analysis of >40,000 cells from the 

telencephalon, heart, liver, and the primary pancreatic islet by scRNA-seq allowed us 

to identify many different cell types in these organs (Fig. 3a, Supplementary Fig. 16, 

17). We first analyzed the resulting lineage trees at low granularity, which revealed a 

strong separation of the individual organs (Fig. 3b and Supplementary Fig. 18). 

However, we also detected several cell types, mostly from the immune system, that 

were present in multiple organs. We found that, as expected, the immune cells from 

different organs were grouped together in the lineage tree (Fig. 3c), which provided 

additional validation of our approach for scar filtering and lineage tree reconstruction. 
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We next zoomed into cardiac and pancreatic cell types (Supplementary Fig. 19). In 

agreement with literature, we detected an early separation of myocardial and 

endocardial lineages28. In the primary pancreatic islet, we observed scars that cover 

all three major endocrine cell types (alpha, beta, delta).  However, we also found a 

smaller scar clone (scar 1204) in which delta cells are strongly underrepresented 

compared to the other scars, suggesting that the progenitors carrying this scar 

predominantly contributed to the alpha and beta cell lineages (Supplementary Fig. 19).  

Further studies would be necessary to corroborate potential biases of endocrine 

progenitors towards particular cell fates. 

 Related single cell lineage tracing methods based on CRISPR/Cas9 technology 

have recently been used to study brain development as well as the clonal history of 

different organ systems in the zebrafish29,30. An important advantage of CRISPR/Cas9 

lineage tracing compared to competing technologies, such as viral barcoding and other 

inducible sequence-based lineage tracing methods, is the ability to move beyond 

clonal analysis and to computationally reconstruct full lineage trees on the single cell 

level. This is made possible by our computational approach for tree reconstruction that 

is robust to dropout events under realistic experimental conditions, and by our 

experimental strategy that uses independent scarring sites whose scars, once created, 

cannot be changed again. Within a single experiment, data analysis can be performed 

at different levels of granularity, from germ layers to organs and cell types. Our 

combined experimental and computational platform thus provides a powerful strategy 

for dissecting the lineage origin of uncharacterized cell types and for measuring the 

capacity of lineage trees to adapt to genetic or environmental perturbations. Our 

approach is based on an existing transgenic animal with multiple integrations of a 

transgenic construct, which should facilitate adaptation of the method to other model 

systems. 

The observation that Camin-Sokal maximum parsimony failed to reconstruct the 

correct tree for our system (Supplementary Fig. 10, 11) serves as a cautionary note 

regarding computational analysis of CRISPR/Cas9 lineage data. However, additional 

studies would be necessary to systematically compare our algorithm to existing 

methods for tree reconstruction under different parameter regimes. Developing a 

general statistical framework for disentangling biological and technological variability 

of CRISPR/Cas9 lineage tracing remains another important open challenge for the 

future. We anticipate that future modifications of the experimental platform, such as for 
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instance inducible systems, will enable longer periods of lineage tracing and molecular 

recording of cellular signaling events during cell fate decisions. 

 

Methods  

Methods and any associated references are available in the online version of the 

paper. 
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Figure legends 
 
Figure 1. Using the CRISPR/Cas9 system for massively parallel single cell 
lineage tracing. (a) Cas9 creates insertions or deletions in an RFP transgene. These 

genetic scars can be used as lineage barcodes. Using the fish line zebrabow M, which 

has 16-32 integrations of the RFP transgene, enables us to record complex lineage 

trees with a single sgRNA. Simultaneous transcriptome profiling by scRNA-seq allows 

unbiased cell type identification. (b) Sketch of the experimental protocol. Injection of 

Cas9 and sgRNA for RFP into the zygote marks cells with genetic scars at an early 

developmental stage. Scars can be read out together with the transcriptome by 

scRNA-seq at a later stage. (c) Approach for simultaneous detection of scars and 

transcriptome from single cells. Cells are captured by droplet microfluidics, followed by 

lysis, reverse transcription, and amplification. After amplification, the material is split 

and processed into a whole transcriptome library and a targeted RFP library for scar 

detection. (d) t-SNE representation of scRNA-seq data and identified cell types for 

dissociated zebrafish larvae (5 dpf, n=7 animals). Cell types were grouped into 8 

categories as indicated by the color code. (e) Probability distribution of scars, 

measured in bulk experiments on the DNA level. Pie chart shows fractions of different 

types of scars (deletion, insertion, single nucleotide polymorphism (SNP), complex 

scars). (f) Length distributions for deletions and insertions for the data shown in (e). 

(g) Scarring dynamics as measured on the DNA and RNA level, with exponential fit. 

 
Figure 2. Computational reconstruction of lineage trees on the single cell level. 
(a) In a developmental lineage tree (top), each scar can be identified by a unique 

number corresponding to its ranking in the bulk scar frequency distribution (Fig. 1e). 

Newly created scars are indicated in black font. The resulting scar tree (middle), a 

reduced representation of the order of scarring events, can be represented as a 

network graph (bottom). In a scar network graph, each node corresponds to a different 

scar, and pairs of scars that are co-expressed in single cells are connected by gray 

lines. In LINNAEUS, we experimentally measure scar network graphs, based on which 

we computationally reconstruct the underlying lineage tree. (b) Cartoon of the 

computational approach. Network graphs allow reconstructing the order of scar 

creation events in an iterative approach. The first scar is determined as the one with 

the highest connectivity (red arrow). Upon removal of the first scar and its connections, 
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the following scars are identified as the most highly connected ones in the reduced 

network. For details see Online Methods. (c) After the scar tree has been built, we 

position all individual cells in the tree according to their scar profile. Incomplete scar 

detection efficiency may lead to loss of information in single cells (black numbers: 

detected scars; gray crossed out numbers: missed scars). As a consequence, some 

cells cannot be placed all the way down to the lowest branch of the tree (example: red 

cell, in which scar 41 and 75 were not detected). However, some missing scars can be 

reconstructed (example: blue cell, in which scar 41 can be inferred). See also 

Supplementary Fig. 12. (d) Sketch of a simple single cell lineage tree with two cell 

types (red, blue). Single cell lineage trees can be represented in a condensed form by 

indicating fractions of cell types as pie charts (cumulative with respect to the branches 

below). (e) Lineage tree for one 5 dpf larva. Pie charts are plotted small for n<50, 

medium for n≥50, and large for n≥1000. Color code for cell types as in Fig. 1d. Scars 

with creation probability ≥0.001 and scars that were detected in more than 1 larva were 

excluded from the analysis. In general, developmental lineages separate well in the 

tree. However, since scarring ends at ~10 hours post fertilization, the end points of the 

branches may still give rise to multiple cell types in multiple tissues. (f) Lineage tree 

for one 5 dpf larva, zoomed into lateral plate mesoderm (see color code). The tree 

structure was determined based on the whole dataset (e). 

 

Figure 3. Single cell lineage analysis of adult organs reveals hierarchies of cell 
fate decisions. (a) t-SNE representations of scRNA-seq data for dissociated organs 

from adult zebrafish (red: heart, green: pancreas + liver, blue: telencephalon; n=3 

animals). (b) Lineage tree for organs from one adult. Pie charts are plotted small for 

n<50, medium for n≥50, and large for n≥1000. Scars with creation probability ≥0.01 

were excluded from the analysis. Color code as in (a). (c) Lineage tree zoomed into 

immune cell types from same adult as (b) (see color code). As expected, immune cells 

from different organs cluster together in the lineage tree, even though the sequencing 

libraries for the different organs were prepared separately. This observation is an 

additional important validation of the scar filtering pipeline, since it shows that even 

small cell populations such as these immune cells do not acquire scars from other cells 

types in their organ of origin by mechanisms such as cell doublets or sequencing 

errors. 
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Online Methods 

 

Zebrafish lines and animal husbandry 

We used the transgenic zebrafish line zebrabow M20 for LINNAEUS. This line has 

multiple integrations of a transgenic construct that expresses RFP from the ubi 

promoter, which is constitutively active in all cell types. Fish were maintained according 

to standard laboratory conditions. All animal procedures were conducted as approved 

by the local authorities (LAGeSo, Berlin, Germany) under license number G0211/16. 

We set up crosses between zebrabow M adults with high RFP fluorescence, and we 

injected the embryos at the 1-cell stage with 2 nl Cas9 protein (NEB, final concentration 

350 ng/µl) in combination with an sgRNA targeting RFP (final concentration 50 ng/µl, 

sequence: 

GGTGTCCACGTAGTAGTAGCGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGG

CTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTT). Since 

injection efficiencies may vary (Supplementary Fig. 1), we selected embryos with low 

RFP fluorescence for single cell analysis. For control experiments in Supplementary 

Fig. 2 and 7 we set up crosses between pairs of adult Cas9 injected fish. 

The sgRNA was in vitro transcribed from a template using the MEGAscript® T7 

Transcription Kit (Thermo Scientific). The sgRNA template was synthesized with T4 

DNA polymerase (New England Biolabs) by partially annealing two single stranded 

DNA oligonucleotides containing the T7 promotor and the RFP binding sequence, and 

the tracrRNA sequence, respectively. In the experiments described here, we did not 

use the ability of the line zebrabow M to switch from RFP to YFP or CFP expression 

upon addition of Cre20. 

 

Preparation of single cell suspensions 

Single larvae at 5 dpf were transferred into 50 µl HBSS containing 1x TrypLEÔ 

(Thermo Fisher Scientific) and incubated at 33°C for ~20 minutes with intermittent 

pipette mixing (every 5 minutes) until the larva was no longer visible. 500 µl cold HBSS 

(Thermo Fisher Scientific) supplemented with 1% BSA was then added to the 

suspension, and the cells were pelleted in a table-top centrifuge at 4°C and 300 g for 

5 minutes. The pellet was washed with 500 µl cold HBSS supplemented with 0.05% 
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BSA and centrifuged down again. The resulting pellet was resuspended in the same 

buffer and filtered through a cell strainer of 35 µm diameter. 

Adult zebrafish were euthanized by an overdose of tricaine in combination with 

low water temperature. Afterwards, heart, brain, pancreas islets, and liver were 

isolated from the fish. Single cell suspensions of the organs were obtained using 

different protocols: 

Heart: The zebrafish heart including atrium, ventricle and bulbus arteriosus was 

transferred into cold HBSS and opened carefully with forceps, allowing most of the 

erythrocytes to be washed away. Afterwards, the heart tissue was transferred into 500 

µl HBSS containing LiberaseÔ enzyme mix (Sigma-Aldrich, 0.26 U/mL final 

concentration) and Pluronicâ F-68 (Thermo Fisher Scientific, 0.1 %). The reaction was 

incubated at 37°C for 30 minutes while shaking at 750 rpm with intermittent pipette 

mixing. Afterwards, most of the tissue was dissociated. The reaction was stopped by 

adding 500 µl cold HBSS supplemented with 1% BSA. The cells were pelleted by 

centrifuging at 200 g in a table-top centrifuge at 4°C, then washed and filtered following 

the procedure described above for 5 dpf larvae.  

 Brain: The telencephalon without olfactory bulbs was isolated in cold HBSS and 

immediately transferred to a solution of HBSS with 0.81% D-glucose and 15 mM 

HEPES. Dissociation was initiated by adding 0.1x TrypLEÔ and 0.1 % Pluronicâ F-68 

(final concentrations). The tissue was incubated for 30 minutes at 37°C while shaking 

at 750 rpm, with occasional gentle mixing. The dissociation reaction was stopped by 

addition of equal volume of EBSS solution containing 4% BSA and 20 mM HEPES. 

The sample was filtered using a 70 µm filter and centrifuged at 300 g for 5 minutes, 

after which the pellet was washed once with PBS and resuspended in HBSS with 

0.04% BSA. Finally, the suspension was filtered with a 35 µm filter. 

Pancreas and liver: The pancreatic tissue containing preferentially the primary 

pancreatic islet was isolated under a stereomicroscope and transferred into 500 µl 

HBSS containing 1x TrypLEÔ and 0.1% Pluronicâ F-68. The liver was isolated and 

dissected into small pieces, one of which was transferred into 500 µl HBSS containing 

1x TrypLEÔ and 0.1% Pluronicâ F-68. After 30 minutes of incubation at 37°C with 

intermittent pipetting, the suspensions were pelleted, washed and filtered following the 

procedure described above for 5 dpf larvae. 
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All final single cell suspensions were quantified and controlled for quality by 

microscopy using a hemocytometer. 

 

Scar detection in bulk samples 

DNA-based scar detection: DNA of single animals was extracted by heating the 

samples in 50 µl of 50 mM NaOH at 95°C for 20 minutes. 1/10 volume of 1 M Tris-HCl, 

pH = 8.4 was then used to neutralize the mixture. We took 20 µl of the DNA for 

amplification of scar sequences using RFP-specific barcoded primers. The RFP 

primers were chosen such that the cut site of Cas9 was positioned approximately in 

the middle of the sequencing read. We then pooled the PCR products, performed a 

clean-up reaction using magnetic beads (AMPure Beads, Beckman Coulter), and 

added Illumina sequencing adapters in a second PCR reaction. Primer sequences are 

provided in Supplementary Table 1. 

RNA-based scar detection: RNA of single or pooled animals was extracted with 

TRIzol™ Reagent (Thermo Fisher Scientific) according to the manufacturer’s protocol. 

The RNA was precipitated using isopropanol, and the pellet was washed 2 times with 

75% ethanol, air dried, and resuspended in 10 µl of reverse transcription mix (0.3 µM 

poly-T primer, 1x first strand buffer (Thermo Fisher Scientifc), 10 µM DTT, 1 mM 

dNTPs, 0.5 µl RNAseOUT™ (Thermo Fisher, Cat. No. 10777019), 0.5 µl 

SuperScript™ II (Thermo Fisher, Cat. No. 18064-014. The reaction was incubated at 

42°C for 2 h for reverse transcription, followed by scar specific PCR amplification as 

described above for DNA-based scar detection. 

 

Transcriptome and scar detection in single cells 

Single cells were captured using ChromiumÔ (10X Genomics, PN-120233), a droplet-

based scRNA-seq device according to the manufacturer’s recommendations. Briefly, 

the instrument encapsulates single cells with barcoded beads, followed by cell lysis 

and reverse transcription in droplets. Reverse transcription was performed with polyT 

primers containing cell-specific barcodes, Unique Molecular Identifiers31 (UMI), and 

adapter sequences. After pooling and a first round of amplification, the library was split 

in half. The first half was fragmented and processed into a conventional scRNA-seq 

library using the manufacturer’s protocols. We used the second, unfragmented, half to 
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amplify scar reads by two rounds of PCR, using two nested forward primers that are 

specific to RFP, and reverse primers binding to the adapter site. The RFP primers were 

chosen such that the cut site of Cas9 was positioned approximately in the middle of 

the sequencing read, ensuring that a broad range of deletion lengths can be reliably 

detected. Primer sequences are provided in Supplementary Table 1. We confirmed 

successful library preparation by Bioanalyzer (DNA HS kit, Agilent). Samples were 

sequenced on Illumina NextSeq 500 2x 75 bp and Illumina HiSeq 2500 2x 100 bp. 

 

Mapping and extraction of single cell mRNA transcript counts 

A zebrafish transcriptome was created with Cell Ranger 2.0.2 from GRCz10, release 

90. Alignment and transcript counting of libraries was done using Cell Ranger. Cell 

numbers to be extracted were set at a minimum of 6000 but were increased if there 

were substantially more cells with more than 500 unique transcripts. Exact numbers 

can be found in Supplementary Data 1. 

 

Mapping and filtering of single cell scar data 

Scar reads have the same structure as transcript reads: they consist of a barcode, a 

UMI and a scar. The scar sequences were aligned using bwa mem32 to a reference of 

RFP. Valid cell barcodes were identified based on the single-cell transcriptome data 

(see previous paragraph). We removed reads that were unmapped, had an incorrect 

barcode, or did not start with the exact PCR primer we used. We truncated all scar 

sequences to 75 nucleotides and filtered out shorter sequences. 

To mitigate the effect of sequencing errors, we implemented several rounds of 

scar filtering (Supplementary Fig. 2). We started by counting the number of times each 

molecule was sequenced. Sequencing errors will typically have fewer reads than the 

actual scars they originate from. As a first filtering step, we therefore removed all 

molecules only seen once to reduce the complexity in the dataset for consecutive 

filtering steps. 

In the second filtering step, we aimed to remove easily recognizable sequencing 

errors and chimeric reads33. To this end, we consecutively considered scar sequences 

that have the same cellular barcode and UMI, UMIs that have the same cellular 

barcode and scar sequence, and cellular barcodes that have the same UMI and scar 
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sequence. In each step, we kept only the molecule with the highest number of reads. 

The rationale behind this is that it is very improbable to have two valid scar sequences 

in the same cell with the same UMI, or to have a scar sequence with the same UMI 

appear in two different cells. The observation of two different UMIs for the same scar 

in the same cell is much more likely and corresponds to detection of multiple transcripts 

from the same locus, but information about scar expression levels was not required in 

our downstream analysis.  

In the third filtering step, we specifically targeted sequencing errors within each 

cell. We compared the scar sequences found within a cell to each other. We filtered 

out sequences that had a Hamming distance of 2 or less to another scar sequence in 

the same cell that occurred in at least eight times as many reads. Scar sequences in 

the same cell that were one Hamming distance apart but had a read ratio less than 

eight were tested on three criteria if both of them occurred at least twice in the scar 

library: 

1. Do both scars have more than one transcript? 

2. Do both scars occur in cells independently from each other? 

3. Do the UMIs of both scars have Hamming distance of two or more? 

If two of these criteria were true, the scars were kept and the sequences were placed 

on a list of validated scars that, if they occurred in the same cell in another library, did 

not have to be tested anymore. If one or zero criteria were true, the scar that had only 

one transcript, or the scar that did not occur independently, were filtered out. 

In the fourth filtering step, we determined the distribution of reads for the scars 

we had kept so far. Based on this distribution we set a cut-off and filtered out the scars 

that did not have at least this number of reads. Finally, for each cell type we determined 

the distribution of different scars seen per cell and set a maximum number of scars a 

cell of that type can have. We filtered out cells in which we observed more than this 

maximum number as possible doublets. 

While each scar is identified by its sequence, scars are labeled in the 

manuscript using their ranking in the bulk scar frequency distribution (e.g. “scar 77”) or 

their CIGAR code (e.g. “47M6D28M”) as a shorthand notation. Since scars cannot be 

modified once created, each scar is considered as a separate entity for lineage tracing 

independent of its sequence. 
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Determination of scar probabilities 

We aligned reads from thirty-two single embryos (DNA-based bulk scar detection) to 

a reference of RFP. We filtered out unmapped reads and reads that did not start with 

the exact PCR primer, and truncated all reads to one hundred nucleotides, removing 

shorter ones. To determine the creation probabilities of the different scars, we removed 

all unscarred RFP reads from each embryo. We normalized the scar content of each 

embryo to one and calculated scar probabilities as the average ratio with which each 

scar was observed. 

To account for the slightly different sequencing read structure of single cell and 

bulk scar detection (see above), we considered only the nucleotides that are shared 

between the two approaches, and we assigned the bulk scar probabilities to single cell 

scars accordingly. Single cell scars that were not detected in bulk had their probability 

set to the lowest probability value detected in bulk. 

 

Determination of scarring dynamics 

Embryos were injected with Cas9 and sgRNA at the 1-cell stage. After 1, 2, 3, 4, 6, 8, 

10, and 24 hours, several embryos were collected and pooled (5-6 for earlier stages, 

2-3 for later stages), followed by RNA and/or DNA extraction using TRIzol Reagent. 

Bulk scar libraries were produced as described above. For each sample, we calculated 

the percentage of unscarred RFP. We fit a negative exponential to this data, assuming 

that the fraction of unscarred RFP at t=0 was one. 

 

Identifying cell types 

We used the R package 'Seurat', version 2.1.022, for cell-type identification as 

described below. We removed genes that were not found in at least three cells, and 

removed cells that had less than two hundred of those genes. We log-normalized the 

transcript counts and removed cells with more than 2,500 genes observed. For single 

cells from 5 dpf larvae and adult pancreas, we filtered out cells with a mitochondrial 

content of more than 7.5 percent, and for single cells from adult hearts and 

telencephalons we filtered out cells with a mitochondrial content of more than fifteen 

percent; we expect the cardiomyocytes in particular to have high mitochondrial content. 
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We regressed out influences of the number of transcripts, mitochondrial transcripts, 

and libraries, and kept a total of 2779 highly-variable genes for cells of 5 dpf larvae, 

3775 highly-variable genes for cells of adult telencephalon, 4536 for cells of adult heart 

and 3018 for cells of adult pancreas. We performed a principal component analysis 

and kept the first sixty components for single cells from 5 dpf larvae, eleven for adult 

brains, eight for adult hearts, and fifty for adult pancreases. Clustering, using the smart 

local moving algorithm34 on a K-nearest neighbor graph of cells, was done on these 

components with resolution 1.8 for 5 dpf larvae, resolution 0.8 for adult brain cells, 

resolution 1.0 for cells from adult heart and adult pancreas. Dimensionality reduction, 

using t-Stochastic Neighbor Embedding35,36 (tSNE), was done on the sixty components 

for the 5 dpf larvae, and on components three to twenty-two for the adult organs to 

reduce the visual impact of batch effects. To calculate differential gene expressions, 

we used the likelihood-ratio test as implemented in Seurat, introduced in McDavid et 

al., 201337, with an underlying negative binomial distribution for gene expression. This 

test aims to detect changes in mean gene expression and expression frequencies over 

different clusters. Using these differentially expressed genes, we assigned clusters to 

cell types based on literature and the ZFIN database38 (Supplementary Data 2 and 4). 

We did not aim to identify all cell types with maximal resolution and focused instead on 

unequivocal identification of those cell types that are highlighted in the text (such as 

the larval hematopoietic cells, and adult pancreatic cells). Cell type assignments of all 

other clusters should therefore be considered tentative. Clusters were subsequently 

merged if they were found to have the same cell type, and we applied a mild coarse-

graining by merging highly related cell types (for instance, different neuronal subtypes 

in the adult telencephalon were merged). 

 

Connection enrichment analysis 

We used an analysis of the scars shared between cells to illuminate the overall 

structure of the sequencing results from 5 dpf larvae. We expect that cells in which we 

observe the same scar have a shared lineage. To understand the scarring process 

better, we aimed to find out which cell types share many scars – these cell types would 

have a strong lineage relationship – and which cell types do not share many scars – 

these cell types would not have many immediate shared precursors. 
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We call cells 'connected' if they share at least one scar that has a creation 

probability of less than 0.1% and is only present in one organism. To find out whether 

cell types have a higher number of connections between them than expected by 

chance, we developed the background model described below (see also 

Supplementary Fig. 8). The background model starts with the realization that a 

connection is defined by its endpoints, and that therefore the number of expected 

connections between two cell types is determined by the number of connection 

endpoints of the two cell types. More precisely, the chance of forming a connection 

between cell type A and B is given by p(A-B) = 2 * CE(A)*CE(B)/CE(tot)^2, and that of 

forming a connection within cell type A by p(A-A) = CE(A)^2/CE(tot)^2, with CE(A) the 

number of connection endpoints of cell type A, and CE(tot) the total number of 

connection endpoints. These probabilities define a binomial background model. Using 

this model, we calculate the enrichment z-score between cell types, i.e. how many 

standard deviations the observed number of connections between two cell types is 

away from the expected number of connections. A positive enrichment score indicates 

more connections than expected by chance, a negative enrichment score indicates 

less connections than expected by chance. 

We define the distance between cell types based on their enrichment z-scores 

by the following equation: D(A, B) = 1 - (E(A, B) - Emin)/(Emax – Emin), with D(A, B) the 

distance between cell types A and B, E(A, B) the enrichment z-score between them, 

Emin the minimal enrichment z-score and Emax the maximum enrichment z-score.  The 

term E – Emin can be understood as a translation of all enrichment scores to positive 

values. These values are then divided by the maximum value and subtracted from 1 

to create distances scaled between 0 and 1. We performed hierarchical clustering on 

these distances, using average linkage as implemented by the hclust function in R. We 

performed this analysis for two larvae, cutting the dendrogram into three and four 

clusters, respectively (Supplementary Fig. 9). 

 

Tree building 

Our computational method for lineage tree reconstruction consists of two phases. First, 

we derive the order of scarring events. To do so, we make use of scar network graphs, 

a representation of all pairwise combinations of scars that are experimentally observed 

together in single cells (Fig. 2a). If all scar connections are detected, the scar that is 
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created first has the highest degree of connections in the scar network graph, followed 

by scars that were created next, enabling lineage tree reconstruction in an iterative 

manner (Fig. 2b). In the second phase, we place all cells in the lineage tree according 

to their scar profile (Fig. 2c). Cells are placed as low in the tree as their scars allow. 

Due to incomplete scar detection, we do not have full lineage information about every 

single cell. However, the structure of the scar network graph is robust towards scar 

dropouts, since it is based on the collective information of thousands of single cells 

(see simulations in Supplementary Fig. 10). To ensure that lineage tree reconstruction 

is not affected by known experimental biases, we also included the following 

measures: 

- Double scarring: Some scars have a higher intrinsic probability than others (Fig. 

1e). To minimize the chance of considering scars that may have been created 

twice or more in the same fish, we excluded all scars that have a probability 

higher than 0.1%. With this threshold, most scars were unique to a single fish 

among the replicates studied (Supplementary Fig. 6). Any remaining scars that 

were not unique to a single replicate were also excluded from the subsequent 

analysis. 

- Cell doublets: Co-encapsulation of two cells in one droplet is a known limitation 

of scRNA-seq techniques that are based on droplet microfluidics. Cell doublets 

can lead to spurious connections between scars in the network graph. 

Incomplete tissue dissociation, limited barcode diversity, barcode sequencing 

errors, and free-floating RNA from cells burst in the microfluidic system may 

potentially have similar consequences. As a protection against this effect, we 

only accept connections in the scar network graph that are more highly detected 

than expected by chance given a library-specific doublet rate (typically around 

10%, depending on the experimental cell loading rate). See Supplementary 

Note 1 for details. 

- Missing connections: In case of very low cell numbers or scar detection 

efficiencies, it is possible that a connection is missed in the scar network graph. 

To address this issue, we performed a statistical test for each scar to check 

whether the number of observed connections is compatible with the scar being 

on top of the current sub-branch, given the numbers of cells and the observed 

scar dropout rates (Supplementary Fig. 20, Supplementary Note 1). In each 
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iteration, we tested only those scars whose inferred detection rate (if placed on 

top of the corresponding sub-branch) was higher than 0.1, a threshold derived 

experimentally in Supplementary Fig. 7. 

- Pruning the tree: Especially for later, smaller branches, it is possible that not 

enough connections are observed to accurately place them in the lineage tree, 

resulting in positioning of the branch too high up in the tree (Supplementary Fig. 

20, Supplementary Note 1). We prune the lineage tree for such branches by 

removing branches that have less than 25% of the cells their siblings have. 

Using simulated data under realistic conditions (including cell doublets, as well as cell 

type and integration site dependent scar detection efficiencies), we demonstrate that 

this approach reconstructs the correct lineage tree (Supplementary Fig. 11). Lineage 

trees were visualized by expanding the R-package 'collapsibleTree' 

(https://github.com/AdeelK93/collapsibleTree/) with previous authorization from the 

author. This package relies on the D3 javascript libraries. 

 

Simulations 

We simulated the scarring process during embryo development (Supplementary Fig. 

10, 11). To do this, we used a simple model that starts with one cell, and in which all 

cells present undergo synchronized mitosis. Every cell cycle, the RFP integrations of 

the cells can acquire a unique scar. The chance of creating a scar is fixed for every 

integration for every cell division, and all scars are transmitted to the progeny of the 

cells. 

 After simulating the scarring events during development, we also simulate a 

sequencing experiment that produces data for tree building. To this end, the cells at 

the bottom of the tree are clonally expanded, generating many copies that all have the 

same scar profile. The experimental data consists of a sample of these cells, with a 

scar detection rate determining the chance of seeing a scar that is present in a cell. 

 We simulated two distinct trees. The first is a simple tree of three generations, 

where all cell divisions are marked by acquisition of new scars (Supplementary Fig. 

10). From this tree we sampled 125 cells with a scar detection rate of 0.3, yielding 99 

cells in which at least one scar was detected. This dataset was then used to compare 

LINNAEUS tree building with maximum parsimony tree building. 



 22 

 The second simulated tree was a more realistic tree in which six generations of 

cells can potentially receive a scar on ten target sites (Supplementary Fig. 11). Here, 

we used a cell division rate of 4 per hour, as measured by microscopy39,40. A scarring 

rate of 0.4 per hour reproduced the fit scarring dynamics during the first three hours 

(Supplementary Fig. 11a). We can use this simulation to estimate the number of new 

scars per cell division (Supplementary Fig. 11b). In this simulation, we assumed three 

cell types (fraction 15%, 25%, 60%) with different detection rates (70%, 30%, 10%, 

respectively). We furthermore assumed that two of the ten target sites are much harder 

to detect (by a factor 20, i.e. detection rates 3.5%, 1.5%, 0.5%). The resulting 

developmental tree is shown in Supplementary Fig. 11c. Due to the stochasticity of 

scar creation, scars are not created in all precursor cells, and in Supplementary Fig. 

11d we show the maximal lineage tree that can be measured by scars. We expand all 

final branches (not shown) and sample 2000 cells from the resulting pool with a cell 

doublet rate of 5%, yielding 1716 cells (including doublet cells) with at least one scar. 

 

Tree building on simulated data 

To validate our tree building method, we built trees from both simulated trees using the 

cells sampled as described in the section “Simulations”. We compared our results to 

maximum parsimony tree building as done by the program “mix” in PHYLIP 3.69541, 

using the Camin-Sokal algorithm with missing states encoded as “0”. If multiple trees 

were tied for best tree, we took the first generated tree. 

 The simple developmental tree (Supplementary Fig. 10) was recreated 

flawlessly by the LINNAEUS tree building algorithm (Supplementary Fig. 10b). 

However, maximum parsimony was not able to resolve the tree correctly, creating 

unjustified complexity due to multiple creation events for the same scar 

(Supplementary Fig. 10c). The more realistic scar tree (Supplementary Fig. 11) was 

also recreated faithfully by LINNAEUS (Supplementary Fig. 11f). Maximum parsimony 

again created a strong amount of unjustified complexity with a total of 265 scarring 

events for 46 scars, an average of over five times per scar (Supplementary Fig. 11g). 

 

Statistics 

We assessed RNA scar expression rates by comparing scar abundance in DNA to 



 23 

scar abundance in RNA in three 24 hpf animals. Using 70,251 data points, every one 

of which representing the RNA and DNA abundances of a sequence in one fish, we 

found a Pearson correlation of 0.97 between RNA and DNA abundances 

(Supplementary Fig. 3). 

We used Seurat to identify cell types in four datasets: 72,252 cells from 5 dpf 

larvae (n=7 animals) and cells from three different organs in adult fish (n=3 animals): 

heart (12,248 cells), telencephalon 7,045 cells) and pancreas/liver (20,777 cells). 

Distribution of cell numbers over identified clusters can be found in Supplementary 

Data 2 (larvae) and 4 (adults). We determined differential gene expression using 

Seurat’s “negbinom” test that includes a Benjamini-Hochberg correction of p-values. 

To determine whether cell types had a statistically significant amount of 

connections (Supplementary Fig. 8 and 9), we first determined the theoretical 

connection probability of two cell types following the reasoning laid out above. We then 

used a two-tailed binomial test to assess whether the actual observed number of 

connections between the two cell types is different from the expected number of 

connections. The p-values were corrected for multiple testing using the Benjamini-

Hochberg correction. Values for all 2,485 tests can be found in Supplementary Data 6. 

 

Data availability 

Sequencing data are deposited on Gene Expression Omnibus, accession number 

GSE106121. Interactive single cell lineage trees are available at 

http://bimsbstatic.mdc-berlin.de/junker/linnaeus/index.html 

 

Code availability 

Custom code is provided at  https://bitbucket.org/Bastiaanspanjaard/linnaeus. As part 

of the software package we provide a sample dataset on which the code can be run. 

The function of all scripts is summarized in README.md. 

 

A Life Sciences Reporting Summary is available. 
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Supplementary Figure 1. Detection of scar formation using microscopy and 

sequencing (a) Loss of RFP fluorescence upon injection of Cas9 and sgRNA targeting 

RFP. Experiment was repeated ten times with similar results. (b) Reduction of 

unscarred RFP in sequencing experiment upon injection of Cas9 and sgRNA targeting 

RFP. 
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Supplementary Figure 2. Scar filtering pipeline mitigates sequencing errors. To 

distinguish sequencing errors in scars and barcodes from genuine lineage information, 

scar libraries are oversequenced and filtered. (a) Sketch of scar filtering pipeline. The 

percentages of correctly mapped reads that are retained after each filtering step is 

indicated for a selected dataset. For a detailed description of the individual filtering 

steps see Online Methods. (b) Validation of the filtering pipeline with two control 

datasets in which single cells from the offspring of Cas9 injected parents were 

analyzed. In these fish, all cells have the same scar pattern, leading to a strong 

reduction of scar diversity. Detected scar sequences are labeled by their CIGAR code. 

We confirmed by DNA-based bulk sequencing of siblings of the two fish that 49M1I25M 

is indeed a genuine scar (data not shown). The category “Other”, corresponding to 

putative sequencing errors that may have escaped detection in our scar filtering 

pipeline, constitutes less than 1% of the scars. Spurious scar connections created by 

e.g. sequencing errors are not considered for lineage tree reconstruction (see Online 

Methods). In Supplementary Fig. 7, this dataset is used to analyze scar detection 

efficiency in a cell type dependent manner. 
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Supplementary Figure 3. Strong correlation between DNA and RNA detection in 

the same embryo. Scar abundances detected in bulk on the DNA and RNA level for 

24 hpf zebrafish larvae (70,251 scar sequences from three animals) are strongly 

correlated (Pearson correlation coefficient 0.91). 

  



Supplementary Figure 4



Supplementary Figure 4. Cell type identification in 5 dpf zebrafish larvae (n=7 

animals). tSNE representation of clustering results for scRNA-seq data. Labels 

indicate cell type assignment. 
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Supplementary Figure 5. Cell type markers in 5 dpf zebrafish larvae. Gene 

expression patterns for selected markers across all clusters. Dot size represents the 

percentage of cells expressing the marker; color represents the average scaled 

expression level. 

  



Supplementary Figure 6
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Supplementary Figure 6. Scar diversity. Venn diagrams indicating numbers of 

unique and overlapping scars in three 5 dpf larvae (larva 2 corresponds to the tree 

shown in Fig. 2d).  
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Supplementary Figure 7. Single-cell scar detection rates. To measure the cell type 

dependence and integration site dependence of scar detection efficiencies, we 

analyzed the offspring of Cas9 injected fish on the single cell level. We found that scar 

detection efficiency depends on cell type, which probably reflects differences in cell 

size or promoter strength. While most genomic integrations (i.e. different scar 

sequences) have similar detection efficiencies, we also found one integration (CIGAR 

code 49M1I25M) with significantly lower expression. Such lowly expressed scars are 

not considered for tree reconstruction (see Online Methods), since they carry very little 

lineage information and may be hard to distinguish from sequencing errors (category 

“Other”, see also Supplementary Fig. 2). Importantly, we did not find any highly 

expressed scars that were undetectable in specific cell types, suggesting that 

developmental silencing of specific integrations is no major concern. We used these 

results to simulate lineage tree reconstruction under realistic conditions 

(Supplementary Fig. 11). 

  

  



Supplementary Figure 8
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Supplementary Figure 8. Enriched connections between pairs of cell types. (a) t-

SNE representation of scRNA-seq data for dissociated zebrafish larvae (5 dpf, n=7 

animals). Pairs of cells with at least one common scar are linked by black lines. Scars 

with creation probability ≥0.001 and scars that were detected in more than 1 larva were 

excluded from the analysis. (b) Example of background model for analysis of enriched 

connections (see also Online Methods). Given twenty connection endpoints in blue 

cells, and six in green cells, the chance of a blue endpoint is 10/13, and the chance of 

a green endpoint is 3/13. We can then calculate the chances of randomly selecting a 

blue-blue connection, a blue-green connection and a green-green connection. These 

chances determine a binomial distribution of connections to compare the observed 

connections against. (c) Enrichments of scar connections between cell types 

compared to random distributions of n=289,452 connections using a two-sided 

binomial test followed by Benjamini-Hochberg correction. Only enrichments with 

padj<0.01 are shown. 
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Supplementary Figure 9. Enriched connections form clusters on fate map. (a) 

Hierarchical clustering of cell types by scar connection strength yields three clusters. 

We calculated z-values of connection enrichments between cell types using an 

underlying binomial distribution (see Online Methods). Cell type distances were 

calculated based on these connection enrichments, and the cell types were clustered 

on these distances. Cartoon on the right: Cell type clusters determined based on scar 

connections form contiguous domains on the zebrafish fate map at shield stage (yolk 

sac shown in orange). This sketch is an oversimplification since it does not show the 

other hemisphere of the embryo (which may have different cluster boundaries) and 

since scar clones do not expand strictly locally (there is some degree of mixing of cells). 

(b) Segregation of cell types by scar connection strength is reproducible in another 

larva. Here we detect four instead of three clusters of cell types, which is probably 

linked to stochastic fluctuations in the number of scars that are created during the first 

few cell divisions. 
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Supplementary Figure 10. Comparison of LINNAEUS tree building to maximum 

parsimony on simple model tree. (a) Simulation of a developmental lineage tree with 

two cell divisions. The numbers next to a precursor cell (black node) denote the scars 

created in that cell. We expand the four final branches without further scarring and 

sample 99 cells (dashed lines, gray nodes) with scar detection rate 0.3. (b) The 

LINNAEUS tree building algorithm exactly recreates the developmental lineage tree of 

scarring events in precursor cells (solid lines, black nodes). Each sampled cell is 

placed at the lowest scar node possible according to the scars observed in that cell 

(dashed lines, gray nodes). (c) Maximum parsimony tree (with all scars not observed 

coded as “not present”) does not recreate the developmental lineage tree faithfully but 

generates unjustified complexity including multiple creation of the same scar 

sequences. 
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Supplementary Figure 11. Comparison of LINNAEUS tree building to maximum 

parsimony on a realistic experiment. (a) Using cell division rates as determined by 

lightsheet microscopy (Kobitski et al., 2015), a scarring rate of 0.4 scars per hour 

reproduces the experimental results well. Black line shows the exponential fit from Fig. 

1g, dots show fraction wildtype at the individual steps of the simulation. (b) Number of 

new scars per cell division according to the simulation. Initially, the number of new 

scars increases over time, due the cell division rate being higher than the scarring rate. 

The number of new scars per unit time will eventually drop as the cell division rate 

slows down, Cas9 concentration decreases, and available target sites are used up. (c) 

Simulation of a developmental lineage tree with six cell divisions and ten target sites, 

assuming three cell types (fraction 15%, 25%, 60%) with different detection rates (70%, 

30%, 15%, respectively). We furthermore assumed that two of the ten target sites are 

much harder to detect (by a factor 20, i.e. detection rates 3.5%, 1.5%, 0.5%). Due to 

stochasticity, scars are not created in all precursor cells. Precursor cells in which a 

scar is created are black, precursor cells in which no scar is created are gray. Scars in 

weakly expressing sites are also shown in gray. We expand all final branches (not 

shown) and sample 1716 cells from the resulting pool with a cell doublet rate of 5%. 

(d) The scar tree: the lineage tree that can be measured by scars. Gray nodes in (c) 

are collapsed to retain only those precursor states that can be observed. (e) Simulated 

scar tree without scars from weakly expressing sites. This is the tree that should be 

identified by our algorithm, since lowly expressed scars may be difficult to distinguish 

from sequencing errors and do not carry enough information to justify inclusion in the 

tree. (f) The LINNAEUS tree building algorithm faithfully recreates the scar tree. (g) 

Clipping of maximum parsimony tree (with all scars not observed coded as “not 

present”). Maximum parsimony does not recreate the developmental lineage tree but 

introduces considerable amounts of unjustified complexity. Overall, the reconstructed 

tree contains 46 scars and 265 scarring events, which means each scar is placed on 

average more than 5 times in the tree. 
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Supplementary Figure 12



Supplementary Figure 12. Lineage tree reconstruction allows inference of scars 

that were present but not detected. Detected (red) and inferred (yellow) scars in 

single cell data from three different 5 dpf larvae. Scar inference is based on the 

principle that, if the order of scarring is known, detection of a scar allows inference of 

all previously created scars. For instance, for the blue cell in Fig. 2c, scar 41 can be 

inferred, since scars 86 and 75, that were created later, were detected. 
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Supplementary Figure 13. Technical information for 5 dpf lineage tree. Scar 

identifiers (frequency ranking according to Fig. 1e, and CIGAR code) and cell numbers 

for the lineage tree shown in Fig. 2e. Color code as in Fig. 1d. 
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Supplementary Figure 14. Replicate experiments 5 dpf larvae. (a) Full tree for 

another 5 dpf larva, including scar identifiers (frequency ranking according to Fig. 1e, 

and CIGAR code) and cell numbers. Color code as in Fig. 1d. (b) Mini trees zooming 

into lateral plate mesoderm for two more 5 dpf larvae.  
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Supplementary Figure 15. Endodermal and neuronal/neural crest lineage trees 

in 5 dpf larva. Zoom into endodermal (a) and neuronal/neural crest (b) cell types for 

the 5 dpf larva analyzed in Fig. 2e. We observe low clonality in the endoderm, with 

most cell types following the same major lineage branch. The neural crest cell types 

also have a shared lineage tree, which overlaps with a subset of the neuronal cell types 

(green in Fig. 2e). 

  



Supplementary Figure 16



Supplementary Figure 16. Cell type identification in adult zebrafish organs. tSNE 

representation of clustering results for scRNA-seq data in dissociated heart, pancreas 

and telecephalon (n=3 animals). Labels indicate cell type assignment. 
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Supplementary Figure 17. Cell type markers in adult zebrafish organs. Gene 

expression patterns for selected markers across all cell types in dissociated heart, 

pancreas and telecephalon. Dot size represents the percentage of cells expressing the 

marker; color represents the average scaled expression level. 
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Supplementary Figure 18. Replicate experiment for dissected organs of one 

adult zebrafish. (a) Full lineage tree. Similar to Fig. 3b, cell types cluster by organ in 

the lineage tree (with the exception of the immune cells, which cluster together 

regardless of the organ of origin). Color code as in Fig. 3a, b. (b) Heart lineage tree. 

As expected, we observe an early separation of myocardial and endocardial lineages. 

Connections are shown with a dashed line if the exact positions of the corresponding 

scar clones in the lineage tree are not certain due to limited statistics (see also 

Supplementary Note 1). 
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Supplementary Figure 19. Zoom into cardiac and pancreatic lineages for one 

adult. (a) Heart lineage tree. We observe an early separation of myocardial and 

endocardial lineages. (b) Endocrine cells of the primary pancreatic islet. The plot on 

the left shows the fraction of alpha, beta, delta cells in scar clones 1204, 20 and 35 

(normalized per cell type). The plot on the right is a mini tree representation of these 

three scars. The pies are normalized per scar clone. We observed that delta cells were 

strongly underrepresented in scar clone 1204, suggesting that a fraction of alpha/beta 

cells may have a different origin than the majority of pancreatic endocrine cells.  The 

connection to scar 1204 is shown with a dashed line to indicate that the exact position 

of this scar in the lineage tree is less certain than for the other two scars due to lower 

cell numbers (see also Supplementary Note 1). 
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Detection rates

Chance of observing scar connections

Chance of measuring at most degree 3

p(86-20) = 1 - (1 - 0.66)14 ≈ 1.0
...
p(86-33) = 1 - (1 - 0.66)2≈ 0.88

P(d(41) ≤ 3) ≈ 0.61 P(d(86) ≤ 3) ≈ 0.12

Conclusion: scar 41 is the top scar, the left diagram is correct



Supplementary Figure 20. Illustration of tree building corrections as detailed in 

Supplementary Note 1. (a) Missing connections: in this scar graph, scars 41 and 86 

both have degree three. We calculate which of these has the higher probability to be 

the first created scar. We start with the assumption that scar 41 (left column) or scar 

86 (right column) was created first. Based on this assumption we can calculate the 

detection rate of these scars (in this example all cells have more than one scar, see 

Supplementary Note 1 for the calculation if this is not the case), and the probabilities 

of observing the different connections. Using the Poisson binomial distribution, we 

calculate the probability of observing three or less connections, instead of four. This 

probability is higher for scar 41, so we conclude that this scar was created first. (b) 

Pruning: In this example, scar 10 was created after scar 85, but we never observe the 

connection between 10 and 85 (red cross). This may happen at very low cell numbers, 

i.e. mostly in the last branches of the tree. In this case, we would erroneously conclude 

that the branches with scars 10 and 85 are siblings, instead of a mother-daughter pair 

(red arrow). If, additionally, the connection between scar 10 and 78 is also not detected, 

the branch with scar 10 will even be moved one level higher (purple cross and purple 

arrow). Such events can be recognized by taking cell numbers into account: If 78 

happened before 10, in general there will be more cells with scar 78 than with scar 10. 

We prune the lineage tree for such branches by removing branches that have less than 

12.5% of the average number of cells their siblings have. 



Supplementary Table 1: Primer sequences 
 

 
 Primers for sgRNA synthesis 

sgRNA primer 1  TAATACGACTCACTATAGGTGTCCACGTAGTAGTAGCGTTTTAGAGCTA
GAAATAGCAAG 

sgRNA 
constant oligo 

 AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCT
TATTTTAACTTGCTATTTCTAGCTCTAAAAC 

 

  
 
Primers for bulk scar detection  
(forward primers differ only in their barcode sequence) 

Reverse primer  GTTCAGAGTTCTACAGTCCGACGATCGTCCTCGTTGTGGGAGGTG 
Forward primer 1  CCTTGGCACCCGAGAATTCCACTGGTCGGCGGCACGCTGATCTACAAGG 
Forward primer 2  CCTTGGCACCCGAGAATTCCAAGGCTCTACGGCACGCTGATCTACAAGG 
Forward primer 3  CCTTGGCACCCGAGAATTCCAGTGGTGCCCGGCACGCTGATCTACAAGG 
Forward primer 4  CCTTGGCACCCGAGAATTCCAACGATGTCCGGCACGCTGATCTACAAGG 
Forward primer 5  CCTTGGCACCCGAGAATTCCACCGATTGACGGCACGCTGATCTACAAGG 
Forward primer 6  CCTTGGCACCCGAGAATTCCAAATTAACCCGGCACGCTGATCTACAAGG 
Forward primer 7  CCTTGGCACCCGAGAATTCCACATTACAACGGCACGCTGATCTACAAGG 
Forward primer 8  CCTTGGCACCCGAGAATTCCAATTGACCGCGGCACGCTGATCTACAAGG 
Forward primer 9  CCTTGGCACCCGAGAATTCCATGTCACGACGGCACGCTGATCTACAAGG 

Forward primer 10  CCTTGGCACCCGAGAATTCCAGCTAACTGCGGCACGCTGATCTACAAGG 
Forward primer 11  CCTTGGCACCCGAGAATTCCACTTGAGACCGGCACGCTGATCTACAAGG 
Forward primer 12  CCTTGGCACCCGAGAATTCCATCTAAGGCCGGCACGCTGATCTACAAGG 
Forward primer 13  CCTTGGCACCCGAGAATTCCACGTCATAGCGGCACGCTGATCTACAAGG 
Forward primer 14  CCTTGGCACCCGAGAATTCCAACTAATCACGGCACGCTGATCTACAAGG 
Forward primer 15  CCTTGGCACCCGAGAATTCCATATTATGGCGGCACGCTGATCTACAAGG 
Forward primer 16  CCTTGGCACCCGAGAATTCCATATGCACGCGGCACGCTGATCTACAAGG 

 

  
 
Primers for single cell scar detection  
(see also the protocol from 10X Genomics Chromium) 

Fwd primer 1 targeting 
RFP sequence 

 
CGGCACGCTGATCTACAAGG 

Fwd primer 2 targeting 
RFP sequence 

 
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGAGTTCAAGACCATC
TACATGGCC 

Reverse primer  CTACACGACGCTCTTCCGATCT 
 



Supplementary Note 1: Mathematical Supplement

In this document, we will describe the tree building algorithm used in LINNAEUS.

Tree building is done in multiple steps: we start by removing possible doublet cells. After

that we build the lineage tree of scars, which we prune afterwards. This tree describes

the hierarchy of all scarring events that we have measured and can be used to determine

the lineage relationship between observed cells. Indeed, as a last step we place all cells

in the tree, using their scars to place them on the lowest scarring event possible. We also

place all of the cells we flagged as possible doublets that do not have scars in multiple

branches (i.e. cells that looked like doublets but actually were not).

1 Doublet recognition

The tree building proper uses a scar graph, in which two scars are connected if they

occur together in at least one cell. Cell doublets could lead to spurious connections in

the scar graph which will impede the tree building. We therefore seek to remove cell

doublets that lead to spurious connections. To do that, we estimate how many times we

would see a connection between two scars due to doublets alone, and test the number of

times we observe connections between scars against that.

For an experiment with N cells sequenced, of which D doublets, the doublet rate rd
is defined as

rd :=
D

N
. (1)

The number of x� y doublets dx�y for Nx cells with scar x and Ny cells with scar y is

then

dx�y = 2rd
NxNy

N
, (2)

an x� y doublet rate rx�y of

rx�y = 2rd
NxNy

N2
. (3)

For each connection x� y, we determine Nx�y, the number of cells that express both x
and y. We use a binomial test to determine the probability of observing at least that

number as doublets, given the doublet rate (3). We only retain scar connections that

have a false discovery rate of 0.01. Cells that caused other connections are marked as

possible doublets.
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2 Tree building

After removal of the spurious scar connections, we can start building the tree. This is

done in an iterative manner by determining the first created scar, then determining the

scars created after that, and so forth until all scars have been placed.

At the heart of our approach is the observation that the scar that was created first

will be present in all cells and will therefore be observed together with all consecutive

scars. In terms of the scar graph, the first created scar will have maximal degree (see

Fig. 2b). Removing this scar x from the scar graph will create as many connected

components as x has daughter scars. Scar x is then placed on top of the scar tree. For

each of the resulting connected components, we can again determine and remove the

first created scars in these components (we will call the first created scar in a component

the top scar of that component). These scars are placed in the scar tree as daughters of

x. We repeat this procedure until all scars have been placed in the scar tree.

If all scar connections were always observed in all cells, the top scar at every step

would be the scar that is connected to all other scars. However, since the experimental

scar detection e�ciency is smaller than one, we cannot expect to observe every scar con-

nection present. Therefore, we test for every scar x in a connected component whether

that scar would have maximum degree if its detection rate was one. More specifically,

we test the probability of observing the (experimental) degree of all scars x under the

assumption that scar x is the top scar, and select the scar with the highest probabil-

ity as the true top scar of that connected component. This procedure is sketched in

Supplementary Fig. 20a.

To calculate that probability we need to know the detection rate of scar x, assuming

that it is the top scar. If x is the top scar, it is present in all cells that have at least one

scar in Cx, the set of scars (directly or indirectly) connected to x. Whether we actually

observe x in all those cells is determined by its detection rate p(x) that we can calculate

as

p(x) = p(x|Cx) =
p(x \ Cx)

p(Cx)
. (4)

Since p(x \ Cx) = Nx\Cx/NCx , and p(Cx) = NCx/NCx = 1, we conclude that

p(x) =
Nx\Cx

NCx

. (5)

These quantities (the number of cells that express x and a scar connected to x, and the

number of cells that express a cell connected to x) can be easily determined from the

data, allowing us to calculate the detection rate of any scar x under the assumption that

it is the top scar.

We now test the probability of observing the degree of x that we find experimentally,

under the null hypothesis of it being maximal. The chance of observing a connection

x� y between scars x and y in at least one cell can be calculated as

p(x� y) = 1� p(!(x� y)) = 1� (1� p(x))Ny (6)
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for Ny the number of cells expressing y. The distribution underlying the degree of

x is then the Poisson binomial distribution, the distribution describing the number of

successes in trials with di↵erent success probabilities, using p(x � y) for all y 2 Cx as

success probabilities. We calculate the probability of measuring higher or lower than

the observed degree, based on whether the observed degree is higher than the expected

value or lower.

The top scar for a component is among the scars for which this probability, the

probability of measuring the observed degree when the real degree is maximal, is the

highest. We select as top scar x the scar with the highest probability, after filtering

out scars that have a detection rate lower than 5%, a value we base on our single-cell

experiments with o↵spring from Cas9-injected fish. Scars y with a higher probability

than x but a lower detection rate than 5% are either scars that are lower in the tree, or

scars that are on a weakly-expressing integration site. To distinguish between those two

cases, we first determine the number of connected components in the scar graph after

removing x. If removing y increases the number of connected components, it is likely to

be created around the same time as x, but due to its low detection rate we will not be

able to place it confidently. We therefore remove such scars from the dataset.

3 Cell placement

Now that we have constructed a scar tree, we can read o↵ the lineage relationship of all

cells. We place cells as deep (i.e. as far away from the top of the tree) as possible to

maximise the resolution of our lineage tree. This means that for every cell, we determine

which of its scars has the highest depth in the tree. The cell is attached to the node

corresponding to that scar.

For pie chart representations in the figure, the composition of all nodes, i.e. how

many cells of which cell type belong to each node, is calculated cumulatively: we count

the cells that are directly connected to that node, and also the cells that are directly

connected to the lower nodes.

4 Pruning the tree

Due to dropout events, it is possible that we do not have all information needed to

correctly place a scar in the tree. This is especially true for scars that have been created

relatively late, and we illustrate this in Supplementary Fig 20b: if we do not observe

the connection between scar 10 and scar 85, we will conclude that scars 10 and 85 are

siblings. If, furthermore, we do not observe the connection between scars 10 and 78

either, scar 10 would look like a sibling of 78. We can recognise this by calculating the

cumulative number of cells for all nodes and comparing these numbers between siblings.

If the ratio between the number of cells for a scar node and the number of cells in its

biggest sibling becomes less than 1/8, we depict its connection with a dashed line to

signify that it is possible this scar actually happened later in the same branch.
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