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Abstract
Transcription factor AP-1 is constitutively activated and IRF4 drives growth and survival in ALK+ and ALK– anaplastic large
cell lymphoma (ALCL). Here we demonstrate high-level BATF and BATF3 expression in ALCL. Both BATFs bind classical
AP-1 motifs and interact with in ALCL deregulated AP-1 factors. Together with IRF4, they co-occupy AP-1-IRF composite
elements, differentiating ALCL from non-ALCL. Gene-specific inactivation of BATFs, or global AP-1 inhibition results in
ALCL growth retardation and/or cell death in vitro and in vivo. Furthermore, the AP-1-BATF module establishes TH17/group 3
innate lymphoid cells (ILC3)-associated gene expression in ALCL cells, including marker genes such as AHR, IL17F, IL22,
IL26, IL23R and RORγt. Elevated IL-17A and IL-17F levels were detected in a subset of children and adolescents with ALK+

ALCL. Furthermore, a comprehensive analysis of primary lymphoma data confirms TH17–, and in particular ILC3-skewing in
ALCL compared with PTCL. Finally, pharmacological inhibition of RORC as single treatment leads to cell death in ALCL cell
lines and, in combination with the ALK inhibitor crizotinib, enforces death induction in ALK+ ALCL. Our data highlight the
crucial role of AP-1/BATFs in ALCL and lead to the concept that some ALCL might originate from ILC3.

Introduction

Transcription factors (TFs) are crucial determinants of
hematopoietic malignancies [1, 2]. One example of lym-
phoid neoplasms with distinct dysregulated TF activities is
anaplastic large cell lymphoma (ALCL) [3, 4]. The WHO
classification distinguishes ALK-positive (ALK+) ALCL,
which is characterized by the NPM–ALK fusion, and ALK-

negative (ALK–) ALCL lacking ALK translocations [5].
Both belong to peripheral T-cell lymphomas (PTCLs).
Whereas ALK is considered as causative of ALK+ ALCL
[6], the pathogenesis of ALK– ALCL is less clarified [7, 8].

Albeit both ALCL entities show differences in genomic
alterations or gene and microRNA expression [9–11], phe-
notypically they are highly similar and share biological and
molecular key aspects [12–14]. In particular, their deregulated
TF programs overlap. They share STAT3 and NOTCH1
activation and high-level interferon regulatory factor 4 (IRF4)
and MYC (v-myc myelocytomatosis viral oncogene homo-
log, c-MYC) expression and activity [7, 13, 15–17]. More-
over, we revealed a unique AP-1 activation in ALCL [14, 18,
19]. Several lines of evidence point toward a crucial role of
AP-1 in ALCL: NPM-ALK induces JUNB and JUN [20–22],
genomic gains of JUNB and FRA2 loci are found in ALCL
[23, 14], inhibition of AP-1 in ALK+ ALCL results in growth
arrest and cell death [18, 21, 24], and JUNB and JUN deletion
in mouse models impairs NPM-ALK-driven lymphomagen-
esis [25]. Finally, expression of the AP-1 interacting TF
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BATF3 distinguishes ALCL from other PTCL [26] and is
involved in growth control and survival of ALCL [27].

BATFs, comprising BATF, BATF2 and BATF3, are
basic leucine zipper TFs, which modulate transcription
primarily by interaction with JUN proteins [28]. The lack of
a transactivation domain [28], their redundancy [29], and
the number of interaction partners make functional char-
acterization of BATFs challenging. Initially thought to
inhibit transcription, recent work highlighted positive reg-
ulatory functions of BATFs [28–30]. IRF4 and BATF
enhance each other's DNA binding [31], and they coop-
eratively bind to so-called AP-1-IRF composite elements
(AICEs) [29, 31, 32]. Moreover, STAT3, IRF4, JUNB and
BATF TFs initiate the fate of T helper 17 (TH17) cells,
which subsequently enforces expression of the key TH17
TF RORC2 (murine RORγt) [33, 34]. Regarding this TF
network and TH17-associated genes, characteristic features
are shared with group 3 innate lymphoid cells (ILC3) [35].

Given the role of BATF TFs in this regulatory network and
expression of STAT3, IRF4, JUNB and BATF3 in ALCL, we
investigated expression and function of BATFs in ALCL.

Materials and methods

Cell lines, culture conditions and transfections

ALCL (Karpas-299 [named K299], SU-DHL-1, DEL, JB6,
SUP-M2, all ALK+; Mac-1, Mac-2A, FE-PD, DL40, all
ALK–), T-cell leukemia-derived (Jurkat, KE-37, Molt-14, H9)
and HEK293 cell lines were cultured as described [14]. Where
indicated, 1 μg/ml doxycycline (Dox; Sigma), the ALK inhi-
bitor crizotinib (Selleckchem), the RORC antagonists
SR2211, SR1903 (both in-house generated, laboratory PRG)
and GSK805 (Calbiochem), or dimethylsulfoxide (DMSO)
control was added. For transient transfections and generation
of A-Fos-inducible cells, see Supplementary Methods.

DNA constructs

CMV500-based A-Fos for constitutive expression has been
described [36]. For BATF, BATF3, RORC1, RORC2, and
pRTS-1-based [37] inducible A-Fos expression constructs
and lentiviral sgRNA and BATF and BATF3 constructs,
refer to Supplementary Methods.

siRNA-mediated knock-down and CRISPR/Cas9-
mediated deletion of BATF and BATF3 in ALCL cell
lines, chromatin immunoprecipitation (ChIP)

Accell small interfering RNAs (siRNAs) were from
Dharmacon (Supplementary Table 1) and passively trans-
fected once into K299 and Mac-1 cells using RPMI-1640

and 1% fetal calf serum. Cells were cultivated at 500–750
nM for each siRNA for 72 h (3 days). Knock-down effi-
ciency was controlled by western blot (WB) at day 3.
Functional assays were performed in standard medium. For
CRISPR/Cas9-mediated deletion of BATF and BATF3,
see Supplementary Methods and Supplementary Table 1;
for ChIP, see Supplementary Methods and Supplementary
Table 2.

Processing and analysis of microarray data; gene set
enrichment analysis (GSEA) and principal
component (PC) analysis

For generation of TH17 and ILC3 signatures, microarray
data for TH17, ILC3 and TH1 cells were obtained from
GEO (GSE78897) [35]. Primary ALCL and PTCL data
were obtained from GEO (GSE65823, GSE6338 and
GSE19069) [38–40]. For microarray analyses of cell lines,
supplementation by ILC3 microarray data, GSEA and PC
analyses, refer to Supplementary Methods.

Additional materials and methods

Detailed methodology is described in the Supplementary
Materials and Methods.

Results

Characterization of BATF DNA binding and physical
interactions of BATFs with JUNB in ALCL

To identify BATF-containing TF complexes in ALCL, we
first analyzed AP-1 DNA binding at the classical AP-1 5ʹ-
TGA[G/C]TCA-3ʹ motif (Supplementary Figure 1A, top) in
a panel of ALK+ and ALK– ALCL and T-cell-derived
control (non-ALCL) cell lines already used in our previous
studies [13, 18]. We verified ALCL-restricted AP-1 DNA
binding activity and high-level JUNB and IRF4 expression
(Supplementary Figure 1A) [13, 18]. Supershift analyses
revealed DNA binding of the AP-1/FOS members JUNB
and FRA2 [14, 18], and in addition strong BATF binding
(Fig. 1a, left). In other cellular systems, BATF-JUN drives
gene expression together with IRFs from AP-1 IRF com-
posite elements (AICEs) [29, 31, 32]. DNA binding at
AICEs was strong in ALCL, in contrast to non-ALCL
(Fig. 1a, right). Supershifts demonstrated binding of FRA2
(weaker compared with the classical AP-1 motif), JUNB
and, more prominently, BATF, as well as BATF3 and IRF4
(Fig. 1b, left). Immunoprecipitation demonstrated
protein–protein interactions between BATF and BATF3
with JUNB specifically in ALCL cell lines (Fig. 1b, right,
and Supplementary Figure 1B).
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Fig. 1 BATF and BATF3 DNA binding, co-immunoprecipitation and
expression in ALCL. a Left, EMSA of AP-1 TPA responsive element
(TRE) complexes without (-) or with addition of specific antibodies, or
isotype control (IC). Positions of AP-1 complexes, supershifts (ss) and
a nonspecific band (n.s.) are indicated. Right, EMSA of IRF/AP-1
DNA binding at AICEs (AICE_Bcl11b; AICE; AICE_IL12RB).
Underlined, IRF motif; bold, AP-1 motif; gray, intervening bases. The
free probe of one representative EMSA is shown. b Left, EMSA of
AICE_Bcl11b, performed as in a. Right, JUNB and BATF co-

immunoprecipitations with anti-JUNB (top), anti-BATF (bottom) or
isotype controls (IC). (Co-)immunoprecipitated proteins were detected
by immunoblotting (WB). β-Actin and input were controls. c Left,
BATF and BATF3 were analyzed at mRNA levels by RT-PCR (top)
and at protein level by immunoblotting of nuclear extracts (bottom).
GAPDH and PARP1 were controls. Right, BATF and BATF3 IHC of
primary lymphomas. Top, BATF IHC of an ALK+ ALCL a, an ALK–

ALCL b and a mantle cell lymphoma [MCL; c]. Bottom, BATF3 IHC
of an ALK+ ALCL d, an ALK– ALCL e and a DLBCL f
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High-level expression of BATF and BATF3 in ALCL

The distinct DNA binding of BATF and BATF3 in ALCL
indicated cell-type-specific expression. Indeed, BATF
mRNA was largely restricted to, and BATF3 was exclu-
sively expressed in ALCL cell lines (Fig. 1c, upper left).
BATF2 was not expressed (data not shown). We confirmed
high BATF and BATF3 protein expression in all ALCL cell
lines (Fig. 1c, lower left, and Supplementary Figure 1C and
1D). The highest BATF levels in some ALK– cell lines
corresponded to their somewhat stronger DNA binding at
AICE_IL12RB (see Fig. 1a).

Immunohistochemistry of BATF and BATF3 in human
lymphoma specimens demonstrated nuclear localization
(Fig. 1c, right). Among 69 non-ALCL B-NHL and T-NHL,
none of the mantle cell (MCL; 0/7), follicular (FL; 0/11)
and Burkitt lymphomas (BL; 0/11) expressed BATF.
expressed BATF, and 15 of 20 DLBCL showed varying
numbers of positive lymphoma cells, whereas all CLL cases
(9/9; only in proliferative centers), 2/2 NLPHL and 9/9
PTCL (NOS) were BATF positive. We concluded that
BATF expression is associated with distinct lymphoma
subtypes and cellular subpopulations. Importantly, strong
staining was observed in 16/16 ALCL (7 ALK+/9 ALK–)
(Fig. 1c right, top) and 8/8 classical Hodgkin lymphoma
(cHL) cases.

BATF3 showed a more restricted expression pattern. In
total, 16/16 ALCL (7 ALK+/9 ALK–) (Fig. 1c right, bot-
tom) and 8/8 cHL strongly stained positive, whereas among
69 B-NHL and T-NHL (20 DLBCL, 10 MCL, 9 CLL, 11
FL, 8 BL, 9 PTCL, 2 NLPHL) only 1 CLL sample was
BATF3 positive. Thus, simultaneous BATF and BATF3
expression was unique to ALCL and cHL.

CRISPR/Cas9-mediated deletion and siRNA knock-
down of BATF and/or BATF3 in ALCL

We next defined the role of BATF and BATF3 in ALCL by
gene-specific inactivation by CRISPR/Cas9-mediated
knock-out (KO) in K299, SUP-M2 and Mac-1 cells
(Figs. 2a, b). Interestingly, following BATF3 deletion,
BATF was upregulated. This was also observed in SUP-M2
cells, in which BATF was virtually absent at baseline
(Supplementary Figure 1D). Deletion of BATF or BATF3
in K299 (Fig. 2a, left) or BATF3 in SUP-M2 cells (Fig. 2a,
center) resulted in sustained growth retardation, but did not
alter the growth of Mac-1, in which we, however, observed
the strongest counterregulation of BATF and BATF3
(Fig. 2a, right).

We were unable to generate BATF and BATF3 double
KO ALCL cells, suggesting lethality of double BATF KO
to ALCL. To test this, we monitored the fate of CRISPR/
Cas9-mediated BATF and BATF3 double KO cells by
transducing BATF3 single KO cells with BATF-targeting
guide-RNA (gRNA) (Fig. 2b, left and center, Supplemen-
tary Figure 2A). In Mac-1 cells, despite no effect of BATF
single KO (see Fig. 2a), trans duction of BATF3 single KO
cells with BATF-directed gRNA led to a rapid loss of green
fluorescent protein (GFP)-positive cells. A similar, some-
what less pronounced effect was observed in K299 cells,
which, however, already showed growth retardation in
BATF3 single KO cells (see Fig. 2a). Finally, xeno-
transplantation of K299 BATF KO cells produced sig-
nificantly smaller tumors compared with WT cells (Fig. 2b,
right), with a similar tendency for BATF3 KO tumors.

In a complementary approach, we performed siRNA-
mediated knock-down of both BATFs (Fig. 2c and Sup-
plementary Figures 2B and 2C). Single knock-down of
BATF did not alter viability of Mac-1 cells (Fig. 2c, left),
whereas BATF3 knock-down moderately inhibited growth
and induced cell death (Fig. 2c, center). Importantly,
simultaneous knock-down of both BATFs resulted in strong
growth inhibition and apoptotic death (Fig. 2c, right), which
reflected our inability to generate double BATF and BATF3
KO clones using CRISPR techniques. Similar results were
obtained with K299 cells (Supplementary Figure 2C). As
specificity control, reversion of cellular toxicity was shown
by concomitant ectopic BATF and BATF3 expression
(Supplementary Figure 3A).

Induction of cell death following global abrogation
of AP-1 DNA binding activity in ALCL

In an independent approach, we globally inhibited AP-1 by
a dominant repressor of AP-1 and leucine zipper TFs, such
as BATFs, named A-Fos [36]. This complemented our
approaches targeting BATFs, as BATFs have low DNA

Fig. 2 CRISPR/Cas9-mediated deletion and siRNA-mediated knock-
down of BATF and BATF3 in ALCL. a CRISPR/Cas9-mediated
deletion of BATF and/or BATF3 in K299 (left), SUP-M2 (center) and
Mac-1 (right) cells. Top, immunoblotting of wild-type (WT), control-
treated (CRISPR CTL), BATF KO and/or BATF3 KO cells for BATF
and BATF3. Note the compensatory increase of BATF following
BATF3 deletion. Bottom, cell numbers are shown over time. b Left
and center, BATF3 single knock-out Mac-1 (left) and K299 (center)
cells were transduced with GFP-labeled vector encoding BATF gRNA
(BATF KO) or non-targeting control (CRISPR CTL). The percentage
of GFP-positive cells over time is indicated. Right, xenotransplantation
of K299 WT, BATF KO and BATF3 KO cells on NSG mice.
Tumor weight at day 14 is shown in gram (g). Far right, representative
tumors at day 14. c siRNA-mediated knock-down of BATF and/or
BATF3 in Mac-1. Cells were treated with control siRNAs (siCTL #1
and siCTL #2), siRNAs targeting BATF (siBATF #2, siBATF #3
and siBATF #4; left) or BATF3 (siBATF3 #1 and siBATF3 #2;
center), or respective combinations (right). Cell numbers (top), [3H]-
thymidine incorporation (center) and percentage of Annexin
V-positive cells (bottom) are shown over time. **P < 0.01; ***P <
0.001; n.s., not significant
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affinity and require JUN proteins, mainly JUNB, for het-
erodimer formation and DNA binding [28]. We generated
Dox-inducible A-Fos FE-PD cells (Fig. 3 and Supplemen-
tary Figure 3B), in which AP-1 activity was virtually
abolished following Dox addition (Fig. 3, left). This
inhibited cell growth (Supplementary Figure 3B) and
induced cell death (Fig. 3, right). Similar results were
obtained following transient A-Fos expression in K299
(Supplementary Figure 3C). Thus, constitutive AP-1/BATF
activity is essential for viability of ALK+ and ALK– ALCL
cells.

ALCL shows a gene expression pattern characteristic
for TH17 and ILC3 cells

JUN-BATF, IRF4 and STAT3 coordinate TH17 gene
expression [33]. As all these TFs are active in ALCL, we
hypothesized that their combined activity imposes a TH17
cellular fate in ALCL. Indeed, ALCL cell lines consistently
expressed TH17-associated genes (Fig. 4a), including AHR,
IL1R1, IL4R, IL18R1, IL22, IL23R and IL26. Given the
absence of T-cell receptor (TCR) rearrangement in a (minor)
subset of ALCL cases [41, 42], we reasoned that ALCL cells
could be derived alternatively from ILC3 cells. These cells
are characterized by the absence of BCR or TCR gene
rearrangements and have, compared with TH17 cells, an
overlapping but distinct gene expression pattern [35].

To test whether a TH17- or ILC3-like signature was an
inherent feature of the overall ALCL expression pattern, we
performed GSEAs (Fig. 4b, top). Based on published gene
expression data [35], we defined TH17 and ILC3 signatures,
using the top 100 up- or downregulated genes compared
with TH1 cells. Our ALCL cell lines significantly enriched
genes upregulated in TH17 cells (Fig. 4b, top, left) and even
more prominently ILC3-upregulated genes (Fig. 4b, top,

right). ILC3 signature leading edge genes are shown in
Supplementary Table 3. Consistently, principal component
analysis (PCA) of ALK+ (K299, SU-DHL-1, DEL, JB6),
ALK– (FE-PD, Mac-2A) and control (T; Jurkat, KE-37,
Molt-14, H9) samples based on the top 100 differentially
expressed genes between TH17 and ILC3 and
TH1 signatures revealed a clear separation of ALCL and
control cells along PC1 (Fig. 4b, bottom). Moreover, ALCL
cells were localized closer to projected ILC3, again more
significant for ILC3 signatures (P-values ≤ 1.6E–9 for
TH17 signature based PCA and 9.5E–17 for ILC3). This
suggested an in-between localization of ALCL between the
ILC3 and TH17 phenotypes with a stronger skewing
towards an ILC3 profile.

Expression of TH17/ILC3 genes in primary ALCL; IL-
22, IL-17A and IL-17F are secreted by ALCL cell lines,
IL-17A and IL-17F detectable in ALCL patients

We next aimed to confirm expression of TH17- and ILC3-
associated genes in primary lymphomas. In the majority of
primary ALCL samples, TH17–/ILC3 genes were much
stronger or even exclusively expressed compared with NHL
controls (Supplementary Figure 4A). Moreover, IL-22 was
secreted by three ALK– cell lines and IL-17A and IL-17F by
several ALCL cell lines (Supplementary Figure 4B). IL-
17A was detectable in three of 21 pretreatment serum/
plasma samples of ALK+ ALCL patients and one healthy
control, whereas it was undetectable in patients in remission
(Supplementary Figure 4C) (P= 0.48). IL-17F levels were
high in 4 of 21 ALCL patients, whereas no healthy control
or patient in remission exhibited measurable IL-17F (Sup-
plementary Figure 4C). Although there was only a tendency
toward a higher mean IL-17F level in ALK+ ALCL patients
(P= 0.08), these data suggest specific IL-17F upregulation

Fig. 3 Inhibition of global AP-1 activity by its dominant-negative A-
Fos in FE-PD cells. Inducible A-Fos expression abrogates constitutive
AP-1. Left, analysis of enriched GFP-positive cells by WB for A-Fos
expression (top; FLAG antibody) and EMSA for DNA binding to TRE
site (center, top) and BCL_11b AICE (center, bottom) after Dox

addition for the indicated times. β-Actin and Sp1 DNA binding were
controls. Two independent experiments (#1 and #2) are shown. Right,
percentage of viable cells following Dox induction measured by PI
staining and flow cytometry over time. ***P < 0.001
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in distinct ALK+ ALCL patients. We did not observe a
significant correlation with other clinical or biological
parameters (data not shown).

Recruitment of BATFs and JUNB to regulatory
regions of TH17/ILC3 genes and dependency of
TH17/ILC3 genes on AP-1/BATFs in ALCL

A direct regulation of TH17-/ILC3-associated genes by AP-
1/BATF was investigated by ChIPs of BATF, BATF3 and

JUNB. We analyzed promoter or enhancer regions of
IL1R1, IL4R, IL12RB, IL17A, IL18R1, IL22, IL23R and
IL26 in three ALCL cell lines and Jurkat controls (Fig. 4c
and Supplementary Figure 5A and 5B). Most of the reg-
ulatory regions showed strong BATF, BATF3 and JUNB
recruitment in ALCL cells, which was not observed in
Jurkat. Functionally, we confirmed AP-1 involvement in the
upregulation of TH17/ILC3 genes, as expression of AHR,
CCL20, IL4R, IL17A, IL22, IL23R and IL26 decreased
following AP-1 inhibition (Fig. 4d). Furthermore,

2000 N. Schleussner et al.



K299 showed decreased expression of AHR, IL1R1, IL6R,
IL26 and RORC2 after enrichment of cells with simulta-
neous gRNA-mediated double KO of BATF and BATF3 at
day 13 after transduction (Fig. 4e).

Primary ALCL shows a gene expression pattern
characteristic for ILC3, while taking an intermediate
position between two groups of PTCL with respect
to TH17 signature genes

To globally approach the concept of TH17/ILC3 skewing of
primary ALCL, we performed GSEA with microarray data
of primary ALCL and PTCL samples used in previous
studies (Fig. 5) [38–40]. A correlation analysis of gene
expression profiles of all samples (bracket [a]) demonstrated
one central ALCL cluster flanked by two distinct PTCL
clusters, positioned in bracket [b] and [c] of Fig. 5a. In an
overall analysis including all samples (Fig. 5a, bracket [a]),
the ILC3 signature enriched in ALCL (Fig. 5b, center top
panel). In contrast, the TH17 signature demonstrated a trend
toward an enrichment in PTCL (Fig. 5b, center bottom
panel). The GSEA between both PTCL clusters revealed a
strong TH17 signature enrichment in PTCLs positioned in
bracket [b] compared with those positioned in bracket [c]
(NES 3.2556; FDR < 0.0001; data not shown). The TH17-
like PTCL in bracket [b] also showed an enrichment of the
TH17 signature when compared with ALCL (Fig. 5b, left
bottom). The ALCL, however, showed an enrichment of the
TH17 signature when compared with PTCLs positioned in

bracket [c] (Fig. 5b, right bottom). The ILC3 signature was
enriched in ALCL when compared with any of the PTCL
clusters (Fig. 5b, top). We concluded that gene expression
pattern characteristic for ILC3 is a common feature of
ALCL, whereas, regarding TH17 signature genes, ALCL
takes an intermediate position between PTCL with or
without expression of TH17 genes.

Expression of RORC2 (RORγt) in ALCL; RORC
inhibition results in cell death induction in ALCL and
synergizes with ALK inhibitors

TH17 and ILC3 cells are characterized by a unique
expression of RORC2, also known as RORγt [43–45, 46].
RORC2 mRNA was detectable in five of eight ALCL cell
lines, but none of the controls (Fig. 6a, upper left). RORC1
mRNA was stronger expressed in ALCL cell lines. At the
protein level, we confirmed RORC overexpression and
RORC2 restriction to ALCL cell lines (Fig. 6a, lower left,
and Supplementary Figure 5C, left). Furthermore, robust
RORC2 mRNA expression was detectable in most primary
ALCL specimens in contrast to NHL, including five PTCL-
NOS (Supplementary Figure 5C, center and right). Func-
tionally, RORC2 expression decreased following AP-1/
BATF inhibition by A-Fos (Fig. 6a, right).

Finally, we investigated the effect of pharmacological
RORC inhibition in ALCL. Treatment of ALCL cell lines
with the inhibitory RORC modulators SR2211 (ref. 47) and
SR1903 (a close analog of SR2211) resulted in decreased
viable cells over time (Fig. 6b, top), whereas no effect was
observed in cells without (KE-37) or low level (Jurkat)
RORC expression and in FE-PD cells with RORC1 but no
RORC2 expression (Fig. 6b, bottom). Moreover, we
investigated the effect of RORC inhibitors SR2211,
SR1903 and GSK805 (ref. 48) in combination with ALK
inhibition in the ALK+ ALCL cell lines K299, DEL and
JB6 (Fig. 6c). The combination of crizotinib with RORC
inhibitors enhanced cell death induction.

Discussion

We demonstrate that ALK+ and ALK– ALCL are char-
acterized by an unprecedented activation of the AP-1 family
and leucine zipper TFs BATF and BATF3, and that
simultaneous high-level expression of both BATFs is a
particular feature of ALCL. In accordance with the fact that
BATF3 distinguishes ALCL from other PTCL [26, 27],
BATF and BATF3 thus add a new layer of complexity to
deregulated AP-1 in ALCL [14, 18, 19]. Remarkably,
although NPM-ALK induces JUNB [21], ALK+ and ALK–

ALCL neither differ in their global AP-1 activity nor in
expression of distinct AP-1 factors [refs. 14, 18, 19 and this

Fig. 4 TH17/ILC3 gene expression in ALCL and link to the deregu-
lated BATF/BATF3/AP-1 activity. a mRNA expression of TH17/
ILC3-associated genes and, as control, GAPDH were analyzed by RT-
PCR. b More global approaches to TH17/ILC3 gene expression in
ALCL. Upper panels, GSEA of differentially expressed genes between
ALCL (K299, SU-DHL-1, DEL, JB6, FE-PD, Mac-2A) and T control
(T) cell lines (Jurkat, KE-37, Molt-14, H9) based on TH17 (left) and
ILC3 (right) top 100 upregulated genes. Lower panels, PC analyses of
ALK+ and ALK– ALCL and T control samples based on 100 top
differentially expressed TH17 (left) or ILC3 (right) genes, separating
ALCL and T-cell lines along the PC1 axis. PCAs were supplemented
by projection of ILC3 samples [45]. n.s., not significant; *P ≤ 0.05;
**P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001. c BATF3 ChIP from K299
cells. Input and precipitated DNA were amplified by qPCR for the
indicated promoter or enhancer regions. Combined data of two bio-
logical replicates are shown as mean ± SEM. d Inhibition of AP-1
downregulates TH17/ILC3 genes. Enriched A-Fos or Mock trans-
fected K299 cells were analyzed by RT-PCR for TH17/ILC3 genes.
Two (#1 and #2) of four independent experiments are shown. e
Analysis of TH17/ILC3 genes in K299 cells with double BATF and
BATF3 KO at day 13 following lentiviral transduction. qPCR-based
expression of the indicated genes in control cells (CRISPR CTL) or
cells transduced with a combination of sgRNAs targeting BATF and
BATF3 (BATF + BATF3 DKO). BATF and BATF3 were analyzed to
verify their KO. The expression level in CRISPR CTL cells was set 1.
Error bars denote 95% CIs. One out of three independent experiments
is shown. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; n.s., not significant
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work], which supports our hypothesis that they share a
common pathogenic mechanism [49, 50]. In favor of this,
the epigenome between ALK+ and ALK– ALCL is highly
similar [49]. Apart from ALCL, we identified a concomitant
expression of BATF and, as only recently demonstrated

[27], BATF3 in cHL, which is in line with the in cHL
known constitutive AP-1 activity and shared key TF
activities in cHL and ALCL [16, 18, 19].

AP-1 forms homo- or heterodimers and exerts cell-type
and differentiation stage-specific functions [51].

Fig. 5 TH17/ILC3 gene set enrichment analyses of primary ALCL and
PTCL. a Pearson correlation heatmap between ALCL and PTCL
samples. Samples are clustered by the Euclidean distance and separate
into three major clusters. b GSEA of ALCL and PTCL samples from

indicated clusters, marked by brackets underneath the heatmap shown
in a. Note, although ALCL shows an overall enrichment of the
ILC3 signature (GSEA of upper row), the TH17 signature enrichment
(GSEA of lower row) is decreasing from left to the right
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Furthermore, AP-1 effects certainly differ between transient
and the long-term activation observed in ALCL, as known,
for example, NF-κB [52]. We present evidence that BATF
and BATF3 are essential components of the TF network in

ALCL. First, deletion of BATF or BATF3 caused growth
retardation in vitro and in vivo, in line with a recently
published study on BATF3 in ALCL [27]. Our inability to
generate BATF and BATF3 double KO cells indicates

Fig. 6 Expression and inhibition of RORC2 in ALCL. a Left, analysis
of RORC1 and RORC2 mRNA by RT-PCR (top) and RORC protein
expression by immunoblotting of nuclear extracts (bottom). GAPDH
and PARP1 are controls. Right, AP-1 inhibition downregulates
RORC2. K299 cell were treated as in Fig. 4d, and RORC2 and
GAPDH mRNA were analyzed by RT-PCR (top), and RORC2
expression changes at the protein level by WB (bottom). Two (#1 and
#2) of four independent experiments are shown. b RORC inhibition by
small compounds induces cell death of ALCL cell lines. Cells were
treated with 5 μM of RORC inhibitors SR2211 or SR1903, or the
control (DMSO), and the percentage of viable cells was analyzed by PI

staining. One of three independent experiments is shown. (c) Enforced
cell death induction by crizotinib in combination with RORC inhibi-
tors. The ALK+ cell lines K299, DEL and JB6 cells were left
untreated, or treated with DMSO control, the RORC inhibitors
SR2211 (7.5 μΜ), SR1903 (7.5 μΜ) and GSK805 (7.5 μM), or 25 nM
crizotinib (Crizo) alone, or the different RORC inhibitors together with
crizotinib. Cell death was analyzed by Annexin V-FITC/PI staining.
The percentage of viable cells is shown. Experiments were performed
in triplicates and results are shown as mean ± SD. One of three inde-
pendent experiments is shown. *P < 0.05; ***P < 0.001; n.s., not
significant
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lethality of combined BATF deletion. Second, we observed
a comparable phenotype with siRNA-mediated BATF
knock-down, in which the combined BATF and BATF3
knock-down resulted in pronounced growth arrest and cell
death induction. The cross-regulation of BATF and BATF3
detected in our cell lines and in genetically manipulated
mice and a functional redundancy [28, 29] might attenuate
effects of targeting single BATFs. BATFs modify tran-
scriptional activity by interaction with AP-1 TFs like JUNB
and JUN [28], both highly activated in ALCL [18, 24]. In
line with their concerted activity, global AP-1 inhibition
caused death of ALCL cells (this work and ref. 18).

Furthermore, we describe a composite DNA binding
activity at AICEs with IRF4, which is known from TH17
cells [30, 32–34]. In ALK+ ALCL, expression of some
TH17 genes has been reported [40, 53, 54], and NPM-ALK-
induced miR-135b enforces IL-17 production [54]. We
demonstrate that TH17 gene expression is a unifying feature
of ALK+ and ALK– ALCL, and their expression depends at
least in part on AP-1/BATFs. By a comprehensive analysis
of the TH17 signature in primary ALCL and PTCL, we
identified two PTCL groups, one with strong
TH17 signature and one without, whereas ALCL were
taking an intermediate position between these PTCL
groups. Whereas the biological and clinical relevance of
TH17 gene expression in PTCL has to be investigated in
future studies, these data confirmed partial TH17 skewing
of primary ALCL.

Remarkably, the ILC3 gene set, which overlaps with that
of TH17 cells [35], showed a consistent enrichment in
ALCL, irrespective of the PTCL comparison. This is of
particular relevance regarding the cellular origin of ALCL
and opens a new view on ALCL pathogenesis. Approxi-
mately 14% of ALCL show germline TCR configuration
[41]. The absence of BCR or TCR rearrangements is as
much a hallmark of ILC3 as the lack of typical B or T-cell
markers [55, 56]. ILC3 are enriched in human tonsils and
the intestinal lamina propria, and circulate in the peripheral
blood [55]. Whereas nearly all known hematopoietic cell
types give rise to malignancies, no ILC3-derived neoplasm
is currently known. We propose that a (minor) subfraction
of ALCL originates from ILC3. The expression of key ILC3
genes, the lack of B or T lymphoid surface markers, the lack
of a genomic lymphoid fingerprint in an ALCL fraction and
the frequent expression of IL-22 [53, 57] are in accordance
with such a hypothesis. Alternatively, the deregulated TF
network might superimpose a TH17/ILC3 cellular fate on
ALCL cells.

Our work provides new aspects for targeted treatment
strategies for ALCL. Inhibitors of TH17 cells are developed
due to TH17 cell involvement in autoimmune and inflam-
matory diseases [58, 59–61]. Hence, interference with
TH17 gene activity might represent a treatment strategy for

ALK+ and ALK– ALCL. Among ALK+ ALCL patients,
treatment with ALK inhibitors exerts long-term disease
control [62], but is obviously unable to eradicate the
respective lymphoma clone [63]. The synergistic activity of
RORC inhibitors together with ALK inhibitors might era-
dicate persisting ALCL cells. In addition, we provide the
basis for exploring interference with, for example, IL-17
and IL-26 circuits and further evaluation of TH17-related
cytokines as diagnostic and prognostic markers for ALCL,
as also suggested by an independent study [53].

Overall, we have identified BATF and BATF3 as
essential components of the gene regulatory network in
ALCL and have demonstrated their pathogenic and ther-
apeutic relevance. Furthermore, we suggest that a subset of
ALCL originate from ILC3, a finding that has to be ela-
borated in future studies.
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