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SUMMARY

Conjugative transposition drives the emergence of
multidrug resistance in diverse bacterial pathogens,
yet the mechanisms are poorly characterized. The
Tn1549 conjugative transposon propagates resis-
tance to the antibiotic vancomycin used for severe
drug-resistant infections. Here, we present four
high-resolution structures of the conserved Y-trans-
posase of Tn1549 complexed with circular trans-
poson DNA intermediates. The structures reveal
individual transposition steps and explain how
specific DNA distortion and cleavage mechanisms
enable DNA strand exchange with an absolute
minimum homology requirement. This appears to
uniquely allow Tn916-like conjugative transposons
to bypass DNA homology and insert into diverse
genomic sites, expanding gene transfer. We further
uncover a structural regulatory mechanism that pre-
vents premature cleavage of the transposon DNA
before a suitable target DNA is found and generate
a peptide antagonist that interferes with the transpo-
sase-DNA structure to block transposition. Our re-
sults reveal mechanistic principles of conjugative
transposition that could help control the spread of
antibiotic resistance genes.
INTRODUCTION

DNA transposons are autonomous mobile genetic elements

present in all kingdoms of life. In bacteria, transposons can
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carry antibiotic resistance genes and are major drivers of

resistance spreading (van Hoek et al., 2011; Wozniak and

Waldor, 2010). Transposition has been linked to the emergence

of several multidrug-resistant opportunistic pathogens such as

vancomycin-resistant Enterococcus (VRE), methicillin-resistant

Staphylococcus aureus (MRSA), and extended spectrum

b-lactamase-carrying Enterobacteriaceae (ESBL), which have

become major health threats (Alekshun and Levy, 2007; Liu

et al., 2016; Uemura et al., 2010).

Conjugative transposons (CTns; also referred to as integrative

conjugative elements) constitute a major class of DNA transpo-

sons that can self-sufficiently move between bacterial genomes.

They harbor resistance genes against many different antibiotics

in diverse bacteria. Most CTns in Gram-positive pathogens

belong to the large Tn916-like family, members of which confer

resistance to all major antibiotic classes used against these bac-

teria (Bi et al., 2012; Roberts and Mullany, 2011). A prominent

Tn916-like CTn is Tn1549, which is a major source of vancomy-

cin resistance (VanB) in clinical VRE isolates (vanHal et al., 2016).

As one of the leading causes of hospital-acquired infections,

VRE causes diverse, difficult to treat infections (e.g., urinary

infections, sepsis, and endocarditis), putting immunocompro-

mised and transplant patients at critical risk (Agudelo Higuita

and Huycke, 2014; Guzman Prieto et al., 2016). Transfer of van-

comycin resistance via Tn1549 has already been observed to

various genera (Ballard et al., 2005; Launay et al., 2006), which

is concerning as vancomycin is commonly used as a last resort

antibiotic in the treatment of drug-resistant Enterococcus, Clos-

tridium, and Staphylococcus infections (Rubinstein and Key-

nan, 2014).

Despite their major role in drug resistance dissemination,

CTns are among the least understood mobile DNA ele-

ments and gene transfer mechanisms. Microbiology and

sequencing studies on two model CTns, Tn916 and Tn1549,
ed by Elsevier Inc.
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mailto:barabas@embl.de
https://doi.org/10.1016/j.cell.2018.02.032
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2018.02.032&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Figure 1. Tn1549 Transposition and the

Tyrosine Recombinase Chemistry

(A) Schematics of Tn1549 transposon movement.

Tn1549 encodes genes responsible for trans-

position (including Int), conjugation and mobiliza-

tion (light gray boxes) and confers vancomycin

resistance (VanBR, pink). Excision (i) in the donor

cell (purple) creates the CI, with IRL and IRR (block

arrows) joined by 5–7 nt heteroduplex; the donor

DNA site is resealed. A single CI strand is

transferred (ii) to a recipient bacterium (blue) by

conjugation and replication re-creates the double-

stranded CI, now with homoduplex at the cross-

over region. Integration (iii) in the recipient genome

generates a new vancomycin resistant cell.

(B) Tyrosine recombinases (gray ovals) re-

combine DNA substrates stepwise: (i) two pro-

teins cleave one strand of each dsDNA using

a tyrosine nucleophile, creating a covalent

30-phosphotyrosyl bond (black dots) and a free

50-hydroxyl (50OH) group; (ii) the 50 ends swap

places and resolve the protein-DNA link on the

partner strands, generating a four-way Holliday

junction (HJ) intermediate; (iii) isomerization acti-

vates the second protein pair to cleavage (iv) and

exchange (v) the other DNA strands, generating

the final recombined products. Energetically

inexpensive strand exchange requires homology

in the substrates (red).
have suggested a general strategy for transposition involving

excision from the host genome to create a circular transposon

junction intermediate (CI), transfer of the CI to the recipient

cell through conjugation, and finally integration in the recipient

genome at random AT-rich locations (Tsvetkova et al., 2010;

Wozniak andWaldor, 2010) (Figure 1A). However, due to limited

biochemical and structural data on the molecular machinery

involved in their movement, mechanistic details remain un-

known. This has restricted our understanding of their behavior

and our ability to limit their transfer to help tackle antibiotic

resistance spreading.

The DNA cleavage and joining reactions required for CTn

transposition are carried out by a transposase enzyme called in-

tegrase (Int). Most known CTns, including the Tn916-like family,

have Y-transposases that use a conserved tyrosine residue to

attack a phosphorous atom in the DNA backbone (Hickman

and Dyda, 2015). Y-transposases belong to the tyrosine site-

specific recombinase superfamily, members of which execute

various biological functions including monomerization of phage,

plasmid and chromosome multimers, resolution of hairpin telo-

meres, as well as mobilization of phages and transposons

(Jayaram et al., 2015). Although most tyrosine recombinases
use similar chemistry to recombine two

specific DNA sites (Figure 1B) (Grindley

et al., 2006), Tn916-like CTn enzymes

have highly promiscuous DNA sub-

strates, especially for integration, where

they insert at random sites. How CTn

transposases can overcome the low

specificity of their substrates to achieve
efficient transposition is currently unknown, although this is the

key for spreading across an extremely diverse range of bacteria.

Here, we present the first crystal structures of a CTn transpo-

sase from Tn1549 bound to DNA substrates. These reveal

insights into CTn transposition and elucidate the molecular

mechanisms used to recognize diverse transposon CIs and pre-

pare them for integration at random genomic sites in diverse

bacterial genomes. Our data also imply an auto-regulatory

mechanism and make it possible to block Int activity in vitro,

potentially opening new avenues to reduce the spread of anti-

biotic resistance.

RESULTS

Structure of the Int-Circular Intermediate DNA Complex
To understand the structural basis of CTn transposition, we

determined the crystal structure of the Tn1549 Int in complex

with a CI DNA substrate. Int contains 3 functional domains:

an arm-binding domain (AB), a core DNA binding domain

(CB), and a catalytic domain (CAT) (Figure S1A). CB and CAT

are conserved in all tyrosine recombinases and are responsible

for DNA binding at the Tn1549 transposon ends, as well as for
Cell 173, 208–220, March 22, 2018 209



Figure 2. Transposon End Recognition by

the Tn1549 Int

(A) Crystal structure of the R225K Int82N-CI5 DNA

complex. Two Int molecules (A, B, two shades of

blue) bind at IRL and IRR (gray), with the crossover

region (red) at the center. Bases are numbered

from the IR boundaries, numbers increase with the

distance, negative numbers upstream, bottom

strand marked with prime. CB and CAT are con-

nected by a flexible linker. aA-D, aI, aJ, and the

b-hairpin insertion (pink) interact with the DNA; aM

is swapped between the two subunits.

(B) Close-up of the base-specific DNA contacts of

N150 with three terminal bases (sticks in atomic

coloring).

(C) Close-up of the b-hairpin. Q249, R252,

and T254 (sticks) contact the DNA phosphate

backbone.

See also Figures S1 and S2 and Tables S1 and S2.
all DNA cleavage and ligation reactions during transposon exci-

sion and integration. The small and flexible AB domain is only

present in a subset of tyrosine recombinases and is generally

dispensable for DNA cleavage and strand exchange in vitro

(Grindley et al., 2006; Sarkar et al., 2001). We confirmed that

both the full-length Tn1549 Int (IntFL) and an Int variant lacking

the AB domain (aa 82–397; Int82N) catalyze CI DNA cleavage

and strand exchange (Figure S1B). We obtained crystals of

Int82N bound to a 44 bp double-stranded DNA (dsDNA) oligonu-

cleotide mimicking the CI (Figure S1C). The DNA (named CI5)

represents a sequence from previous in vivo studies in Clos-

tridium and contains the conserved left and right 11 bp long

AT-rich imperfect inverted repeats (IRL and IRR) that mark the

ends of Tn1549, connected by a 5 bp homoduplex crossover

region (atagc) (Domingo et al., 2005) (Figure 2A) as in the trans-

poson integration substrate in the recipient cell (Figure 1A). To

avoid heterogeneous DNA cleavage, we crystallized the cata-

lytic R225K Int mutant.

The resulting 2.8 Å structure (Figures 2A and S1D; Table S1)

revealed a dimer of Int82N bound to one CI5 DNA. Each

protein molecule covers one IR and the crossover region is

located at the center between the two subunits. The CB and

CAT domains form a clamp around the DNA and the two
210 Cell 173, 208–220, March 22, 2018
protein subunits face each other in a

near-perfect 2-fold symmetric assembly.

The dimer is held together by an extended

intermolecular interface (1,409 Å2 with

DiG = �30.2 kcal/mol; calculated by

PISA; Krissinel and Henrick, 2007). The

overall protein fold resembles other tyro-

sine recombinases, with two helical

domains (Figures 2A and S1E). The C-ter-

minal helix aM is swapped between the

two subunits, interacting with a cleft on

the surface of the partner (Figure 2A); aL

that carries the nucleophile tyrosine inter-

acts with its own subunit in cis. Similar

arrangement was observed in the struc-
tures of Cre, XerH, and l integrase (Bebel et al., 2016; Biswas

et al., 2005; Guo et al., 1997) (Figures S1E and S1F) and was pro-

posed to play a role in intersubunit communication. However,

those structures showed a cyclic exchange in homo-tetrameric

assemblies (Figure S1F), whereas in the Int82N-CI5 complex, the

swap is reciprocal between the two protein subunits and consti-

tutes a major interface holding the dimer together. The CI5 DNA

molecule assumes a nearly straight conformation and the double

helix is unwound and largely distorted at the crossover region

(Figure 2A). This form is markedly different from the strongly

bent DNA conformation seen in most structures of other tyrosine

recombinases (Figure S1F).

Transposon End Recognition
Both subunits of the Int82N dimer interact extensively with DNA,

each holding one transposon IR in the CI in a symmetric fashion.

Despite several base pair differences in the sequence of IRR

and IRL, the protein-DNA interactions are nearly identical (Fig-

ure S2A). The CB domain inserts into the major groove at the

inner parts of each IR, whereas CAT mostly interacts with the

major groove at the outer parts (Figure 2). Together, the two do-

mains encircle the DNA in a positively charged cleft, making

numerous interactions with the DNA backbone (Figures S2A



and S2B). Only one amino acid, N150 forms base-specific DNA

contacts, creating a complex hydrogen-bonding network with

the three terminal base pairs of the IRs (Figure 2B). These inter-

actions help recognize the IR sequence near the cleavage sites,

whereas the rest of the IRs form only backbone interactions.

The b2-b3 hairpin contributes a substantial part of the

interactions with the IR DNA, mainly interacting with the DNA

phosphate backbone at characteristic A-tracts in both IRs (Fig-

ure 2C). It is inserted between b1 and b4 in the loop region of

the small b sheet of the canonical tyrosine recombinase fold,

and is absent in the structures of previously characterized tyro-

sine recombinases (Figures S1A and S1E). The DNA conforma-

tion shows a slight curvature in both transposon ends, centered

in the middle of each IR precisely at the end of the A-tracts

(Figure S2C). This bend might be an intrinsic feature of the

A-tracts that is recognized by the protein, or it may be induced

by aI and the b-hairpin insertion. To explore the origin and

importance of the b-hairpin, we performed bioinformatic anal-

ysis of CTn transposases and related tyrosine recombinases.

As available transposon databases are incomplete, we first

assembled a comprehensive set of Tn916-related transposases

(350 non-redundant sequences with >40% similarity to Tn1549

Int; Figure S2D). Comparative sequence analysis showed

that the b-hairpin is present and highly conserved in Tn916-

like family transposases, but absent in distantly related tyrosine

recombinases (Figures S2E and S2F).

To test the role of the b-hairpin in Int function, we created an

Int82N variant (IntDb) by replacing the b-hairpin insertion with a

short turn. IntDb retained DNA-binding (Figure S2G) but was

compromised in CI DNA cleavage and strand exchange in vitro

(Figure S2H). This shows that the b-hairpin is required for DNA

recombination, likely by shaping the DNA substrates to promote

Int activity.

Int Melts the Center of the CI DNA
One of the most striking features of the Int82N-CI5 complex struc-

ture is the DNA conformation between the two IR sites. Here, the

double helix is unwound and its backbone geometry and

hydrogen-bonding pattern is largely distorted (Figures 3A and

S3A). Distortion is initiated precisely at the boundary of the IR

sequence, where R153 from the Int CB domain, invades the

DNA and flips out the first base of the crossover region into an

extra-helical position. From here, the distortion spans until the

boundary of the other IR, where R153 from the other protein sub-

unit flipsout the firstbaseof thecrossover regionon theotherDNA

strand. At both IRs, the R153 sidechain stacks with the terminal

adenine base of the respective IR (A50/A5 in IRL/IRR) and disrupts

the continuity of base stacking. Base flipping also increases the

DNA helical pitch (Table S2), resulting in unwinding of the central

region. These distortions destabilize the base-pairing interactions

and several bases form interdigitating base stacking instead of

Watson-Crick base pairs. The electron density of the crossover

DNA is less well defined, indicating that this part of the DNA is

more flexible and partly disordered (Figure S3A).

Interestingly, the insertion of R153 and the resulting base flip-

ping appear to be independent of the DNA sequence. In the two

Int subunits, R153 inserts at different sequences on each side of

the crossover region (Figure 3A), and the flipped-out bases are
not recognized sequence specifically: they interact with Y160

in the CB domain via p-stacking (Figure 3A).

To confirm base flipping in solution, we performed fluores-

cence spectroscopy with DNA containing 2-aminopurine (2AP),

a sensitive base-stacking sensor (Holz et al., 1998). When intro-

ducing 2AP at the flipped-out base (replacing t40/c4; CI5-F), fluo-
rescence markedly increased upon Int82N addition (�4.6-fold)

(Figures 3B and S3B; Table S3). In turn, with 2AP inside the IR

(at A50/A5; CI5-IR) or in the crossover region (a30/g3; CI5-Co),
Int82N had little effect. Thus, 2AP at the crossover boundary is

specifically flipped into an unstacked extra-helical position

upon Int binding. Consistent with the critical role of Int’s R153

in base flipping, substituting this residue with alanine drastically

reduced fluorescence (�5-fold; Figure 3B and Table S3).

Efficient Transposition Requires Base Flipping In Vitro

and In Vivo

To test the functional significance of base flipping on Int activity,

we mutated R153 alone or together with Y160. Alanine substitu-

tions only moderately reduced DNA binding and cleavage

compared to unmutated Int82N (Figures S3C and S3D). However,

both mutants showed a severe decrease in strand exchange ac-

tivity in vitro (Figure 3C; Table S4), suggesting that base flipping

is particularly important for strand exchange. To test the effect of

base flipping on transposition in vivo, we assayed excision of a

mini-Tn1549 transposon (Lambertsen et al., 2018) with R153A

and R153A-Y160A IntFL mutants in E. coli. Both mutants were

highly compromised in excision, with very little CI generated

and most transposon substrate left unprocessed (Figure 3D).

This is consistent with the structural roles of R153 and Y160 in

the Int-CI complex and shows that transposase-mediated

base flipping and duplex melting play an important role

during Tn1549 transposition. Sequence alignments of Tn916-

like CTns also revealed a strong conservation of R153 and

Y160 across the family (Figure S2E).

Int Dimers Accommodate CI DNA with Different
Crossover Sequences and Length
During Tn1549 transposition, excision generates CIs with

different crossover sequences and lengths (5–7 nt) that can all

be readily integrated at new genomic locations (Domingo et al.,

2005; Launay et al., 2006). To understand how Int can accommo-

date different CIs, we determined the structure of two additional

Int82N-CI complexes. DNA sequences contained IRL and IRR

sites connected by 6 bp homoduplex crossover regions of

different sequence (CI6a and CI6b, Figure S3E) (Lambertsen

et al., 2018). Int82N bound all CIs with similar affinity and stoichi-

ometry (Figure S3F) and cleaved them in vitro, irrespective of

their crossover sequence and length (Figure S3G).

The two Int82N-CI6 structures were solved at 2.7 Å resolution

(Figures 3E and S4A; Table S1) and show a similar architecture

to the CI5 complex with two protein subunits binding one CI

DNA. The structure of the protein molecules and their interac-

tions with the DNA are practically identical (Figure S4B). One dif-

ference is in the small loop after the b-hairpin, which shows an

additional conformation in the CI6 structures located near the

DNA crossover region (Figure S4C). Another difference is the

relative positioning of the two protein subunits in the dimer. In
Cell 173, 208–220, March 22, 2018 211



Figure 3. Int Triggers DNA Base Flipping,

Unwinding, and Melting

(A) Close-up of the crossover (red) in the Int82N-CI5

DNA complex. R153 invades the DNA after each

IR, stacks with A50/A5 and flips out t40/c4 that are

stabilized by Y160 (sticks).

(B) 2AP fluorescence spectroscopy monitoring

base flipping upon Int binding. Top: fluorescence

emission spectra of Int82N-CI5 complexes (2:1 ra-

tio) with 2AP in the IR (IR), in the crossover region

(Co), and at the flipped base (F). Bottom: fluores-

cent signal of CI5-Fwith different amounts of Int82N

(gray) and R153A mutant (blue) at lem = 371 nm.

Data are represented as mean ± SEM (Table S3).

(C) Base flipping is required for efficient strand

exchange. Results of strand exchange assays

with Int82N and base-flipping mutants (see also

Table S4). Cleavage of the radiolabeled CI5 DNA

(gray) and strand exchange with an unlabeled

partner substrate (black) leads to a recombined

product (gray/black) that is detected on dena-

turing PAGE.

(D) Base flipping facilitates Tn1549 excision

in vivo. Excision of mini-Tn1549 under IntFL and

Xis expression in E. coli is followed by PCR,

monitoring formation of the CI and its loss from

the donor plasmid (DP, RDP) (Lambertsen et al.,

2018). Agarose gel showing PCR products from

samples taken at 0 and 3 hr of Xis/IntFL expres-

sion. R153A and R153A-Y160A mutants show a

strong reduction of excision. Superfluous lanes

were removed. Controls: R225K inactive mutant

or no protein expressed (�).

(E) Superposition of the R225K Int82N-CI6a

(yellow) and Int82N-CI5 (blue) complex crystal

structures (root-mean-square deviation [RMSD]

for Ca atoms 0.54 Å) shows similar DNA distor-

tions and a slight movement of Molecule B. The

crossover DNA (red) has a high disorder in the

electron density map of CI6a (composite omit

map at 1s) and some bases could not be located

(inset; missing bases in brackets).

See also Figures S3, S4, and Table S2.
the Int82N-CI6 complexes, one subunit is shiftedwith theCAT do-

mains �2–3 Å further apart than in the Int82N-CI5 complex (Fig-

ure 3E), reflecting small flexibility within the dimer. This shift is

much less than expected to be imposed by the additional base

in CI6 (�6 Å shift and �35� ‘‘helical phase’’ change between

the two Int binding sites in B-form DNA) implying that changes

in the protein arrangement are not sufficient to accommodate

the variations in the crossover DNA and changes in the DNA

conformation are also required.

In both Int82N-CI6 complexes, the DNA assumes a similar

conformation as in the CI5 complex. Due to unwinding of the

crossover region, Int maintains the same interactions in the

two IR sites irrespective of the length of the crossover region.
212 Cell 173, 208–220, March 22, 2018
R153 invades the DNA double helix, flips

out the first base of the crossover region

and disrupts base stacking and pairing.

Even though the flipped-out bases are

different in the CI6b structure (g/t instead
of t/c), they form very similar interactions and fluorescence spec-

troscopy with 2AP-substituted CI6b DNA probes confirmed

base flipping in solution (Figure S3H). The maps at the crossover

region in the CI6 structures are particularly poorly defined

(Figure S4D), suggesting that flexibility in this region helps

accommodate CIs with different crossover lengths. Our two

CI6 structures also show that different CI sequences can be

accommodated in the center of the Int dimer similarly, again

due to the distortions and flexibility of the crossover region.

Active Site Architecture
In the active site of each Int subunit, several conserved residues

are assembled around the DNA scissile phosphate, together



Figure 4. Int Cleaves inside the Con-

served IRs

(A) Close-up of the R225K Int82N-CI5 active site. All

catalytic residues (sticks) assemble around the

phosphate group of T-1. Y379 (dark blue) points

toward the phosphate (4.9–5.4 Å distance,

dashes); Y380 (gray) is anchored in a conserved

hydrophobic pocket on the subunit interface,

hydrogen bonding with M359 at the base of this

pocket (black dashes) and with L377 and K362 in

the backbone.

(B) Sequence LOGO of Tn916-like CTn trans-

posases (top; see Figure S2D for phylogenetic

tree) shows that both tyrosines are conserved, but

Y379 can be replaced with a tryptophan (W).

Canonical tyrosine recombinases only have

one tyrosine as seen in the structural alignment

(bottom).

(C) PTOmapping at IRR (left) or IRL (right) in ligation

or strand exchange assays, respectively. PTO at

T-1/T-10 inside the IRs blocks DNA cleavage and

strand exchange by Int82N. Control: no PTO; (�):

no protein.

(D) Strand ligation assays show that a terminal

thymine at the incoming 50OH is needed for strand

exchange. 50-radiolabeled IRL (yellow, left) or IRR

(orange, right) half-site substrate is cleaved and

ligated to an unlabeled partner substrate. Re-

actions with Int82N and partner substrates with

different base at the 50OH (T/C/A/G) analyzed on

denaturing PAGE. TP: 50-phosphorylated DNA; (�)

no protein.

See also Figure S5.
forming a catalytic pocket characteristic of tyrosine recom-

binases. These include the catalytic triad K225 (natively R),

H344, and R347, as well as H370 (Figures 4A and S1D). The

active site architecture is very similar in the two protein subunits

and in all three structures. We also determined the structure of

thewild-type Int82N-CI5 complex (2.8 Å), which shows practically

identical arrangement except for R225 that here contacts the

scissile phosphate (Figure S5A; Table S1).

Concerning the nucleophile tyrosine, Int contains two tyrosine

residues located near the active site: Y379 at the end of aL points

toward the scissile phosphate, and Y380 in the subsequent loop

that threads away from the active site sits in a snug pocket on the

interface of the two protein subunits (Figure 4A). Hydrophobic in-

teractions and hydrogen bonds keep Y380 in a buried position,

where it is unable to act as a nucleophile in DNA cleavage.

Notably, Y379 is also relatively distant from the scissile phos-

phate in both active sites (P – OH distance: 4.9–5.4 Å).

We analyzed the presence of the two consecutive tyro-

sines in CTn transposases (sequences as in Figure S2D)
and canonical tyrosine recombinases.

Transposases of Tn916-like CTns usu-

ally contain two tyrosines, whereas

only one tyrosine is found in other mem-

bers of the superfamily (Figure 4B). The

residues forming Y380’s binding pocket

are also conserved within the Tn916
family. To explore the two tyrosines’ roles in DNA cleavage

and recombination, we generated single and double point mu-

tants of Int82N, substituting one or both with phenylalanine that

cannot cleave DNA. Both single mutants cleaved DNA in vitro,

whereas the double mutant was completely inactive (Fig-

ure S5B). However, in strand exchange Y380F was completely

inactive, whereas Y379F was active as the unmutated protein.

Thus, while both Y379 and Y380 can perform DNA cleavage,

only cleavage via Y380 can proceed to strand exchange. In

agreement, in vivo assays in E.coli showed that Y380 is critical

for Tn1549 excision, whereas Y379 is dismissible (Lambertsen

et al., 2018).

DNA Cleavage Occurs inside the Transposon IR
Sequencing of in vivo Tn1549 intermediates and integration sites

previously implied that CI cleavage occurs at the IR boundary

(Lambertsen et al., 2018; Launay et al., 2006), ensuring that the

entire transposon sequence is strictly preserved during transpo-

sition. In contrast, in the Int-CI complexes, the catalytic residues
Cell 173, 208–220, March 22, 2018 213



Figure 5. Int Resolves the HJ Intermediate

Schematics of the HJ and its resolution. Results

of HJ resolution assays with IRL and/or TR
arms radiolabeled (*) on denaturing PAGE gel.

Int82N -mediated cleavage and strand exchange

(at the arrowheads) leads to the final integration

products (IRL-TL, 44 nt and TR-IRR, 47 nt).

See also Figure S6.
are packed around the phosphate groups 1 nt inside the trans-

poson end (position T-1/T-10 in IRL/IRR; Figures 4A and S5A).

To determine the exact cleavage position, we used phosphor-

othioate (PTO) mapping (Ennifar et al., 2003). Strand exchange

assays with PTO 1nt inside the IR (T-1/T-10) strongly inhibited

Int activity, whereas PTO at the IR boundary (a0/g00) had much

less effect (Figure 4C). This allocated the cleavage position to

T-1/T-10 inside the transposon end as indicated by our struc-

tures. In IRL, we observed residual activity with PTO at T-1 and

some inhibition with modified a0, indicating some cleavage am-

biguity at this transposon end.Mapping at IRRwas unambiguous

and results were consistent independent of the length of the

crossover region (Figures 4C and S5C).

Subterminal Cleavage Is Required for Efficient Strand
Exchange
To explore the importance of the cleavage position for subse-

quent strand exchange, we next tested the efficiency of Int-

mediated DNA ligation with ‘‘half-site’’ substrates. These contain

only one IR site and allow to specifically monitor ligation with

another pre-cleaved half-site substrate (see schematics in Fig-

ure 4D) (Nunes-Düby et al., 1989). We only observed ligation

with partner substrates that contain the terminal T-1/T-10 nucle-
otide in the exchanged strand at both IRs (Figure S5D). Thus,

cleavage inside the transposon IR is essential for productive liga-

tion during strand exchange.

During strand exchange, the liberated 50OH groups need to be

placed precisely in the active sites of their partner strands, so

that ligation can occur (Figure 1B). Thus, our finding that CI

cleavage leaves a conserved thymine base at the 50OH on the

cleaved strand and an unpaired adenine base on the uncleaved

strand in the Int active site, together with the fact that the Tn1549

target sites are AT-rich (Lambertsen et al., 2018; Launay et al.,

2006) led us to ask if base pairing at the ligation site helps to pro-

mote strand exchange. Ligation assays with partner substrates

containing different bases at the 50OH revealed product only
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with thymine (Figure 4D). Ligation was

abolished by any mutation of the terminal

base in either IRL or IRR, irrespective of

the length of the crossover region (Fig-

ure S5E), showing that this base plays a

critical role in strand exchange.

The structurally observed melting of

the CI DNA suggested that short single-

stranded DNA (ssDNA) oligonucleotides

that can intercalate in the opened cross-

over region would block strand exchange
by interfering with recruitment of the exchanged strand. To

check this, we used 5- and 10-mer ssDNA molecules with a

sequence representing the crossover region, ending with a 50T.
Addition of increasing amounts of ssDNA gradually inhibited

strand exchange, with a complete loss of the expected product

at �1.7 mM (Figure S5F).

Int Resolves the HJ Intermediate
Our structures showed that the Int-CI complex contains a trans-

posase dimer bound to a straight DNA substrate in a pre-cata-

lytic conformation. In contrast, active structures of four other

tyrosine recombinases revealed tetrameric complexes with two

largely bent DNA molecules (Figure S1F). Thus, we asked if the

downstream steps of the Int-mediated reaction follow the ca-

nonical pathway of tyrosine recombination. We tested if Int could

assemble on a four-way HJ DNA intermediate and resolve

this correctly into recombination products. The HJ substrate

mimicked the intermediate formed between the CI and a previ-

ously observed integration site (Lambertsen et al., 2018) (Fig-

ure 5). Int82N formed stable complexes with the HJ at 4:1 ratios

(Figure S6A). Wemonitored cleavage and rejoining by differential

labeling of each distinctly sized DNA arm. Int82N joined IRL to the

left side of the integration target site (TL) and IRR to the right side

of the target (TR), demonstrating that it can resolve the HJ inter-

mediate to recombined dsDNA products (Figures 5 and S6B).

Notably, resolution was also observed in the opposite direction,

back to the original substrates (CI and target site; Figures S6C

and S6D). These results indicate that Int can form active tetra-

mers that are competent in HJ resolution.

C-Terminal Truncations Enhance Cleavage and Strand
Exchange
Next, we investigated the role of the structurally observed

dimeric assembly in transposition, and the impact of the C-ter-

minal helix in stabilizing the dimer. Int’s aM sits in a groove on

the surface of its partner subunit, creating a large part of the



Figure 6. The Role of Int’s C-Terminal Helix

(A) The Int82N dimer interface. Molecule B is shown

as surface (gray); residues interacting with the

C-terminal helix of Molecule A (blue) are colored:

orange, hydrophobic; red, hydrophilic interaction

(see Table S5). C-terminal truncations are marked.

(B) 390C forms higher oligomers with CI5 DNA

on EMSA. Schemes indicate putative complex

stoichiometries.

(C) 390C is hyperactive in strand exchange.

Superfluous lanes were removed.

(D) Synthetic peptide antagonizes Int activity.

Strand exchange reactions with different pep-

tide amounts (at constant 33 mM Int82N and 1 mM
32P-labeled CI5 DNA). Cleavage and recombination

products decrease gradually.

See also Figure S7.
dimer interface via mostly hydrophobic contacts (82%; Fig-

ure 6A; Table S5). The sequence of aM and its docking site

are well conserved among Tn916-like transposases (Fig-

ure S7A). We made serial truncations of the C terminus in

Int82N (390C, 384C, 381C) and tested their effect on dimeriza-

tion and activity. All constructs were monomeric in analytical

size exclusion chromatography, showing that removing just 7

amino acids (as in 390C) is enough to disrupt the dimer (Fig-

ure S7B). Small angle X-ray scattering data confirmed these

results, revealing monomers for 390C (estimated Mw 30.6 ±

1.9 kDa), whereas the intact Int82N showed a dimeric state

(Mw 66.5 ± 8.6 kDa; Figure S7B).
All constructs bound DNA, but the

cooperativity of DNA binding and the olig-

omeric state of the complexes were

different (Figures 6B and S7C). While the

dimeric Int82N formed 2:1 protein-DNA

complexes, the C-terminally shortened

variants also formed monomeric and

higher order oligomeric complexes that

migrated consistent with a 4:2 tetrameric

assembly. The lack of these assemblies

with Int82N is consistent with a role for

the C-terminal helix in stabilizing a pre-

synaptic dimer. 390C and 384C showed

higher DNA cleavage and strand ex-

change activity than Int82N, whereas the

381C variant was reduced in strand ex-

change (Figures 6C, S7D, and S7E).

Thus, deletion of the entire aM helix com-

promises Int function, but small C-terminal

truncations can promote synapsis and ac-

tivity, probably by destabilizing the pre-

catalytic dimer conformation.

A Peptide Antagonist Blocks Int
Activity
Because inhibiting conjugative transposi-

tion may provide a strategy to limit anti-

biotic resistance spreading, the observed
critical role of Int’s C-terminal helix led us to assess whether allo-

sterically blocking Int oligomerization affects transposition activ-

ity. For a proof of principle, we designed a peptide covering 19

residuesof Int’sC terminus and tested its ability to alter Int activity

in vitro. Peptide addition resulted in a prominent dose-dependent

decreaseof cleavageand recombination,with�4mMof thepep-

tide completely blocking Int82N activity (Figures 6D andS7F). This

inhibitory effectwas concomitantwith a reduction inDNAbinding

and complex oligomerization (with Int82N and 390C, respectively;

Figures S7G and S7H). These results strongly suggest that the

peptide blocks Int function bymitigating essential protein-protein

interactions during functional protein-DNA complex assembly.
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Figure 7. Model for Tn1549 Integration

Int (gray ovals) binds to CI DNA (black circle) as a

dimer and actively opens the crossover region (red)

(i). Int is in an inactive conformation. Synapsis be-

tween CI and target DNA (blue) captures an AT-rich

chromosomal site (ii). Following structural re-

arrangement and activation, Int-mediated cleavage

and ligation of one strand pair generates an HJ in-

termediate (iii). Int cleaves 1nt inside the transposon

end (top inset) and gets covalently attached to the IR

DNA (black dot). The target site is cleaved at a

conserved T. The strands are exchanged; base

pairing at the 50Ts helps join the partner strands

(bottom inset). HJ resolution integrates Tn1549 in

the recipient genome (iv). Again, Int cleaves up-

stream of a conserved T in the CI and the target and

base pairing promotes strand ligation.

See also Movie S1.
DISCUSSION

Model for Tn1549 Integration
From our structural results, together with biochemical and

microbiological data, we propose the following model for

Tn1549 integration (Figure 7).

First, Int binds as a dimer to the CI (Figure 7, step i), recognizing

the transposon ends mainly via indirect sequence readout. Int’s

essentialb-hairpin senses the IRDNAshapeandN150specifically

locates the terminal bases. Upon binding, Int actively distorts the

DNAduplexat thecrossover regionbybaseflipping (viaR153)and

unwinding. This introduces flexibility in the DNA, allowing Int to

accommodate diverse transposon CIs. In the Int-CI complex,

the active sites are arranged at the scissile phosphates near the

IR boundaries, but they are incompletely assembled. A major

conformational change probably occurs upon synapsis with

targetDNA,whichbrings thenucleophile tyrosine intoanactivated

position where it can attack the DNA (Figure 7, step ii).
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Following activation, Int cleaves one

DNA strand, resulting in a 30-phosphotyro-
sine bond with the IR DNA. The terminal IR

base (T-1) remains attached to the cross-

over DNA carrying the liberated 50OH

group (Figure 7, step iii, top insert).

Next, the 50OH of the CI is exchanged

with target DNA and attack of the target

50OH resolves the Int-CI linkage and li-

gates the DNA. Simultaneously, the CI

50OH is joined to its partner strand in the

target, generating a HJ with one trans-

poson strand fully fused to the target

DNA (Figure 7, step iii, bottom insert).

Protein-induced opening of the DNA

duplex at the crossover region promotes

strand exchange, as it allows to a priori

melt the complementary DNA strands at

the crossover region, helping to overcome

the energy barrier for strand exchange.

Base pairing of the exchanged T-1 with
an unpaired adenine base in the partner substrate aids recruit-

ment and ligation of the 50OH. In agreement, we have recently

shown that Tn1549 integration sites have a consensus

sequence of TTTT-n6-AAAA in vivo (Lambertsen et al., 2018),

so that target DNA generally contain adenines that can

pair with T-1 from the transposon CI. This proposed reaction

scheme is supported by three previously unexplainable aspects

of conjugative transposition: (1) the tolerance for low sequence

homology between the recombination substrates (i.e., the

transposon flanks or the CI and the target), (2) the variety of

naturally occurring active CIs, and (3) the requirement for

AT-rich integration sites.

Last, the four-way CI-target HJ is resolved through cleavage

and strand exchange of the second strand pair (Figure 7,

step iv). Cleavage again occurs 1 nt inside the respective IR

and base pairing at the ligation site guides strand exchange,

joining the second CI strand to the target DNA and creating the

final integrated product.



We propose that transposon excision follows a similar

pathway, involving recombination of the two transposon ends

by cleavage 1 nt inside the IR and 7 nt into the flanking DNA.

This results in 8 nt stagger on both transposon ends that—due

to strict conservation of the terminal bases—generate a CI with

6 bp heteroduplex. In agreement, we have recently shown that

T:A at position 7 in the left flank is critically important for excision

in vivo (Lambertsen et al., 2018).

The Int82N-CI Complex Is an Auto-Inhibited Preparatory
Step for Integration
Unlike other tyrosine recombinase structures that contain four

protein and two DNA molecules in a synaptic complex, the

Int82N-CI complex is dimeric with two proteins bound to one

DNA. The interface between the Int subunits is more hydropho-

bic than the ones observed in previous tyrosine recombinase

structures (82% compared to e.g., 44% for the l phage inte-

grase), allowing Int to form stable dimers by itself while others

are monomeric without DNA (Lee et al., 2004). Instead, the Int

dimer conformation is reminiscent of the DNA-free structure of

the HP1 integrase catalytic domain (Hickman et al., 1997) that

was proposed to rearrange upon DNA binding. The dimer brings

a striking parallel with DNA complex structures of distantly

related protelomerases (Aihara et al., 2007; Shi et al., 2013)

thatmaintain the telomeres of bacteria with linear chromosomes.

They cleave DNA as tyrosine recombinases, but cut both strands

of a single DNA duplex at once in an interlocked dimer, distorting

the DNA to promote formation of hairpin telomeres after replica-

tion (Kobryn and Chaconas, 2014). However, Int dimers are

locked in an inactive conformation, implying that they represent

a regulatory intermediate that is not yet licensed for recombina-

tion. Consistent with this idea, destabilization of the dimer by

shortening the C terminus facilitated oligomerization (synapsis)

of Int-DNA complexes and led to hyperactivity in vitro. Thus,

we conclude that the Int82N-CI structure represents an auto-in-

hibited pre-synaptic intermediate, with the Int C-terminal tail

holding the enzyme in an inactive conformation. While the C-ter-

minal segments regulate activity of various tyrosine recombi-

nases by positioning the catalytic tyrosine (Grindley et al.,

2006), a role in locking inactive protein-DNA complexes was

not seen before. The auto-inhibited state may help to prohibit

futile cleavage of the transposon CI until a suitable target DNA

is found and successful integration can occur.

Conformational Rearrangements upon Target Binding
Target DNA capture by the Int-CI complex probably occurs in a

tetrameric synaptic complex, where a second pair of Int subunits

holds the target. We envision that two DNA-bound dimers first

come together to assemble a tetramer with straight DNA, which

then undergoes activation by DNA bending to create an arrange-

ment similar to active structures of other tyrosine recombinases

(Biswas et al., 2005; Guo et al., 1997). This mechanism is sup-

ported by the fact that our oligomerization antagonist peptide

blocks DNA cleavage and by studies of the XerH-difH complex,

which showed that synaptic tetramers first assemble in a pre-

catalytic state with straight DNA and are then activated via struc-

tural rearrangement and DNA bending (Bebel et al., 2016). As

shown on Movie S1, the conformational changes required for
tetramerization are straightforward to visualize based on

the lInt-COC0 synaptic complex structure by modeling. The

modeled tetramer is held together by a large protein interface

(1,393 Å2; PISA) involving interactions of CB, CAT, and the circu-

larly swapped C-terminal helices. In the natural context, addi-

tional players (such as the AB domain or accessory protein

factors) may help promote tetramerization and activation as pro-

posed for l and Tn916 (Rudy et al., 1997; Warren et al., 2005).

The notion of a synaptic tetramer is also supported by the fact

that Int resolves preformed HJ substrates. Here, external com-

ponents may also help to shape the synaptic complexes, so as

to drive the reaction efficiently toward products.

Tyrosine Recombination without Homology in Tn916-
like Transposons
Whereas most transposon families move via linear DNA interme-

diates that are cut out and integrated by RNaseH-type nucleases

(i.e., DDE-transposases), CTn transposases recombine trans-

poson ends without double strand breaks generating a sealed

CI that is fairly stable and can cross cellular boundaries. Perhaps

the most puzzling question about transposition of Tn916-like

CTns was how their transposases could excise and integrate

the transposon without clear sequence homology between the

DNA substrates. Our biochemical and structural data on

Tn1549, a prominent member of the family, now reveals surpris-

ing answers.

First, we have discovered that the Tn1549 Int activelymelts the

DNA at the non-homologous crossover region, thereby obviating

the need for extended sequence homology for strand exchange.

As diverse CIs and integration sites are common for all studied

Tn916-like transposons (Caparon and Scott, 1989; Launay

et al., 2006) and the protein residues required for DNA melting

are conserved, this mechanism is likely shared across the

Tn916-like family. The use of DNA distortions to promote DNA

rearrangements also appears to be a reoccurring theme in trans-

position. Various DDE transposases use base flipping to pro-

mote e.g., second strand cleavage by hairpin formation in

Tn5/10 (Bischerour and Chalmers, 2007) or target DNA recogni-

tion and integration in Mos1 (Morris et al., 2016). Our results

demonstrate that tampering with the DNA duplex structure

also plays a critical role in the function of the structurally and

mechanistically unrelated Tn916-like Y-transposases.

Second, we show that cleavage in the transposon ends cre-

ates a single base pair homology allowing the exchanged DNA

to find their partner strands. Consistently, work on Tn916 indi-

cated cleavage inside the transposon ends (Taylor and Church-

ward, 1997) and conservation of TA pairs flanking a 6 bp variable

region in the target sites (Lu and Churchward, 1995), supporting

the idea that a single base pair is sufficient to promote transpo-

sition of Tn916-like elements in general. This absolute minimum

homology requirement is even less than the 2 nt conservation

observed for the Bacteroides CTnDOT (Laprise et al., 2010)

and appears to uniquely allow Tn916-like Y-transposases to

overcome the gross lack of DNA homology between their

substrates.

The structural plasticity of the DNA can also explain how CIs

with different lengths arise during transposon excision, as flexi-

bility may allow the backbone to slide within the Int active site,
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resulting in cleavage at diverse positions. This is consistent with

previous work on Tn916 showing low levels of alternative cleav-

age leading to a variety of CIs (Taylor and Churchward, 1997).

Another feature of Tn916-like Y-transposases is the presence

of two consecutive tyrosines near the active site. Their intriguing

biochemical duality and high conservation point toward distinct

biological functions. It seems possible that Y379 allosterically

blocks Y380 from entering the active site helping to stabilize

the auto-inhibited conformation prior to target capture, or the

two tyrosines may both act as nucleophiles in different stages

of transposition as seen for conjugative relaxases (Dostál

et al., 2011).

Finally, our discovery of the C terminus-mediated auto-

inhibitory mechanism proposes a strategy to allosterically

inhibit Tn1549 Int activity. As the protein segments involved

are conserved within the Tn916-like CTn family (Figure S7A),

but absent in other tyrosine recombinases (Figure 4B), our pep-

tide antagonist may provide a broadly applicable approach

against Tn916-like elements, while not affecting cellular recom-

binases or other integrases.

As Tn916-like conjugative transposons provide a major driver

for horizontal transfer of antibiotic resistance genes across

diverse bacteria, their targeting could open new possibilities

for limiting resistance dissemination and multidrug-resistance.

By presenting the first high resolution structure of a CTn system

and demonstrating its value for designing strategies to block

transposition, our study takes the first step in this direction. Us-

ing two alternative approaches, (1) with a peptide that allosteri-

cally blocks the protein interface seen in our structures, and (2)

with DNA oligonucleotides that anneal to the melted DNA block-

ing strand exchange, we show that interfering with the transpo-

sase-DNA complex architecture leads to transposition inhibition.

As our structural findings appear to be of general relevance to the

Tn916-like CTn family, it will be interesting to determine if similar

approaches can be used to limit transposition for other family

members. If so, our results could provide more widely applicable

possibilities for controlling antibiotic resistance spreading.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

E. coli BL21(DE3) pLysS Novagen Cat#69451

E. coli Top10 (recA-) Thermo Fisher Cat#C404003

Chemicals, Peptides, and Recombinant Proteins

Phusion Flash High-Fidelity Master Mix Thermo Fisher Cat#F548

DNase Roche Cat#10104159001

cOmplete EDTA-free Roche Cat#11873580001

HisTrap HP GE Healthcare Code#17-5248-02

SenP2 protease PepCore, EMBL N/A

Superdex 200 10/300 GE Healthcare Code#17517501

24 well sitting drop plate (Cryschem Plate) Hampton Research Cat#HR3-158

[g-32P]-ATP Hartmann Cat#SRP-301

T4 polynucleotide kinase NEB Cat#M0236L

Micro Bio-Spin 6 Columns Bio-Rad Cat#732-6221

4-12%TBE Gels, 12 well Thermo Fisher Cat#EC62352BOX

4-20% TBE Gels 1.0 mm, 12 well Thermo Fisher Cat#EC62252BOX

SYBR Gold Thermo Fisher Cat#S-11494

Coomassie G250 – Brilliant Blue G250 Sigma Aldrich Product#27815-25G-F

Mark12 Protein Standard Thermo Fisher Cat#LC5677

Proteinase K Carl Roth Cat#7528.1

10/60 Ladder IDT Cat#51-05-15-01

HyperLadder 1kb Bioline Cat#BIO-33053

Peptides (specific) ProteoGenix SAS N/A

LNYYAHATFDSARAEMERL

Peptides (scrambled) ProteoGenix SAS N/A

LYDLFAAHAEMARYNSTRE

Deposited Data

Atomic model of Int82N(R225K)-CI5 complex This study PDB: 6EMZ

Atomic model of Int82N(R225K)-CI6a complex This study PDB: 6EN1

Atomic model of Int82N(R225K)-CI6b complex This study PDB: 6EN2

Atomic model of Int82N(wt)-CI5 complex This study PDB: 6EN0

Atomic model of Int82N(Y379F)-IRR complex This study PDB: 6EMY

Oligonucleotides

PCR primers (Table S6) IDT N/A

Crystallization oligonucleotides (Table S6) IDT N/A

DNA oligonucleotides for cleavage and strand exchange

assays (Table S6)

IDT N/A

DNA oligonucleotides with phosphorothioate (PTO)

modification (Table S6)

IDT N/A

Half-site oligonucleotides with truncated variants

(Table S6)

IDT N/A

Half-site oligonucleotides (Table S6) IDT N/A

DNA oligonucleotides for crossover competition

assays (Table S6)

IDT N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

DNA oligonucleotides for Holliday Junction resolution

assays (Table S6)

IDT N/A

DNA oligonucleotides with 2-aminopurine (2AP)

modification (Table S6)

IDT N/A

DNA oligonucleotides for in vivo assays (Table S6) IDT N/A

Recombinant DNA

Plasmid: pETM28 PepCore, EMBL N/A

Plasmid: pETM28-IntFL This study N/A

Plasmid: pETM28-IntFL (R225K) This study N/A

Plasmid: pETM28-Int82N This study N/A

Plasmid: pETM28-Int82N (R225K) This study N/A

Plasmid: pETM28-Int82N (R153A) This study N/A

Plasmid: pETM28-Int82N (Y160A) This study N/A

Plasmid: pETM28-Int82N (R153-Y160/A) This study N/A

Plasmid: pETM28-Int82N (Y160A) This study N/A

Plasmid: pETM28-Int82N (390C) This study N/A

Plasmid: pETM28-Int82N (384C) This study N/A

Plasmid: pETM28-Int82N (381C) This study N/A

Plasmid: pKK223-3 containing the mini-Tn1549

transposon [CmR]

Lambertsen et al., 2018 N/A

Plasmid: pKK223-3 containing the mini-Tn1549

transposon and Gm resistance on the

backbone [CmR/GmR]

Lambertsen et al., 2018 N/A

Plasmid: pBAD-Xis/IntFL [ApR] Lambertsen et al., 2018 N/A

Plasmid: pBAD-Xis/IntFL(R225K) [ApR] This study N/A

Plasmid: pBAD-Xis/IntFL(R153A) [ApR] This study N/A

Plasmid: pBAD-Xis/IntFL(R153A-Y160A) [ApR] This study N/A

Software and Algorithms

XDS Kabsch, 2010 http://xds.mpimf-heidelberg.mpg.de/

Phaser Adams et al., 2010 https://www.phenix-online.org/

PHENIX Adams et al., 2010 https://www.phenix-online.org/

COOT Emsley et al., 2010 http://www2.mrc-lmb.cam.ac.uk/personal/

pemsley/coot/

Mafft Katoh and Standley, 2013 https://www.ebi.ac.uk/Tools/msa/mafft/

PhyML Guindon et al., 2010 http://www.atgc-montpellier.fr/phyml/

ProtTest Abascal et al., 2005 http://darwin.uvigo.es/software/

prottest_server.html

aBayes Anisimova et al., 2011 http://www.atgc-montpellier.fr/phyml/

versions.php

PRIMUS Konarev et al., 2003 https://www.embl-hamburg.de/biosaxs/

primus.html

FATCAT Li et al., 2006 http://fatcat.sanfordburnham.org

Phyre2 Kelley et al., 2015 http://www.sbg.bio.ic.ac.uk/�phyre2/

HADDOCK van Zundert et al., 2016 http://milou.science.uu.nl/services/

HADDOCK2.2/

3DNA Lu and Olson, 2003 http://x3dna.org/

PyMOL Schrödinger https://pymol.org/2/

DALI Holm and Rosenström, 2010 http://ekhidna.biocenter.helsinki.fi/

dali_server/start

ESpript Robert and Gouet, 2014 http://espript.ibcp.fr/ESPript/ESPript/

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

PISA Krissinel and Henrick, 2007 http://www.ebi.ac.uk/pdbe/pisa/

NUCPLOT Luscombe et al., 1997 https://www.ebi.ac.uk/thornton-srv/

software/NUCPLOT/

ImageQuantTL v8.1.0.0 GE Healthcare Code#29000605

Other

WEBlogo server University of California, Berkeley http://weblogo.berkeley.edu/

Phosphoimager Typhoon FLA 7000 GE Healthcare Code#28955809

10 3 2 mm light path cuvettes Hellma Analytics QS Article ID: 101-015-40

PTI QuantaMaster 8000 Fluorometer Photon Technology International N/A

GenScript server N/A https://www.genscript.com/

peptide_screening_tools.html
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Orsolya

Barabas (barabas@embl.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

For in vitro studies and crystallography, Int variants were produced in Escherichia coli BL21(DE3)pLysS cells (Novagen) grown in Lu-

ria-Bertani (LB) medium. Expressionwas inducedwith 1mM isopropyl b-D-1-thiogalactopyranoside (IPTG, final concentration) when

the bacteria density reached an OD600 of 0.6-0.8, and the cells were grown for 24h at 180 rpm at 18�C.
For in vivo transposon excision assays, E. coli Top10 cells (recA-, Thermo Fisher) were grown in Luria–Bertani (LB) medium with

shaking at 150-170 rpm at 37�C. When the strains contained a protein expression plasmid (pBAD, see Method Details) a final con-

centration of 0.2% glucose (D-glucose, Sigma-Aldrich) was also added to the media to repress leaky protein expression. Protein

expression and transposition was then induced with 0.2% arabinose (L-arabinose, Sigma-Aldrich, final concentration).

METHOD DETAILS

DNA constructs and oligonucleotides
The DNA encoding for IntFL from Enterococcus faecalis (GENEBANK: AAF72368.1) was synthesized with codon-optimization for

expression in E. coli (GeneArt, Thermo Fisher). The IntFL and Int82N constructs were cloned into the expression vector pETM28

(PepCore, EMBL) by restriction cloning using the BamHI/XhoI restriction sites. The mini-Tn1549 donor plasmid (DP, pKK223-3 de-

rivative) and the wild-type pBAD-Xis/IntFL protein expression plasmid (pBAD derivative encodig Tn1549 Xis and IntFL) were obtained

from (Lambertsen et al., 2018). All other plasmid constructs were prepared by site-directed mutagenesis using PCR primers listed in

Table S6 with Phusion Flash High-Fidelity PCR Master Mix following the manufacturers’ instructions (Thermo Fisher).

DNA oligonucleotides were synthetized by Integrated DNA Technologies (IDT), purified via standard desalting for in vitro assays or

polyacrylamide gel electrophoresis (PAGE) for crystallization, and their sequences are listed in Table S6.

Protein expression and purification
For recombinant protein production, E. coliBL21(DE3)pLysS cells were transformedwith the respective pETM28-Int plasmid by elec-

troporation. All Int variants were expressed as N-terminal fusions with hexa-histidine and SUMO tags in E. coliBL21(DE3)pLysS in LB

medium at 18�C for 24h, after induction with 1 mM IPTG. Cells were lysed by sonication in Buffer A (50 mM HEPES pH 7.5,

750 mM NaCl, 50 mM imidazole, 1 mM DTT, with 0.05 mg/mL DNase, cOmplete EDTA-free protease inhibitor cocktail, Roche).

The lysate was cleared by centrifugation at 20,000 g at 4�C for 30 min. The protein was purified via Ni-affinity chromatography by

applying the soluble fraction to a Ni-Sepharose column (HisTrap HP; GE Healthcare). The protein was eluted with an imidazole

gradient (50-500 mM in Buffer A) and the fractions containing the protein (elution range 162.5-275 mM imidazole) were pooled.

The protein was then incubated with SenP2 protease (1:500) for 24h at 4�C in a Buffer C (50 mM HEPES pH 7.5, 250 mM NaCl,

5 mM DTT and 10% glycerol) to remove the 6xHis-SUMO tag, and further purified by size exclusion chromatography on a Superdex

200 10/300 column (GE Healthcare). The seleno-methionine derivative of Int82N was expressed in M9 growth medium supplemented

with the essential amino acids, with seleno-methionine replacing methionine, and was purified as above.
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Crystallization and data collection
Whereas attempts to crystallize full-length IntFL have thus far been unsuccessful probably due to the flexibility of the AB domain, we

obtained high-quality crystals of Int82N bound to CI DNA. Int82N-CI complexes were crystallized using 44bp and 45bp dsDNA oligo-

nucleotides for CI5 and CI6, respectively. To avoid that DNA cleavage generates heterogeneity during crystallization, we used the

catalytic mutant R225K. The analogous mutation was previously shown to block recombination without affecting the proper geom-

etry of the active site in the Cre recombinase (Guo et al., 1997). DNA oligonucleotides were annealed in TE buffer (Tris-EDTA) at

500 mM concentration by heating to 98�C and slow cooling to room temperature. Complexes were formed by incubating Int82N

with DNA at a 2:1 molar ratio in Buffer C at 4�C overnight. All crystals were grown by vapor diffusion at 20�C in 24 well sitting

drop plates (Hampton Research). Equal volumes (1 mL) of 10 mg/ml protein-DNA complex were mixed with well solutions (1 mL)

and incubated against 500 mL of well solution as follows: for Int82N(R225K)-CI5 with 0.2M NH4-fluoride, 14% PEG3350, and for

Int82N(R225K)-CI6a, Int82N(R225K)-CI6b and Int82N(wt)-CI5 with 0.1M Na-acetate pH 4.6, 30% PEG300. An Int82N(Y379F)-IRR com-

plex, containing half-site DNA was also crystallized using a well solution with 13% (v/v) PEG 3350, 0.25 M NaCl. Crystals were cryo-

protected by transferring to well solution containing additional 10% glycerol or 12% (v/v) 2,3-butanediol (for the Int82N(Y379F)-IRR

complex) and flash frozen in liquid nitrogen. Diffraction data were collected on beamlines ID29, ID30A-1 and ID23-1 at the European

Synchrotron Radiation Facility (ESRF) and on beamline P13 of PETRAIII/Deutsches Elektronen-Synchrotron (DESY, Hamburg). All

datasets were processed with XDS (Kabsch, 2010).

Structure solution and refinement
All structures presented in this manuscript were solved by molecular replacement using Phaser in PHENIX (Adams et al., 2010). For

Int82N(R225K)-CI5 and Int82N(R225K)-CI6a, the previously determined structure of an Int82N(Y379F)-IRR complex (PDB: 6emy) was

used as a search model. This model structure contained the Int82N Y379F catalytic mutant in complex with a DNA substrate that rep-

resents only half of the Int82N binding site (IRR) with a 6nt 50 overhang, and was solved by single anomalous dispersion (SAD) method

using anomalous data from a seleno-methionine derivative crystal in PHENIX Autosol (Adams et al., 2010) (see Table S1 for data

collection and refinement statistics). For the Int82N(wt)-CI5 complex we used the Int82N(R225K)-CI5 structure, and for

Int82N(R225K)-CI6b the Int82N(R225K)-CI6a structure as searchmodel in themolecular replacement. After initial rigid body refinement

of the solution with PHENIX, the full-length DNA could be easily seen in the electron density maps in all cases. The final models were

obtained by alternating model building in COOT (Emsley et al., 2010) and simulated annealing (at the initial steps), restrained posi-

tional, TLS and ADP refinement in PHENIX (Adams et al., 2010). The data collection and refinement statistics are presented in

Table S1. To reduce the effects of model bias and cross-validate DNA assignment, simulated annealed composite omit maps

were calculated in PHENIX. The final structures include residues M82–A396 for CI5 and CI6a, and M82–L395 for CI6b. An additional

residue, S81 is present due to SenP2 cleavage of the purification tags. Although a DNA length of 44-45bpwas required to obtain good

crystals, the electron density was weak at the ends and the terminal 2-4 bases could not be built. In the CI6a and CI6b structures the

electron density was also unclear in the crossover region and some of the central nucleotides could not be built (see Figures 3

and S4).

Comparative analysis of the Tn1549-related integrases
First, we performed a blastp search against the UniprotKB database (http://www.uniprot.org/) using Tn1549 Int as a query. The non-

identical protein sequences exceeding soft criteria of 40% protein sequence identity to Tn1549 Int were used in further analysis to

ensure the inclusion of even distantly related sequences. This resulted in 359 distinct sequences present in 5379 genomic instances

(as mapped by Identical Proteins Groups in NCBI, https://www.ncbi.nlm.nih.gov/ipg). Integrases of the SXT CTn, the Lambda and

BPP-1 phages, as well as E. coli XerC and XerD were added to the dataset and used as an out group in the subsequent phylogenetic

analysis. The sequences were then aligned using Mafft (Katoh and Standley, 2013) and the columns corresponding to the arm-bind-

ing domain or containing more than 90% gaps were removed. The phylogenetic tree was constructed by the PhyML package (Guin-

don et al., 2010) with LG+I+Gmodel of protein evolution, evaluated by ProtTest (Abascal et al., 2005) and the statistical test of branch

support was performed with aBayes (Anisimova et al., 2011). In the course of the reconstruction, we built 100 trees using both NNI

and SPR moves and the tree with maximum likelihood value was used as the reconstruction of the phylogeny. The logos were pro-

duced using the web logo server (http://weblogo.berkeley.edu).

Preparation of radioactively labeled DNA substrates
DNA oligonucleotides were 50 end labeled using [g-32P]-ATP (Hartmann) and T4 polynucleotide kinase (NEB) and purified usingMicro

Bio-Spin 6 columns (Bio-Rad). The labeled DNA was mixed with the unlabeled complementary strand at a 1:5 molar ratio and an-

nealed in annealing buffer (10 mM TrisHCl pH 8, 50 mM NaCl, 5 mM EDTA) by heating to 98�C for 2 min followed by slow cooling

to 25�C. Suicide substrates, containing a nick in either DNA strand, were prepared by mixing an intact DNA strand with two short

complementary strands and annealed as described above. Unlabeled DNA oligonucleotides used for strand exchange assays

were phosphorylated at the 50 end to avoid the production of aberrant products.
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DNA binding assays
DNA binding was assessed using Electrophoretic Mobility Shift Assays (EMSA) with a constant 1 mM DNA concentration and

increasing concentrations of protein as indicated in Figures 6, S3 and S7. All Int variants were incubated with DNA on ice for

20 min in Buffer C to allow complex formation. Following incubation, complexes were separated on non-denaturing polyacrylamide

gels (4%–12%or 4%–20%TBE-PAGE gel, Thermo Fisher) using an electric field of 100 V/cm for 1h at room temperature. Bound and

unbound DNA bands were visualized either using radioactively labeled (50-32P) DNA in a Typhoon FLA 7000 phosphoimager

(GE Healthcare) or by SYBR Gold (Thermo Fisher) staining of unlabeled DNA.

In vitro cleavage assays
Int cleavage activity was analyzed in vitro using ‘suicide’ CI DNA substrates (see schematics in Figure S1B for the assay design).

These substrates contain a nick in the DNA backbone downstream of the expected cleavage position. Upon cleavage, 2 nucleotides

diffuse away trapping the covalent protein-DNA intermediate, which can be resolved from unmodified Int on SDS-PAGE thanks to its

increased size. Int variants at 40 mMand suicide CI DNA substrates (Table S6) at 20 mMwere mixed in a 15 mL final reaction volume in

a reaction buffer containing 25mMHEPES pH 7.5, 100mMNaCl, 10 mMMgCl2, 5% glycerol, 1 mMEDTA, 1mMDTT and incubated

for 2-4 h at 37�C. Samples were heat denatured in SDS-containing sample buffer and analyzed by electrophoresis on 12% SDS-

PAGE gels. Mark12 protein size standard (Thermo Fisher) was used as marker. DNA-free protein and covalent protein-DNA com-

plexes were detected by staining with Coomassie Brilliant Blue G250 (Sigma Aldrich). Figures show a representative of at least three

independent experiments.

In vitro strand exchange assays and DNA ligation experiments
Following cleavage of a radiolabeled DNA substrate, nucleophilic attack by the 50OHof an unlabeled partner substrate leads to strand

exchange, generating a recombined product that can be detected on denaturing PAGE (see schematics in Figure S1B). Suicide DNA

substrates were used to facilitate strand exchange. 2 mM 50-32P-labeled CI DNA substrates (Table S6) were incubated with Int var-

iants (at 20 mM or at different molar ratios in titration experiments) in a final reaction volume of 15 mL in a reaction buffer containing

50mMHEPES pH 7.5, 250mMNaCl, 5mMDTT and 10%glycerol. Reactions were performed in the presence of a 100-fold excess of

unlabeled partner DNA. After 2-4 h incubation at 37�C, the reaction was stopped by digestion with Proteinase K (Carl Roth; Protein-

ase K buffer 2X: 60mMTris-HCl pH 7.5, 20mMEDTA, 2%SDS) at 45�C for 30min. DNA products were precipitated with NaAc/EtOH

in the presence of 24 mg/mL glycogen (Thermo Fisher). Samples were heat denaturated at 98�C for 3-5 mins in loading buffer (45%

formamide, 0.5x TBE, 0.005% bromophenol blue, 0.005% xylene cyanol) and the reaction products were separated by electropho-

resis on denaturing 12% polyacrylamide TBE-Urea gels. The 10/60 DNA Ladder (IDT) was used as oligonucleotide length standard.

Gels were imaged with a Typhoon FLA 7000 phosphoimager (GE Healthcare). Figures show a representative of at least three inde-

pendent experiments.

Ligation assays were performed following the same procedures only using half-site 50-32P-labeled IR DNA substrates. These DNA

oligonucleotides contain only one IR site, but are cleaved and undergo efficient ligation with another half-site substrate that mimics

the cleavage product, with a free 50OH on a complementary overhang (see schematics in Figure 4D) (Nunes-Düby et al., 1989). 2 mM

50-32P-labeled half-site DNA (Table S6) was incubated with 20 mM Int and 34 mM unlabeled partner DNA in a final reaction volume of

15 mL. Ligation efficiency was compared with different partner substrates.

To determine the exact positions of cleavage, we performed activity assays with CI DNA substrates containing a phosphorothioate

(PTO) modification in the DNA backbone. PTO inhibits cleavage and strand exchange by tyrosine recombinases if placed exactly at

the scissile phosphate (Ennifar et al., 2003). Substrates weremodified at each potential cleavage position (Table S6) and assays were

performed as described above. Full-length suicide CI substrates were used to map the cleavage site at IRL, whereas mapping at IRR

required the use of half-site substrates as in the ligation assays. 6 mM 50-32P-labeled PTO modified DNA substrates (Table S6) were

incubated with 20 mM Int and 76 mM unlabeled DNA in a final reaction volume of 15 mL.

Fluorescent base flipping assays
To investigate base flipping in solution, fluorescence spectroscopy experiments were performed with DNA containing a fluorescent

base analog, 2-aminopurine (2AP). 2AP is a sensitive probe of the local duplex structure, as its fluorescence is strongly quenched by

base stacking in duplex DNA (Holz et al., 1998). 2AP-modified and unmodified CI5 DNA (Table S6, 500 mM) were annealed at 98�C for

2 min followed by slow cooling to 25�C. DNA at 2.15 mM were incubated with various concentrations of Int82N protein (0.5-7.6 mM;

stock 80 mM) in a final volume of 130 mL, at 4�C for 30-60 min in Buffer C. Fluorescence measurements were performed in 103 2 mm

light path cuvettes (Hellma Analytics QS) at room temperature. Data was collected in a PTI QuantaMaster 8000 Fluorometer (Photon

Technology International) using an excitation wavelength of 320 nm and an emission wavelength filter from 340 nm to 450 nm to

reduce the influence of the natural DNA absorption and protein tryptophan fluorescence. Split aperture for excitation and emission

was 5. All fluorescence emission spectra and fluorescence intensities were corrected by subtraction of control titrations with unla-

beled protein-DNA complex (as described in Holz et al., 1998). Spectra are shown for a representative of at least three independent

experiments. Titration experiments were repeated 6- (with Int82N) or 5-times (with R153A) and themean of the corrected fluorescence
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intensities at different protein-DNA ratios were plotted. In some cases, a limited number of data points were excluded, due to protein

precipitation in the corresponding sample. Bar graphs represent standard error of the mean (SEM) for at least three independent

measurements (Figure 3; Table S3).

In vivo excision assays
In vivo excision assays were performed in as described in (Lambertsen et al., 2018). E. coli Top10 cells were transformed with two

plasmids, a protein expression plasmid (pBAD-Xis/IntFL) and a transposon donor plasmid (DP) containing mini-Tn1549. Bacteria

were grown in LB media with 0.2% glucose, 33 mg/mL chloramphenicol (Cm, Sigma-Aldrich) and 100 mg/mL ampicillin (Ap, Roth)

to the mid-exponential growth phase; then protein expression was induced by changing the medium to 10 mL LB with 0.2% arab-

inose and antibiotics (as above) and diluting the culture to OD600 of 0.1. Excision of the mini-Tn1549 transposon from the donor

plasmid was tested after 3 hours of Tn1549 Xis and IntFL expression. Culture samples were spun down at 4�C at 5000 g for 5 min

and supernatants were removed. Pellets were resuspended with OD600 correction (e.g., for a 0.5 mL culture sample with

OD600 = 0.5 the pellet was suspended in 50 mL water), cooked and analyzed by PCR. The excised mini-Tn1549 CI was detected

with primers matching the transposon ends (CI-1 and CI-2, Table S6), and the presence or absence of the mini-Tn1549 in the trans-

poson donor plasmid was tested with PCR primers annealing to the transposon flanking DNA (DP-1 and DP-2, Table S6). PCR was

performed using Phusion Flash High-Fidelity PCRMaster Mix (Thermo Fisher) in a final volume of 25mL, following the manufacturer’s

instructions. The reactions were run at 98�C for 2min followed by 25 cycles of 98�C for 10 s, 58�C (with primers CI-1 andCI-2) or 55�C
(with primers DP-1 and DP-2) for 10 s and 72�C for 30/60 s, cycles were finalised at 72�C for 2min. Finally, the PCR products were run

on a 1% agarose gel with ethidium bromide, in 1xTAE buffer (Tris-Acetate-EDTA) for 45 min to 1 hour at 100V. HyperLadder 1kb DNA

ladder was used as marker.

HJ resolution assays
The HJ intermediate was designed to mimic the product of the first strand exchange between CI6a and a previously observed inte-

gration site (Lambertsen et al., 2018), assuming initial cleavage at IRR. To monitor cleavage and rejoining of each individual DNA

strand in the HJ, each DNA arm was distinctly sized and differentially labeled with 50-32P. Unlabeled arms were phosphorylated at

the 50 end to avoid the formation of aberrant products. The HJ was constructed by annealing four synthetic oligonucleotides (Table

S6) that contain complementary crossover sequences to allow stable HJ formation. Labeled and unlabeled oligonucleotides were

mixed at equal molar ratio (1 mM final concentration) in annealing buffer (10 mM Tris pH 8, 1 mM EDTA, 10 mM MgCl2, 100 mM

NaCl), heated to 95�C for 5 min and cooled to 20�C at a rate of 1�C/min using a PCR machine. HJ formation was confirmed by elec-

trophoresis on a 6% non-denaturing polyacrylamide gel at 100 V for 45min. 60 mM Int82N and 1 mM50-32P-labeled HJ were mixed in a

final volume of 15 mL containing 50 mM HEPES pH 7.5, 250 mM NaCl, 10 mM MgCl2, 10% glycerol, and 1 mM DTT. Samples were

incubated for 2h at 37�C and the reactions were terminated with Proteinase K digestion at 55�C for 30 min. DNA products were

precipitated with NaAc/EtOH in the presence of 24 mg/mL glycogen (Thermo Fisher). Samples were heat denaturated at 98�C for

3-5 mins in loading buffer (45% formamide, 0.5x TBE, 0.005% bromophenol blue, 0.005% xylene cyanol). Reaction products

were analyzed by electrophoresis on denaturing 12% PAGE TBE-Urea gels and imaged with a Typhoon FLA-7000 phosphoimager.

The 10/60 DNA ladder (IDT) was used as marker. Figures show one representative of two independent experiments.

SAXS analysis
Small-angle X-ray scattering (SAXS) data of Int82N at 1.3, 2.63, 4.8 mg/mL, and 390C variant at 0.5, 3.2, 4.18 mg/mL, were measured

at beamline BM29 at the ESRF in a buffer with 50 mMHEPES pH 7.5, 750 mMNaCl, 5 mMDTT and 10% glycerol. Sample scattering

curveswere averaged and the buffer scatteringwas subtracted using the PRIMUS software (Konarev et al., 2003). Forward scattering

intensity I(0) and radius of gyration (Rg) were calculated with the Guinier approximation assuming that at very small angles (s < 1.3/Rg)

intensity is represented as I(s) = I(0)exp(-(sRg)
2/3). The molecular weight (Mw) of the particle was estimated by protein calibration us-

ing bovine serum albumin as standard. The final Mw estimation presented is the mean value calculated from three curves at different

protein concentrations.

Curves obtained at three concentrations were merged into a single curve that was used for further analysis. The maximum intra-

molecular distance (Dmax) and distance distribution were calculated from the scattering intensities with theGNOMsoftware (Svergun,

1992), using the scattering angle range 0.015 < s < 0.50 Å-1. Protein flexibility was analyzed by inspection of the Kratky and the Porod-

Debye plots. Kratky analysis (plotting s2$I(s) versus s, with scaling s2$I(s) values with the corresponding I(0) for each construct)

showed an initial parabolic peak followed by an elevated baseline at high s, suggesting certain degree of flexibility in solution. Po-

rod-Debye plots (plotting I$s4 versus s4) reveal an attenuated Porod–Debye plateau with associated higher particle volumes

(65,200 Å3 for 390C and 119,000 Å3 for Int82N) and reduced protein densities (dprotein = 0.90 g/cm3 for 390C and 1.01 g/cm3 for

Int82N), further confirming protein flexibility (Rambo and Tainer, 2011). Flexibility was most pronounced for the monomeric 390C

construct, as reflected by both the Kratky plots and the estimated protein densities.

Peptide assays
Peptides (specific and scrambled; see Key Resources Table) were produced and HPLC-purified by ProteoGenix SAS, with a final

purity of 97.65%. The lyophilized peptides were dissolved in degassed H2O by shacking at 37�C (10 min at 400 rpm) to a stock
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concentration of 20 mM, and diluted to a final 10 mM concentration in Buffer C. DNA binding and strand exchange assays were per-

formed in the presence of increasing peptide concentrations (0.5-4 mM) as described above. The scrambled peptide sequence was

generated using the GenScript server (https://www.genscript.com).

Molecular modeling
The modeling was performed following the procedure described in (Bebel et al., 2016). First, Int82N tetramers were assembled by

superposing individual protein domains onto lInt–COC’ post-cleavage synaptic complex structure (PDB: 1z19) by rigid structural

alignment using FATCAT (Li et al., 2006). Flexible parts that could not be aligned, including the b-hairpin insertion, were isolated

and modeled separately with Phyre2 (Kelley et al., 2015). As Tn1549 Int’s helix aM is substituted with a short beta strand in the

case of lInt, aM interactions were kept as observed in our structures. This means that we kept the position of the swapped aM in

its binding site, while arranging the rest of the assembly according to the lInt template. This procedure is expected to provide a real-

istic approximation, as previous structures of other tyrosine recombinases did not reveal significant changes in the docking sites of

the C terminus during different stages of the reaction (e.g., Bebel et al., 2016). Finally, the obtained tetramer was refined in HADDOCK

(van Zundert et al., 2016), in order to optimize the molecular geometry.

Miscellaneous
Structural figures and animations were generated with Pymol (Schrödinger); sequence alignments were generated with DALI (Holm

andRosenström, 2010) and ESpript (Robert andGouet, 2014). Protein interfaces were analyzed in PISA (Krissinel andHenrick, 2007),

protein-DNA contacts in NUCPLOT (Luscombe et al., 1997) and DNA parameters in 3DNA (Lu and Olson, 2003).

QUANTIFICATION AND STATISTICAL ANALYSIS

Reaction products from strand exchange assays with Int82N, R153A, and R153A-Y160A mutants were quantified using a Typhoon

FLA7000 Phosphorimager and the ImageQuant TL software (GE Healthcare). DNA band intensities for substrate and product

were calculated using the same box-area and the ratio between product and substrate bands was calculated for each sample

(Table S4). The reported values belong to a single representative experiment.

Fluorescence intensity values are displayed as mean ± SEM of at least three independent experiments (Figure 3). Statistical

analysis was performed in Excel and is shown in Table S3. Statistical significance was not tested.

DATA AND SOFTWARE AVAILABILITY

Data resources
The accession numbers for the cordinates and structure factors reported in this paper are Protein Data Bank: 6EMZ (Int82N(R225K)-

CI5 complex), 6EN1 (Int82N(R225K)-CI6a complex), 6EN2 (Int82N(R225K)-CI6b complex), 6EN0 (Int82N(wt)-CI5 complex), and 6EMY

(Int82N(Y379F)-IRR complex).
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Supplemental Figures

Figure S1. Reconstitution of the Int82N-CI5 Complex and Its Structural Features, Related to Figure 2

(A) Domain composition of Int. The N-terminal Arm-Binding domain (AB) (gray box) is followed by the Core Binding domain (CB) (aA-D, light blue boxes) and the

Catalytic domain (CAT, consisting of aE-M and b1-4, dark blue boxes and arrows, respectively). The linker between CD and CAT is shown in black and the

b-hairpin insertion is indicated as a gray box with dark purple arrows (b2-b3) inside. The catalytic residues are marked with black ovals and labeled.

(B) In vitro reconstitution of Int activity. Left: DNA cleavage assays with Int82N (aa 82-397) and IntFL (aa 1-397) showing that both constructs cleave ‘suicide’ CI5

DNA. The substrates contain a nick in the DNA backbone downstream of the expected cleavage position (see schematics). Upon cleavage, 2 nucleotides diffuse

away, trapping the covalent protein-DNA intermediate (gray oval attached to DNA) that can be resolved from unmodified Int on SDS-PAGE. Reactions with (+) or

without (-) DNA are analyzed on a 12% SDS-PAGE gel. Relevant gel parts are cropped and shown next to each other. Asterisks indicate the band corresponding

to the covalent protein-DNA product. Right: Results of DNA strand exchange assays with Int82N and IntFL show that both constructs create strand exchange

(legend continued on next page)



products in vitro. Strand exchange reactions using 50-32P radiolabeled (star) suicide CI5 DNA substrates (gray in the schematic) run on a denaturing 12% TBE-

Urea PAGE gel. Following DNA cleavage, nucleophilic attack by the 50OH of an unlabeled partner substrate (black) leads to a recombined product (black/gray

bar). Ligation of the labeled substrate strand (20 nt) with unlabeled DNA results in a larger product (43 nt, markedwith asterisk). The DNA band below the substrate

corresponds to the cleavage product (18 nt). WT: wild-type protein, R225K: catalytic mutant, (-) no protein in the reaction.

(C) Analytical size exclusion chromatography (SEC) of Int82N with CI5 DNA at different protein:DNA ratios (on a Superdex 200 PC 3.2/30 column, GE Healthcare)

reveals homogeneous complex at 2:1 ratio. Elution profiles for free CI DNA (peak at 1.50 mL), Int82N alone (1.51mL), complex at ratio 1 Int82N: 1 DNA (1.41mL and

1.55 mL), and complex at ratio 2 Int82N: 1 DNA (1.41 mL) are compared.

(D) Close-up of the active site in the Int82N-CI5 complex shows good quality experimental electron density. Simulated annealed composite omit map (2Fo-Fc,

contoured at 1s level) is shown for the catalytic residues (in sticks and atomic coloring) and DNA.

(E) Structural superposition of Tn1549 Int, Cre and lInt. One subunit is shown in cartoon representation (with helices shown as cylinders) for Int82N (blue), lInt75N

(dark cyan, PDB: 1z19, aa 75-356) and Cre recombinase (light cyan, PDB: 1q3u). The overall fold is conserved among the three proteins, only the b-hairpin

insertion is unique to Tn1549 Int.

(F) Comparison of the dimeric Int82N-CI5 complex (blue) with the tetrameric pre-cleavage lInt75N-COC’ complex (PDB: 1z19, cyan and gray). In the Int82N-CI5

complex, the C-terminal alpha helix is reciprocally exchanged between the two protein subunits, whereas the lInt75N-COC’ structure shows a cyclic exchange in

homo-tetrameric assemblies.



Figure S2. Structural Characteristics of Transposon End Binding, Related to Figure 2

(A) Schematic view of the protein-DNA contacts in the Int82N-CI5 crystal structure.

The bases at the IRs are labeled in uppercase and the crossover region in lower case letters. IRL is bound byMolecule A and IRR byMolecule B (as indicated at the

bottom). Blue arrows mark hydrogen bonding with the phosphate backbone and orange polygons indicate hydrophobic contacts. N150, the only residue

performing base-specific contacts, is highlighted in blue with the interacting residuesmarked with blue squares. The residues involved in base flipping are shown

in pink (R153) and orange (Y160).

(B) Surface representation for the Int82N subunit bound to IRL DNA colored by electrostatic surface potential (blue, positive; red, negative; �5 to +5 kT/e iso-

surfaces) calculated using APBS in Pymol (Schrödinger). N- andC- termini aremarked. Int82N interacts extensively with DNA covering 8170 Å2 buried surface area

at IRL and 7810 Å2 at IRR (calculated by PISA).

(C) Graphical representation of roll (gray) and twist (blue) parameters for each local base pair step in CI5 DNA. Pink arrows in the plot indicate the last step in the

A-tracts, with a marked decrease in the roll angle. The final A-s (A8’ and A8 in IRL and IRR, respectively) have C30 endo sugar pucker, a non-canonical backbone

conformation in normal dsDNA that is frequently associated with DNA bending (Johnson et al., 2008). The crossover region (covered with a gray bar) was omitted

(legend continued on next page)



from the calculation due to the flipped bases. The DNA sequence is shown under the plot, with pink boxes indicating the steps with a decreased roll angle. See

also Table S2.

(D) Phylogenetic tree of Tn916-like family transposases shows three different subgroups: Tn1549, Tn916 (both with two consecutive tyrosines at the catalytic

pocket, YY), and a third clade with the first tyrosine substituted by a tryptophan (called WY). XY marks a distinct related clade with only one conserved tyrosine.

The red circles outside the tree indicate the number of distinct genomes in which the specific sequence is found. The largest circle marks sequences present in

more than 100 genomes. Among these, Tn916 and Tn1549 Int-s are the most abundant, found in 3412 and 520 genomes, respectively.

(E) Comparative sequence analysis reveals a high level of conservation for the b-hairpin (left) and for the residues involved in base flipping (R153 and Y160) among

Tn916-like CTns, but not in the XY clade (right). N150, which recognizes the IR ends, is also highly conserved in the Tn916-like family.

(F) Sequence alignment of Tn916-like Y-transposases and more distantly related tyrosine recombinases. The b-hairpin is present in Tn916-like Y-transposases,

but absent in other tyrosine recombinases. The IntDb construct was created by replacing the b-hairpin insertion (H248-P263, pink frame) with a flexible two amino

acid linker (GG).

(G) Comparison of DNA binding by Int82N and IntDb. Electrophoretic Mobility Shift Assay (EMSA) was performed with constant concentration of radiolabeled CI5

DNA (1 mM) and increasing concentrations of Int proteins (as indicated above the gel). Complexes are run on a native gel (TBE 4%–12% polyacrylamide gel).

Schematics on the side mark the putative composition of each band. At 1.5 mM of protein, the amount of free DNA is higher for IntDb than for Int82N, indicating

some decrease in DNA affinity upon deletion of the b-hairpin.

(H) Results of in vitro cleavage (left) and strand exchange (right) assays with suicide CI5 DNA substrates demonstrating that the b-hairpin insertion is important for

Int activity. See schematics in Figure S1B for the assay design. Cleavage assays are analyzed on SDS-PAGE, separating free Int and the covalent Int-DNA

intermediate (asterisk). Strand exchange assays with radiolabeled suicide CI5 DNA substrates are analyzed on a denaturing TBE-Urea PAGE gel. Star denotes

50-32P. Ligation of the labeled substrate strand (gray, 20 nt) with unlabeled DNA (black) results in a larger product (gray/black, 43 nt). The DNA band below the

substrate corresponds to the cleavage product (18 nt). IntFL and Int82N readily catalyze CI DNA cleavage and strand exchange, but IntDb is compromised.

Catalytic mutant R225K Int82N is shown as negative control.



Figure S3. Int-Mediated Melting of the Crossover Region in Diverse CI DNA Substrates, Related to Figure 3

(A) Close-up of the crossover region (red) showing how DNA distortions destabilize base-pairing interactions. Several bases (a0-a30-t1 and g3/g0’) form inter-

digitating base stacking instead of regular Watson-Crick base pairs. Simulated annealed composite omit map (2Fo-Fc, contoured at 1s level) shows reduced

quality electron density map at this region.

(B) DNA binding assay with 2-aminopurine (2AP) modified CI5 DNA variants (CI5-F: 2AP at the flipped base, CI5-IR: 1nt inside IR and CI5-Co: 1nt inside the

crossover region). Int82N binds to all 2AP-modified DNA variants.

(C) DNA binding assays with Int82N, R153A and R153A-Y160A mutants. Complexes with a constant concentration of radiolabeled CI5 DNA and different protein

concentrations (0.75, 1.5 and 3 mM) are run on a native gel (TBE 4%–12% polyacrylamide gel). All mutants form complexes with DNA.

(D) Int82N, R153A and R153A-Y160A mutants show similar DNA cleavage activity on suicide CI5 DNA. Gray circle attached to DNA marks the band (asterisk)

corresponding to the covalent cleavage product on a 12% SDS-PAGE gel. See schematics in Figure S1B.

(E) Tn1549 CI sequences used in this study. IRL and IRR of Tn1549 are highlighted in gray. Bases are numbered as described in Figure 2A. The crossover regions

differ between the three sequences and are colored in red with lowercase letters. All CI sequences were derived from in vivo studies - CI5 from Domingo et al.

(2005) and the CI6 sequences from Lambertsen et al., (2018).

(F) Int82N binding to different CI DNA sequences. Complexes show similar band shift, forming stable complexes with 2:1 protein:DNA ratio on a native gel (TBE

4%–12% PAGE gel).

(legend continued on next page)



(G) Int82N can cleave CI DNA independently of the crossover region sequence and length. DNA cleavage reactions with suicide CI DNA are analyzed on a 12%

SDS-PAGE gel. Relevant gel segments are shown side by side. The covalent intermediate product is marked on the side.

(H) Confirmation of base flipping in different CI DNA sequences. Fluorescence emission spectra of Int82N-CI5 DNA and Int82N-CI6b DNA complexes with 2AP

modification at the flipped-out base are compared. y axis shows the corrected fluorescence intensity using an excitation wavelength (lex) of 320 nm. Complexes

were prepared at 2 Int82N:1 DNA molar ratio. The fluorescence spectrum of the Int82N-CI5 complex with 2AP inside the IR is shown as control (see Figure 3B).



Figure S4. Structural Insights into the Recognition of Different Crossover Sequences and Lengths in Diverse Transposon CIs, Related to

Figure 3

(A) Superposition of the Int82N-CI6b complex (cyan) and the Int82N-CI6a complex (yellow), with Molecule A as a reference, shows high similarity (RMSD 0.34 Å for

Ca). Both crossover regions show high disorder and the central bases could not be built. The DNA appears to form interdigitating base stacking as in the Int82N-

CI5 complex, although its path could not be fully resolved.

(B) Comparative schematic representation of the Int82N-DNA contacts in the CI5, CI6a and CI6b structures. The DNA recognition pattern is conserved inde-

pendent of the sequence and length of the crossover region. The CI6 IRL sequence is shown. IRR differs in the base highlighted in white. Blue arrows indicate

hydrogen bonding with the phosphate backbone (contact cut-off 3.5Å). Base-specific DNA contacts of N150 are highlighted in blue with the interacting bases

marked. Interactions that are present in some but not all complexes are marked with superscript: The interaction with R252 is shifted one nucleotide downstream

in the CI6a structure; T147 forms hydrophobic contacts in CI5; N101makes awater-mediated contact in CI6a; K188 contacts the T-3 phosphate in IRR in CI6a and

in both IRs in CI6b; R95 contacts (#) are absent at IRR.

(legend continued on next page)



(C) Close-up of the b-hairpin insertion shows two alternative conformations for the final small loop (E262-T265, sticks) in the electron density maps in the CI6

structures (shown for CI6a). Simulated annealed composite omit map (2Fo-Fc, contoured at 1s level) is shown for the loop.

(D) Simulated annealed composite omit electron density maps reveal higher disorder in the CI6 structures. The map is shown at 1s level, together with a cartoon

representation for the three CI DNAmolecules: CI5 (gray), CI6a (yellow) and CI6b (cyan). Bases at the crossover region are shown in atomic representation in red.

Missing bases are indicated with gray letters in red brackets.



Figure S5. Characterization of the Int Active Site and Its DNA Cleavage and Strand Exchange Specificity, Related to Figure 4
(A) Close-up of the active site in the wild-type Int82N-CI5 complex structure shows the same architecture as in the R225K mutant. Simulated annealed 2Fo-Fc

composite omit map contoured at 1s level. As before, Y379 points toward the DNA at the phosphate of T-1/T-1’ (at 5.2-5.8 Å distance). R225 forms a hydrogen

bond with the scissile phosphate (T-1/T-1’). The structures superpose with RMSD of 0.5020 Å for Ca atoms in Molecule A.

(B) In vitro activity assays with tyrosine mutants Y379F and Y380F, and the double mutant 2YF with both tyrosines mutated to phenylalanine. DNA cleavage

reactions (left) with suicide CI5 DNA are analyzed on 12% SDS-PAGE gel. Asterisk marks the covalent cleavage product. Both Y379F and Y380F mutants cleave

DNA, whereas the double mutant is inactive. Strand exchange assays (right) with suicide CI5 DNA are run on denaturing 12% TBE-Urea gel. Irrelevant gel

segments were eliminated. The recombination product is indicated with an asterisk. Here, the two single mutants show different behavior. (-): control lane without

protein in the reaction.

(C) Phosphorothioate (PTO) modification at position -1 inside the transposon blocks DNA cleavage and strand exchange in CI6a DNA. PTO modification is

introduced at T-1/T-1’, at the neighboring position a0/g0’, or both (-1’,0’ and -1,0) (as for CI5 DNA in Figure 4C). Reactions are run on denaturing 12% TBE-Urea

gel. Substrates and products are marked with schematics as in Figures S2H and 4C. (-): reaction without protein; control: reaction without PTO modification.

(D) Ligation assays with truncated partner DNA confirm the need for cleavage 50 of T-1/T-1’. Schematics show the experimental design with IRR labeled. Two

unlabeled IRL partner substrates were tested: one with T-1’ and the other without (marked with red box). Reactions are run on denaturing 12% TBE-Urea PAGE

(legend continued on next page)



gel with radiolabeled IRR (on the left) and IRL (on the right). Products are only observed with T-1/T-1’ present. (-) reactions without protein. TP indicates reactions

with the 50 phosphorylated partner substrates.

(E) Thymine at the 5’ is also necessary for strand exchange with CI6a DNA. Ligation reactions are visualized on denaturing 12% TBE-Urea PAGE gel. Reactions

with radiolabeled IRL (left) and IRR (right) are shown.

(F) A single stranded DNA (ssDNA) competes with Int-mediated recombination. Int82N at 40 mMconcentration was incubated with 0.5 mMCI5 DNA and increasing

concentrations (0.2-1.7 mM, as marked above the gel) of unlabeled ssDNA that mimic the crossover region sequence (5nt length for cross5 and 10nt for cross10,

both endingwith the essential thymine at the 50). The CI5 DNA substrate has a radiolabeled 20nt strand (short gray bar), that upon ligation with its partner substrate

creates a 43nt recombination product (black/gray bar). Addition of cross5 or cross10 ssDNA blocks correct strand exchange and results in alternative products of

23 nt or 28 nt, respectively (white/gray bar). Controls: 50P, 50-phosphorylated DNA; -Int82N, no protein in the reaction.



Figure S6. Characterization of Int’s HJ Resolution Activity, Related to Figure 5

(A) Int82N binds to the synthetic HJ, forming stable complexes at 4:1 ratio. HJ substrates were radioactively labeled at the IRL or TR arm or both (see schematics in

Figure 5). Complexes were prepared at a constant concentration of radiolabeled HJ (1 mM) and different protein concentrations (2 and 4 mM), and run on a native

PAGE gel (6% TBE gel). 44bp dsDNA is shown as a control and migrates faster than the HJ.

(B) Int82N resolves HJ intermediates toward recombined products. Native gel with the purified radiolabeled DNA products of the HJ resolution assay shown in

Figure 5. Reactions with (+) and without (-) Int82N confirm that Int82N has resolved the HJ to dsDNA.

(C) Int82N can resolve HJ intermediates back to substrates. HJ was radioactively labeled on the IRR arm, the TL arm or both as indicated (stars). Solid arrowheads

mark the cleavage positions. The sizes of the individual arms, as well as the lengths of the substrates (44 nt and 47 nt) and recombinant products (42 nt and 49 nt)

are indicated in the schematics. Reactions with (+) or without (-) Int82N are visualized on a 12% TBE-Urea gel. Upon Int82N activity, the sizes of the labeled strands

are changed to the expected product sizes. Size markers (49, 47, 44 and 42 nt) are shown on the left.

(D) Native gel with the purified DNA products from C confirms HJ resolution to dsDNA substrates.



Figure S7. Int’s C-Terminal Helix Mediates Protein Oligomerization and Catalytic Activity, Providing a Target for Inhibitor Design, Related to
Figure 6

(A) Conservation of the C-terminal helix aM and its binding site in Tn916-like CTn transposases. Top: Surface residues interacting with aM in the Int82N dimer are

colored by conservation (exact % identity values are listed in Table S5). Bottom: Sequence LOGO for aM.

(B) Size exclusion chromatography (SEC, top) and small angle X-ray scattering (SAXS, bottom) reveal dimers for Int82N and monomers for C-terminally truncated

variants. In SEC, the elution profiles for Int82N (black line), 390C (gray line), 384C (green dots) and 381C (green dashes) are compared on Superdex 200 10/300

column. C-terminally truncated variants show an elution volume corresponding to a molecular weight of �36 kDa, whereas Int82N elutes as a dimer at �72 kDa.

For SAXS, pairwise distance distribution function p(r) is plotted. Maximal particle dimensions (Dmax) are 95Å for 390C and 130Å for Int82N. The sharp drop in Dmax

determination indicates conformational flexibility (especially for the monomeric 390C construct; see STARMethods for details), likely reflecting free movement of

the two Int domains in absence of DNA.

(C) C-terminally truncated Int variants form higher oligomers upon DNA binding. Complexes were prepared at a constant concentration of radiolabeled CI5 DNA

with different concentrations of 381C and 390C and run on a native gel (TBE 4%–20% PAGE gel). The presumed protein-DNA composition is shown sche-

matically for each band.

(legend continued on next page)



(D) Truncated variants are hyperactive in DNA cleavage. Reactions with suicide CI5 DNA are analyzed on a 12% SDS-PAGE gel. Asterisk marks the covalent

cleavage product.

(E) 390C and 384C variants are hyperactive in strand exchange under low protein concentration. Strand exchange reactions with Int82N, 390C, 384C and 381C

constructs are run on denaturing 12% TBE-Urea PAGE gel. The recombined product is indicated with a black/gray bar. The 381C construct shows a great

reduction in strand exchange activity.

(F) Strand exchange assays in the presence of a scrambled peptide do not show a dose dependent inhibition as seen for the native peptide (Figure 6D). Reactions

with different peptide concentrations (asmarked above the gel) at a constant concentration of protein (33 mM), radiolabeled suicide CI5 DNA (1 mM) and unlabeled

DNA (75 mM) are visualized on denaturing 12% TBE-Urea gel. Products are marked with schematics. ‘-Int82N’, reaction without protein.

(G) The C-terminal tail mimicking peptide affects Int82N-CI5 complex formation. Complexes were prepared with constant peptide and DNA concentration with

different protein amounts (asmarked). Complexes are run on a native gel (TBE 4%–12%PAGE). Addition of the peptide reduces protein-DNA complex formation.

(H) The peptide compromises assembly of higher order Int-CI complexes. Complexes were prepared at constant concentration of the peptide and CI5 DNA with

increasing concentrations of the C-terminally truncated 390C Int variant (as marked), and run on a native gel (TBE 4%–12% PAGE).
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