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Kadanoff of Hi-C data

Andrea M. Chiariello1,? 
, Simona Bianco1,? 

, Carlo Annunziatella1,? 
, An-

drea Esposito1,2,? 
and Mario Nicodemi1,3,

†
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Abstract –Technologies such as Hi-C and GAM have revealed that chromosomes are not randomly 
folded into the nucleus of cells, but are composed by a sequence of contact domains (TADs), each 
typically 0.5Mb long. However, the larger scale organization of the genome remains still not well 
understood. To investigate the scaling behaviour of chromosome folding, here we apply an approach à 
la Kadanoff, inspired by the Renormalization Group theory, to Hi-C interaction data, across different 
cell types and chromosomes. We find that the genome is characterized by complex scaling features, 
where the average size of contact domains exhibits a power-law behaviour with the rescaling level. 
That is compatible with the existence of contact domains extending across length scales up to 
chromosomal sizes. The scaling exponent is statistically indistinguishable among the different murine 
cell types analysed. These results point toward a scenario of a universal higher-order spatial 
architecture of the genome, which could reflect fundamental, organizational principles.

Introduction. – In the last decade, new and powerful technologies, such as the Hi-
C [1] and the GAM [2] methods, have been developed to quantitatively explore the three
dimensional organization of chromosomes in the cell nucleus. They provide information
about the frequency of contacts in space between pairs of DNA segments (loci) genome-
wide. From these data, it is emerging that the genome has a complex spatial organization
in higher organisms [3–5]. Contact data provide vital information because gene activity can
be regulated through the interaction between elements, such as promoters and enhancers,
remote along DNA sequence. From the analysis of Hi-C data, it is found that chromosomes
are folded into a sequence of so-called ’contact domains’ (or TADs, Topologically Associating
Domains), typically 0.5Mb long, which have strong local interactions [9, 10] and compara-
tively well conserved boundary locations across different tissues and species [6, 9]. While
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Fig. 1: Example of Hi-C matrices for ESC cell line, from [6]. (a) Four nested regions on chromosome 
2, ranging from 30Mb to ∼ 1Mb. Each matrix contain a complex pattern of interaction: the 
TAD structure is visible in the smallest matrix (strong red squares along the diagonal), but bigger 
interaction domains exist as the genomic window is increased. To highlight long-range contact, data 
are shown in logarithmic scale. (b)Contact domains are identified using the Directionality Index 
DI ( [6, 9]): as the DI signal becomes positive, a boundary is annotated. The domains identified in 
the reported region are highlighted by white squares.

TADs are currently the focus of intense investigations, it has been observed that chromo-
somal interactions exist also at different scales, within TADs [6–8] and at larger scales. It 
has been discussed, for instance, that TADs interact in 10Mb wide ’A/B compartments’ 
[1] and form higher order structures, named metaTADs [6]. Yet, the global organization of 
chromosomes remains not fully understood. Here, we investigate the scaling features of spa-
tial organization of chromosomes by implementing a computational procedure inspired by 
the Renormalization Group methods of Statistical Mechanics, and in particular Kadanoff 
transformations [11, 12] applied directly to published murine genome-wide Hi-C data [6]. By 
rescaling iteratively the interactions between different regions of the genome, we find that the 
average size of the contact domains identified at each rescaling level exhibits an approximate 
power-law behaviour over two decades in genomic scales, across different cell types along 
murine neuronal differentiation [6]. That complex scaling behaviour points to-ward a scenario 
where chromosome folding is marked by structures across different scales. Interestingly, the 
scaling exponents in the studied cell types are very similar, suggesting a universal global 
organization of the genome, which could reflect fundamental organizational principles [13].

Dataset analyzed. – To investigate the chromatin folding in different cell types, we 
study recently published Hi-C data [6] in a murine neuronal differentiation cell line, from 
mouse embryonic stem cells (ESC), intermediate neuronal precursor cells (NPC) and post-
mitotic neurons (Neurons). We consider published intra-chromosomal Hi-C data at a 
resolution of 50kb; they can be visualized as symmetric square matrices (see Fig. 1 or [6],
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Fig. 2: Coarse-graining approach used to investigate the scaling features of genome architecture.(a) 
Schematic representation of the scaling transformation iteratively applied to each Hi-C matrix. In our 
notation, a is the length unit of the bins, that is the resolution of the original Hi-C matrices (50Kb)(b) 
The coarse-graining procedure is applied on a ∼ 20Mb region of chromosome 18, Neurons cell line. 
Here, we show the results for the rescaling factors b = 100Kb (left matrix), b = 400Kb (central matrix) 
and b = 1.6Mb (right matrix).

logarithmic scale). Each pixel of the matrix xi,j contains the interaction frequency between 
the DNA regions (loci) i and j. In Fig. 1a, Hi-C data are shown for four nested regions 
on chromosome 2, in ESC, spanning from 30Mb to 1Mb in size. A complex pattern of 
interaction is visible for each genomic window represented. In particular, the typical TAD 
structure, with strong squares along the diagonal, is seen in the higher-resolution matrices 
(Fig. 1a right panels), but as the size of the considered genomic window is increased it is 
also clear that much bigger interaction domains exist, encompassing multiple TADs. These 
considerations prompted us to investigate the scaling features of genomic interactions.

Identification of contact domains. – To identify the basic contact domains, or 
TADs, in the system, i.e., the regions with enriched intra-domain contacts along the diagonal 
of Hi-C matrices, many algorithms have been proposed [9, 14]. Here, we use the pipeline 
described in [6]. Briefly, we calculated, for each 50kb window, the Directionality Index (DI,
[9]), which measures the difference of interaction that a locus has with its neighbouring 
upstream or downstream loci. An example of DI signal is reported in Fig. 1b. Briefly, 
the boundaries of the domains (superimposed on the matrix as white squares) are identified 
when the signal changes sign from negative to positive, i.e., the tendency to interact shifts 
from left to right, by crossing a given amplitude threshold (all details in [6]). An example 
of TADs is given in Fig. 1b.

Coarse-graining of Hi-C matrices. – To investigate the scaling features of genomic 
interactions, we considered an iterative computational procedure inspired by the Renor-
malization Group. We applied a scale transformation to the chromosomes where pairs of 
consecutive 50Kb bins are fused in a new, twice as large bin; that corresponds to a coarse-
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graining of the original Hi-C matrix in 2x2 blocks (Fig. 2a). The overall interaction between 
the new bins is then the average of the values contained in the corresponding block of the 
original matrix. Specifically, the renormalized interaction x′i′,j′ between the rescaled bin i′
and j′ is:

x′i′,j′ = 1/4
∑
i,j

xi,j (1)

where the sum runs over the original bins i and j included respectively in the new blocks i′
and j′, and xi,j is their Hi-C interaction. The result is a coarse-grained Hi-C matrix, x′i′,j′ , 
having a linear size scaled by a factor 2 relative to xi,j , as schematically represented in Fig. 
2a. The described procedure is next applied iteratively to the coarse-grained Hi-C matrices. 
For instance, in Fig. 2a, this is repeated 4 times, and the initial 16x16 matrix eventually 
becomes just one single bin. In our notation, we name a the length unit of the bins of the 
original matrix (50Kb in our case), and b is the rescaling factor. So, if we apply the 
transformation 4 times, the final rescaling factor b is 24a = 16a = 800Kb. In other words, b is 
the genomic length of the single bin at the considered coarse-graining level. Fig. 2b shows the 
effect of the transformation applied to real Hi-C data of a region on chromosome 18 (∼ 20Mb 
long), in Neurons. The results are plotted for the transformation at three levels of the 
rescaling procedure (b = 2a = 100Kb, b = 8a = 400Kb and b = 32a = 1.6Mb). For each 
cell type, we applied the coarse-graining protocol to the 20 chromosomes of the mouse 
genome, starting from the original 50Kb resolution of Hi-C data. The sizes in bins of the 
original 50Kb resolution matrices range from 3944x3944 (chromosome 1, the largest one) to 
1227x1227 (chromosome 19, the smallest one). They set the maximal number of iterations 
of the procedure for each chromosome.

Scale invariance and power law behaviour. – To explore the features of genomic 
interactions at different length scales, we employed our coarse-graining scheme. In particular, 
at each coarse-graining level, we calculated the ’contact domains’ in the correspondingly 
rescaled Hi-C matrix, using the procedure described above. In this way we access the 
emerging ’contact domains’ at different scales. The domain size, d, distribution is reported in 
Fig. 3a, in ESC cells, for the first three levels of coarse-graining. The average size < d >, 
highlighted as vertical dashed line, increases as the transformation is repeated. Fig. 3b, shows 
the dimensionless variable < d > /b, i.e., the rescaled average domain size in units of a, as a 
function of the scaling factor b (in dimensionless units). The values are averaged over the 20 
chromosomes. The quantity < d > /b represents the average number of bins that form a 
’contact domain’ at the given coarse-graining level. In case the contact domains of the system 
are characterized by only one length scale, b0, e.g., the 0.5Mb average size of TADs, the 
expectation is that, as b grows larger than b0, < d > /b flattens out to an asymptotic constant 
value d∞, < d > /b ∼ d∞. While such a behaviour is indeed observed in a control case (see 
below), interestingly, we found that the rescaled domain size decays as a power-law, very well 
described by the function:

< d > /b = d̄/bγ + d∞ (2)

where γ is the scaling exponent, d̄  a constant. In Fig. 3b, the fits for the three cell lines 
analysed are shown as dashed lines. Interestingly, the asymptotic value d∞ is not approached 
until chromosomal scales. The fits are robust (a chi-squared test has a p-val=1), and return a 
value for the exponent γ = 0.52 ± 0.08 (averaged over the three cell types), which is not 
compatible with the control model having ’contact domains’ of a single characteristic scale 
(see next paragraph). The scaling behaviour of interaction data is visible in the example 
of Fig. 3c, where four Hi-C matrices are shown at increasing rescaling levels, from b = 2a 
to b = 16a. Accordingly, the plotted genomic region is increased by a factor 2 each time,
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Fig. 3: Domain size exhibits a power law behaviour with the rescaling factor. (a) Domain size 
distribution for the first three level of coarse-graining of the ESC cell line. The NPC and Neurons cell 
lines have similar distributions. The vertical dashed line represents the average value. (b) Scaling of 
the average domain size < d > /b with the dimensionless rescaling factor b/a. The dashed lines 
represent the best fit curve described by eq. 2. All the analyzed lines have very similar scaling 
behaviour. The inset matrices refer to different coarse-graining levels. The plot is in log-log scale. (c) 
Four Hi-C matrices coarse-grained by an increasing rescaling factor, reported in the grey box. The 
genomic window is doubled each time so to have a constant matrix size. The block structure is visible 
in each matrix, and no privileged length scale is observed.

in order to keep constant the size of the matrices. From a visual inspection, they exhibit 
an overall similar structure with blocks of interactions. This suggests that it is not possible 
identify a privileged length scale, rather the structure has a complex scaling behaviour. The 
power law behaviour we found points toward a scenario where the organization of genome 
interactions is characterized by different, increasing length scales up to the sizes of entire 
chromosomes. Our results also suggest that organization into TADs discovered at small 
length scales [10, 14] is replicated at higher length scales, with complex, different sizes of 
domains. This is consistent with the existence of metaTADs [6].

Control model. – As a test, we compared our results with a control case model 
where interactions are confined within a particular scale. Precisely, the control case is made 
as follows: we consider the coordinates of the TADs identified in the original data (50Kb 
resolution), and then produce an artificial matrix where an entry is 1 if the bins are within 
the same TAD, and zero otherwise. In Fig. 4a, an example is shown of the experimental 
data (and the corresponding domains, in white) and the resulting control matrix model, with 
red squares. Since we use the actual domain coordinates in each chromosome, we have a set 
of control matrices that are equal in number and size to the original experimental matrices, 
but are marked only by the scale of the fundamental TADs in the system. TAD sizes 
have an exponential distribution with an average of 0.5Mb [6]. Hence, by construction our 
control matrices do not contain interactions at larger scales. We applied our coarse-graining 
procedure to the control matrices, derived their corresponding coarse-grained versions and
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Fig. 4: Control model exhibits a scaling behaviour not compatible with the experimental data.(a) The 
control matrices are made by blocks with 1 if the bin is in a TAD and 0 otherwise. (b) Comparison 
between the scaling of the normalized average size for the ESC cell line (green curve) and the control 
model (red curve). (c) The values of the scaling exponent γ obtained from the best fit. The control 
model is not compatible with the real data.

identified with the same pipeline above the emerging ’contact domains’ at each iteration. In 
Fig. 4b, it is reported the < d > /b curve of the control case as a function of the rescaling 
factor b, and the same curve for the real data (ESC cells) as a comparison (already shown in 
Fig. 3b). We find that the control case scales with an exponent γ = 1.07±0.06, and < d > /b 
rapidly approaches the asymptotic value. As before, the fit is very robust (chi-squared test 
p-val=1). The exponent, consistent with 1, is expected because the domains detected at each 
coarse-graining level are always the same and the number of bins is halved each time the 
matrix is rescaled. The values of the exponents obtained from the fit are shown in Fig. 4c. The 
error bars are extracted from the covariance matrix given by the fitting algorithm (Python 
routine curve fit from the scipy package). Importantly, the exponents obtained from the real 
data, in all the analysed cell types, are statistically equal to each other and different from the 
control case (γ = 0.5 ± 0.08 ,0.52 ± 0.09 and 0.53 ± 0.06 for ESC, NPC and Neurons 
respectively). In brief, we conclude that Hi-C contact data return a scenario of genomic 
interactions extending across scales, well beyond the size of fundamental TADs. This appears 
to be a general feature of genome organization as it is observed across all the investigated cell 
types.

Robustness of the procedure. – Finally, we tested the robustness of our approach 
and results against using different definitions of TADs. So, we repeated the above analysis 
calculating the contact domains, at each coarse-graining level, by using a different threshold 
values for the DI index; in particular, rather than considering α = 0.0 as above, we employed 
the value of α that returns TADs having average size similar to the original TADs defined 
in [9] (α = 0.1, see [6] for details) that is roughly twice as large as in the α = 0.0 case [6].
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curves of eq. 2.

Nevertheless, the < d > /b curve is again very well described by the power-law in equation 
2. Fig. 4d, shows the curve for the corresponding domain size. The scaling exponent is γ = 
0.54 ± 0.06 (averaged over the three cell lines), which is completely consistent with our 
previous result and confirm once again the complex scaling behaviour.

Conclusions. – Overall, this work represents a novel application of classical concepts of 
Statistical Physics (Kadanoff transformation) to gain a deeper insight into the 3D struc-ture 
of chromosomes in the nucleus of cells of higher mammals. New technologies such as Hi-C [1] 
and GAM [2] are revealing novel important details on genome folding in the cell nucleus. It 
has emerged, in particular, that chromosomes are formed by a sequence of do-mains marked 
by high frequencies contacts, named TADs, having a typical size of roughly 0.5Mb. Yet, more 
recent studies are highlighting the existence of higher order interactions between TADs and 
chromosomes [6]. To shed light on the matter, in the present work we investigated the scaling 
behaviour of real Hi-C data, in a murine neuronal differentiation, by applying to experimental 
Hi-C data [6] a computational procedure inspired by the methods of the Renormalization 
Group of Statistical Physics. Our results return a view of chromo-somes architecture 
characterized by complex scaling features, extending from short (50Kb) up to chromosomal 
scales, not compatible with the existence of interactions at only one length scale, say the one 
of TADs or A/B compartments [1]. In particular, upon rescaling of the interactions, we find 
that the average contact domain size exhibits a power-law behaviour with a non trivial 
exponent pointing towards a self similar organization across scales. These results are in 
agreement with recent findings [2, 6], where the importance of long-range chromosome 
interactions has been stressed. The discovered complex scaling fea-tures of chromosomal 
structures could be biologically convenient as they would permit high level of compaction 
and, at the same time, selective contacts between specific regions [6,15]. One limitation of the 
present study is that it is entirely based on the empirical definition of TADs or contact 
domains, in turn based on heuristic analyses of experimental Hi-C data. To understand more 
deeply the relationship between data and spatial structure, principled theories are needed. To 
this aim polymer physics models have been developed. Importantly, polymer physics confirms 
that scaling concepts are very important to understand the genome organization (see, e.g., 
[16–18] and reviews in [26–29]). Such models represent also a pow-erful tool to investigate the 
architecture of real loci [19–21, 33–35] and whole chromosomes [30, 31], and to investigate the 
specific mechanism driving folding [22–25, 32].

p-7



A. M. Chiariello et al.

∗ ∗ ∗

We acknowledge grants from the NIH ID 1U54DK107977-01, CINECA ISCRA ID HP10CRTY8P,
the Einstein BIH Fellowship Award, and computer resources from INFN, CINECA, and
Scope at the University of Naples.

REFERENCES

[1] Lieberman-Aiden E. et al., Science, 326 (2009) 289-293.
[2] Beagrie R. A., et al., Nature, 543 (2017) 519?524.
[3] Bickmore W. A. and van Steensel B., Cell, 152 (2013) 1270-1284.
[4] Tanay A. and Cavalli G., Current Opinion in Genetics & Development, 23 (2013) 197-203.
[5] Dekker J. and Mirny L., Cell, 164 (2016) 1110-21.
[6] Fraser J. et al., Mol. Syst. Biol., 11 (2015) 852.
[7] Sexton T. et al., Cell, 148 (2012) 458-72.
[8] Phillips-Cremins J. E. et al., Cell, 153 (2013) 1281-1295.
[9] Dixon J. R. et al., Nature, 485 (2012) 376-380.
[10] Nora E. P. et al., Nature, 485 (2012) 381-385.
[11] Kadanoff L. P., Physics, 2 (2966) 263.
[12] Yeomans J. M., Statistical Mechanics of phase transitions (Oxford University Press Inc., New

York) 1992.
[13] Gilaranz L. J. et al., Science, 357 (2017) 199-201.
[14] Rao S. S. P. et al., Cell, 159 (2014) 1665-1680.
[15] Sarnataro S. et al., PLoS ONE, 12 (2017) e0188201.
[16] Barbieri M. et al., Proc. Natl. Acad. U.S.A., 109 (2012) 16173-16178.
[17] Chiariello A. M. et al., Scientific Reports, 6 (2016) 29775.
[18] Nicodemi M. and Prisco A., Biophys. J., 96 (2009) 2168-2177.
[19] Annunziatella C. et al., Phys. Rev. E, 94 (2016) 042402.
[20] Barbieri M. et al., Nat. Struct. Mol. Biol., 24 (2017) 515-524.
[21] Giorgetti L. et al., Cell, 157 (2014) 950-963.
[22] Brackley C. A. et al., Proc. Natl. Acad. Sci. U.S.A., 110 (2013) E3605-11.
[23] Jost D. et al., Nucleic Acids Res. 42, (2014) 9553-61.
[24] Sanborn A. L. et al., Proc. Natl. Acad. Sci. U.S.A., 112 (2015) E6456-65.
[25] Fudenberg G. et al., Cell Reports, 15 (2016) 1-12.
[26] Nicodemi M. and Pombo A., Curr. Opin. Cell. Biol., 28C (2014) 90-95.
[27] Bianco S. et al., Chromosome Res., 25 (2017) 25-34.
[28] Barbieri M. et al., Front. Genet., (2013) doi: 10.3389/fgene.2013.00113.
[29] Chiariello A. M. et al., Mod. Phys. Lett. B, 29 (2015) 1530003.
[30] Rosa A. and Everaers R., PLoS Comput. Biol., 4 (2008) e1000153.
[31] Di Stefano M. et al., Scientific Reports, 6 (2016) 35985.
[32] Bohn M. and Heerman D.W., PLoS ONE, 5 (2010) e12218.
[33] Scialdone A. et al., PLoS Comput. Biol., 7 (2011) e1002229.
[34] Nicodemi M. and Prisco A., Phys. Rev. Lett., 98 (2007) 108104.
[35] Chiariello A. M. et al., Front. Neurosci., 11 (2017) 559.

p-8


	MDC Cover 17137
	The scaling features of the 3D organization of chromosomes are highlighted by a transformation á la Kadano of Hi-C data
	Introduction.
	Dataset analyzed
	Identification of contact domains
	Scale invariance and power law behaviour
	Control model
	Robustness of the procedure
	Conclusions
	REFERENCES
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5




