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Abstract

Single cell RNA-seq (scRNA-seq) experiments suffer from a range of
characteristic technical biases, such as dropouts (zero or near zero counts) and
high variance. Current analysis methods rely on imputing missing values by
various means of local averaging or regression, often amplifying biases
inherent in the data. We present netSmooth, a network-diffusion based method
that uses priors for the covariance structure of gene expression profiles on
scRNA-seq experiments in order to smooth expression values. We
demonstrate that netSmooth improves clustering results of sScRNA-seq
experiments from distinct cell populations, time-course experiments, and
cancer genomics. We provide an R package for our method, available at:
https://github.com/BIMSBDbioinfo/netSmooth.
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;3757 Amendments from Version 2

The updated version addresses the suggestions that were

made by the reviewers. Some of the text and figures have been
improved for clarity. Figures 2, S3 and S6 are amended to include
the heatmap color scales. We have re-created Figure 2A to show
proper clustering of single-cells. A new panel added to Figure 8
showing adjusted mutual information obtained from random
networks vs real network. Figures S9 to S14 added to show
performance of CIDR comparison to other imputation methods.

See referee reports

Introduction

Single cell RNA sequencing (scRNA-seq) enables profiling
of single cells’ transcriptomes at unprecedented throughput
and resolution. It has enabled previously impractical, studies
of cell type heterogeneity, differentiation, and developmental
trajectories'. However, the adaptation of RNA sequencing
techniques from bulk samples to single cells did not progress
without challenges. Typically, only a fraction of a cells transcrip-
tome may be captured by the experiment, leading to so called
“drop-out” events where a gene gets a false 0 (or near 0) count
in some cell. The dropout rate is related to the population level
expression of a gene leading to many false zero counts for lowly
expressed genes, and artificially low counts for highly expressed
ones’. Furthermore, the drop-out rate could be related to the
biology of the cell type, as some cell types transcribe fewer
genes than others, which will appear as drop-out events’. When
summed over many samples, transcript counts from single cells
resemble those of bulk experiments’, but across individual cells
there is significant variation. This makes analysis more difficult
than in bulk RNA sequencing experiments.

Computational methods designed to deal with these issues treat
dropout events as missing data points, whose values may be
imputed based on non-missing data points (observed measure-
ments). The proportion of O counts per gene, a proxy for its
technical dropout rate, is a function of the population-wise mean
expression of that gene™’. This observation has led researchers
to treat O counts as dropout candidates to be imputed.

CIDR® attempts to impute missing values based on the predicted
mean expression of a gene, given its empirical dropout rate
(O-count). scImpute® estimates dropout likelihoods per gene
and per sample, and assigns each gene in each sample a status
as a dropout candidate. Genes might be considered likely drop-
outs even with nonzero expression, and O-count genes might not
be considered likely dropouts, based on their population-
wide expression distributions. It then uses a regularized linear
model to predict the expression of dropout genes based on the
expression of likely non-dropouts in all other cells. MAGIC’
performs local averaging after building a topological graph
of the data, updating the expression value of all genes in all
cells to their local neighborhood average.

All of the methods mentioned above use measured information
in the data in order to impute the missing information within the
same data. As such, they amplify whatever biases are present in
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a dataset; similar cells pre-imputation will become more similar
after imputation, as expression profiles of non-dropout genes
will drive similarities in imputed dropped-out genes. Further, all
methods except MAGIC only impute unobserved expression
events (Os or near Os), while the dropout phenomenon actually
affects the whole transcriptome. Hence, imputation methods for
scRNAseq should also adjust non-0 expression measurements in
order to recover the true signal.

We present a method, called netSmooth, that uses prior
knowledge to temper noisy experimental data. RNA sequenc-
ing experiments produce counts data as a proxy for gene activity,
which is not known a-priori, especially for experiments profil-
ing unknown cell types. However, decades of molecular biology
research have taught us much about the principles of gene inter-
action. Interacting genes are likely to be co-expressed in cells®”’,
and as such, protein-protein interaction (PPI) databases'"'
describe genes’ propensity for co-expression. We developed
a graph-diffusion method on PPI networks for smoothing of
gene expression values. Each node in the graph (a gene) has an
associated gene expression value, and the diffusion presents a
weighted averaging of gene expression values among adjacent
nodes in the graph, within each cell. This is done iteratively until
convergence, strengthening co-expression patterns which are
expected to be present. Incorporation of prior data from countless
experiments in the preprocessing of scRNA-seq experiments
improves resistance to noise and dropouts. Similar network
based approaches have been used to extract meaningful informa-
tion from sparse mutational profiles'>"”, and indirectly on gene
expression data by diffusing test statistics on the network to
discover regulated gene candidates'’. We propose diffusion of
gene expression values directly on the network as a method for
data denoising and imputation. Furthermore, the parameters
of this proposed method could be optimized using clustering
robustness metrics. We applied our method to a variety of single
cell experiments and compared its performance to other selected
imputation methods sclmpute and MAGIC. These methods
represent the latest and divergent ways of imputing the scRNA-seq
data.

While we mention CIDR in this review, we do not include
comparisons to CIDR in the main text, alongside MAGIC and
scImpute, because CIDR uses its own clustering procedure as
a part of the imputation workflow. sclmpute and MAGIC are
agnostic about post-imputation analysis, and therefore we were
able to compare them to netSmooth using a unified analysis
framework (see Methods). For completeness, we include bench-
mark results of CIDR in the supplement (Figures ?? - 2?).

We also made available an R package providing the necessary
functionality to use our method on other data. It is available on
GitHub: https://github.com/BIMSBbioinfo/netSmooth, or using
Bioconductor: https://bioconductor.org/packages/release/bioc/
html/netSmooth.html.

Results

Overview of the method

The intuition behind the netSmooth algorithm is that gene net-
works encoding co-expression patterns can be used to smooth
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scRNA-seq data, pushing its coexpression patterns in a bio-
logically meaningful direction. We demonstrate this using
protein-protein interaction networks, which are predictive of
coexpression’. We produced a PPI graph of high-confidence
interactions based on the PPI database STRING'".

There are 2 inputs to the method: (1) a gene expression matrix,
N genes by M cells, and (2) a graph where genes are nodes, and
edges indicate genes which are expected to be co-expressed. The
edges may be weighed, indicating the strength or direction of
a relationship; an edge weight of 2 indicates stronger expected
co-expression than an edge weight of 1, and an edge weight
of —1 indicates negative expected co-expression, such as one
gene being a repressor for another. The expression profile
of each cell is then projected onto the graph, and a diffusion
process is used to smooth the expression values, within each
sample, of adjacent genes in the graph (Figure 1). In this way,
post-smoothing values of genes represent an estimate of activ-
ity levels based on reads aligned to that gene, as well as those
aligned to its neighbors in the graph. Thus, a gene with a low
read count (possible technical drop-out), whose neighbors in
the graph are highly expressed, will get a higher value post
smoothing. The rate at which expression values of genes dif-
fuse to their neighbors is degree-normalized, so that genes with
many edges will affect their neighbors less than genes with more
specific interactions. The diffusion is done using a ‘“random
walks with restarts” (RWR) process”, where a conceptual
random walker starts in some node in the graph, and at each itera-
tion moves to a neighboring node with a probability determined
by the edge weight between the nodes, or, with some probability,
restarts the walk from the original node. The network-smoothed
value is the stationary distribution of this process. The RWR
process has one free parameter, the restart rate. A low value
for the restart rate allows diffusion to reach further in the
graph; a high restart rate will lead to more local diffusions.
For more details see the Methods section.

Network smoothing improves cell type identification from
single-cell RNA-seq

We first assess netSmooth on a dataset of 1645 mouse hemat-
opoietic stem/progenitor cells (HSPCs) assayed using flow

projected onto
gene network

gene expression profiles

g1

random walks

F1000Research 2018, 7:8 Last updated: 10 JUL 2018

cytometry as well as scRNA-seq"”. The cells are FACS-sorted
into 12 common HSPC phenotypes. This presents an atlas of the
hematopoiesis process at a single cell resolution, showing the
differentiation paths taken by E-SLAM HSCs as they dif-
ferentiate to E, GM, and L progenitors. The authors of this
study demonstrate that upon clustering the data, some clusters
corresponds to cell types. However, the clusters are not noise
free and do not fully recapitulate cell type identity. We obtained
clusterings of the cells from the normalized counts, as well as
after application of netSmooth, MAGIC’, and scImpute’, using a
robust clustering procedure based on the clusterExperiment R
package'® (See Methods). After clustering, we used the edgeR-
QLF test' to identify genes that are differentially expressed
in any of the discovered clusters. Figure 2ab shows the
log-transformed expression values of the 500 most differ-
entially expressed genes, before and after application of
netSmooth. The column annotations indicate the FACS-sorted
cell type of each cell, as well as the cluster assignment obtained
from the netSmooth R package. The figure suggests that the
network-smoothing effect is subtle on the individual genes,
as difference between the heatmaps is negligible visually.
Figure 2c,d shows the same for the MAGIC and scImpute-
preprocessed data, respectively. MAGIC seems to do the strong-
est transformation to the data, as is also seen in lower dimension
embeddings (Figures ??, 77).

As this dataset has cells with labels independent of the RNAseq
(FACS-sorted phenotypes), it presents us with an opportunity to
compare the gene expression levels (as measured by RNAseq),
to a meaningful phenotypic variable, i.e. the cell type. The cell
type discrimination of a clustering result is compared using
a cluster purity metric and and the adjusted mutual informa-
tion (AMI). The cluster purity measures how cell-type specific
clusters are by comparing homogeneity of the external labels
(FACS-defined cell types), within clusters provided by scRNA-
seq data. AMI is a chance-adjusted information theoretic meas-
ure of agreement between two labellings. This method accounts
for artificially high mutual information between external labels
and clusters when there is large number of clusters (See Meth-
ods for details on metrics). We also measured number of cells
in robust clusters as quantitative metric. The robust clustering

network-smoothed
gene expression profiles

Figure 1. The netSmooth algorithm takes a gene expression profile, and a gene network. The expression profile of each sample is
projected onto the network, where a diffusion process allows genes’ expression values to be smoothed by their neighbors’. This is done for
each cell independently of others. The end result is a network smoothed gene expression matrix.
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Figure 2. Cells were clustered using the robust clustering procedure, and the log-transformed expression values of the log-transformed
expression values of the 500 most differentially expressed genes (by edgeR-QLF test adjusted P value) in any of the discovered
clusters are shown in a heatmap, as well as cluster assignments and FACS-sorted cell types. A) raw (no imputation), B) after application
of netSmooth, C) missing values imputed using MAGIC D) missing values imputed using scimpute.
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procedure allows cells to be omitted (not be assigned to a
cluster) if they cannot be placed in a cluster across multiple
clustering methods and/or parameters (See Methods). MAGIC-
processed data leads to a larger proportion of cells assigned
to robust clusters, while netSmooth and scImpute lead to a
reduction in the clustering robustness metric (Figure 3a). All
three methods are able to discover some novel clusters in the
data with high purity (Figure 3b). A closer inspection shows
that MAGIC achieves this through a proliferation of small
clusters, which are not so far as we can judge meaningful, as
evidenced by the lower adjusted mutual information score
(Figure 3c). netSmooth-preprocessed clusterslead to a higher
AMI score, which, while modest, is biologically relevant.

Network smoothing improves capture of developmental
expression patterns

Next, we test netSmooth on 269 isolated cells from mouse
embryos at different stages of pre-implantation development
between oocyte and blastocyst, as well as 5 liver cells and 10
fibroblast cells'®. The authors of this study demonstrated that
lower dimension embeddings capture much of the develop-
mental trajectory (Figure 4a, Figure ??7a, ?7a). We then applied
netSmooth, MAGIC, and sclmpute. Figure 4b shows the
principal component analysis of netSmooth-processed data, and
Figures 4c and 4d show the PCA plot following application of
MAGIC and sclmpute, respectively. netSmooth and scImpute
preserve most of the variance structure of the data, while MAGIC
seems to push the data onto a completely different manifold
(Figure 4, Figure ??). We used the robust clustering procedure
to obtain clusters, and computed the cluster purity and AMI
metrics. netSmooth enabled the clustering procedure to place
more of the samples into robust clusters (Figure 5a), and as in
the hematopoiesis case, netSmooth is able to assist in identifying
the developmental stage or tissue that cells belong to better
than the other methods, as evidenced by the higher cluster puri-
ties (Figure 5b) and AMI (Figure 5c). sclmpute also improves
the cluter purity and AMI metrics (Figure 5b,c), and is not easily
differentiable from netSmooth in the PCA scatter plot (Figure 4).
The netSmooth results are marginally better, which hints at an
equivalence in the recovered signal quality between the two
methods, netSmooth’s quasiimputation incorporating priors,
and scImpute’s linear model-based imputation. sclmpute achieves
this by reducing the overall O-count genes significantly more
than netSmooth (Figure ?7?), which suggests that incorporat-
ing priors the way netSmooth does can achieve similar results
to data-imputation. The smaller change in the proportion of
0-count genes following netSmooth than sclmpute (Figure ?77?)
shows that netSmooth works primarily by smoothing values of
genes with measured expression, as opposed to imputing
suspected missing counts, which suggests a lesser transforma-
tion of the data, such as through application of netSmooth, can
uncover much of the true signal hidden in the noisy data.

Network smoothing improves identification of glioblastoma
tumors

Finally, we demonstrate applicability of netSmooth to cancer
research. Patel et al. generated scRNA-seq data of 800 cells from
5 glioblastoma tumors and 2 cell lines'’. Lower dimension embed-
ding plots show that cells from different tumors or cell lines
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generally group together, but some are not wholly distinguish-
able from other tumors (Figure 6a, ??a, ??a). Further, the two
cell lines group closer to each other than the other patient sam-
ples. After applying netSmooth to the data, tumors become easier
to distinguish in a lower dimensional embedding (Figure 6b),
indicating that netSmooth improves assignment of each cell to its
tumor, cell line, or clone of origin. Again, scImpute also leads to
similar reduced dimension embedding (Figure 6d), while MAGIC
distorted the data more than the other methods (Figure 6¢). We
used the robust clustering procedure before and after netSmooth,
MAGIC, and scImpute. Only MAGIC increase the clusterabitliy
of the data (Figure 7a), but netSmooth leads to the most pure
clusters, in terms of tumor or cell line of origin (Figure 7b,
Figure 7c).

Tumor or cell line of origin is an imperfect proxy for
phenotypical variation in cancer cells, because some cells clus-
ter by cell type rather than tumor of origin, demonstrating the
heterogeneity in these glioblastoma tumors and similarities
across origins'’. Nevertheless, we chose to compute cluster purity
based on the cell origin rather than other labels which might be
assigned to them, as it is the only ground truth variable that is
independent of the RNAseq experiment. Further, cells do group
by origin (Figure 6, Figure ??7), and identification of origin is
an interesting question in its own right in the field of cancer
genomics, particularly for heterogeneous tumors such as these.

Sensitivity to the network

Next, we set out to ensure that the results are not an artifact of
the network structure, i.e. that the actual links between genes
that we used in the network are important. We expect netSmooth
not to perform well when using networks with similar char-
acteristics, but where edges do not represent real interactions.
To that effect, we constructed 20 random networks by keeping
the same graph structure of the real PPI graph, but shuffling
the gene names. Thus, these random networks share all the
characteristics of the real network (degree distribution, com-
munity structure), except for the true identity of the nodes.
We then used those networks as inputs to netSmooth and ran
the benchmarks as before on the hematopoiesis dataset. Using
random networks as an input to netSmooth gives cluster
purities distributed around a mode given by the cluster puri-
ties of the raw data, while the cluster purities given from using
the real PPI network lie at the extreme edge of the distribution
(Figure 8a). Further, most random networks result in fewer
samples belonging to robust clusters (Figure 8b). Finally, we
also calculated the adjusted mutual information of clusterings
resulting from the randomized networks (Figure 8c). Again,
most shuffled networks produce worse clusterings, with the real
network outperforming all of them, as well as the no-smoothing
case. These results demonstrate that it is indeed the information
contained in the PPI graph enables netSmooth to transform the
gene expression matrix in a more biologically coherent direc-
tion, and that the transformation we see can not be explained
simply by the network structure.

Using other networks with netSmooth
In addition to using an unweighed (where all edge weights are

1), undirected (where all edge weights are positive) network
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of dominant cell type) for the robust clusters. netSmooth produces the most pure clusters in terms of cell types. C) AMI of the clustering
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from string-db, we constructed other gene networks and used
them as inputs to netSmooth. We created a directed gene
network from only those edges in string-db which are marked
as activating or inhibiting’. We set the edge weights of the acti-
vating interactions to +1, and —1 for the inhibiting interactions,
allowing gene expression values to be adjusted downwards for
genes whose known antagonists are highly expressed. After
smoothing, we set all negative smoothed expression values to
0. We also constructed a gene network from string-db using
only genes that are known to demonstrate cell-type specific
expression. In order to obtain a list of genes with such cell-type
specific expression patterns from the Expression Atlas™, we
used only the genes which show a cell-type specific expression

'Most interactions in string-db do not specify the direction, or nature of the
interaction

with a mean TPM of at least 1 in some cell type, and used
the subset of string-db network containing those genes as an
input to netSmooth. Both of those modified graphs perform
similarly to the undirected graph from string-db (Figure 9,
Figure ??a, Figure ?7?b), demonstrating that netSmooth is able to use
priors from different types of experiments in order to improve
clustering of scRNA-seq.

We also considered other sources for the gene network. We
constructed a gene network from HumanNet’, a functional
gene network where edges denote interactions between two
genes. We constructed a smoothing graph by taking all edges
from HumanNet, and producing a graph where all edge weights
are set to 1. We then used this graph as an input to netSmooth
on the glioblastoma dataset. It performs similarly to the net-
work from string-db (Figure 10, Figure ?7c), demonstrating

Page 9 of 25



F1000Research 2018, 7:8 Last updated: 10 JUL 2018

Hematopoiesis

© o o =
> o o) o

cluster purity

o
[N

0.0

2L

raw non-
directional

directional cell-type

specific

Figure 9. Cluster purities after applying netSmooth with different input networks. Raw refers to no smoothing, non-directional is the same
as the results shown in previous sections. Directional refers to a gene network where inhibitory relationships have negative edge weights, and
cell-type specific refers to a gene network of only genes which are known to have cell-type specific expression patterns. The online version

of this figure is interactive.

Glioblastoma

oA

X

=
o

o
o]

cluster purity
o o
EN o

o
[N}

0.0

raw string-db HumanNet

Figure 10. Cluster purities after applying netSmooth with
different input networks. Raw refers to no smoothing, string-
db is the same as the results shown in previous sections, and
HumanNet refers to a gene network constructed from the HumanNet
database. The online version of this figure is interactive.

that other sources for gene interactions may also be used
by netSmooth to improve clustering results of scRNA-seq.

As more scRNAseq experiments are published, context-specific
networks will be made possible to create, potentially improving
netSmooth’s performance. The networks we have shown
above have links between genes which are known in a general
context, but scRNAseq experiments might uncover previously
unknown cell-type specific gene interactions, which could
contribute to the information uncovered by network smoothing.
Here, we have demonstrated that even the general context

networks we have used are able to assist in identifying specific
cell types from noisy scRNAseq datasets.

Optimizing the smoothing parameters by cluster
robustness

The netSmooth algorithm, given a gene network, has one free
parameter - the restart rate of the random walker, (1 - o).
Alternatively, o is the complement of the restart rate. An o = 0
indicates a perfect restart rate and consequently no smoothing;
an o = 1 corresponds to a random walk without restarts. Inter-
mediate values for ¢ result in increasing levels of smoothing;
the value of o determines how far random walks will go on the
graph before restarting, or how far along the network a gene’s
influence is allowed to reach (See Methods). It is tempting to
optimize ¢ with respect to the variable the experiment sets out
to measure, e.g. cluster purity. For instance, in the embryonic
development dataset, we would choose ¢ = 0.4 as the value that
produces the highest cluster purity (Figure 11b). However, in
many experiments the identity of the samples is not known
a-priori. Therefore, we propose a data driven workflow to pick a
sensible value for o

One such data-driven statistic is the proportion of samples
assigned to robust clusters; following application of netSmooth,
the robust clustering procedure is able to assign more samples
to statistically robust clusters. For two of the three datasets,
picking the o that gives the highest proportion of cells in robust
clusters, also gives the clusters with the highest purity index
(Figure 12). Importantly, this metric is entirely data-driven
and does not require external labels, making it feasible for any
scRNA-seq study. The results in the previous sections all use
the value of o« picked to optimize proportion in robust
clusters.
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Figure 11. boxplots of cluster purity for clusters obtained by the robust clustering procedure following application of netSmooth with
different values of a. o = O is equivalent to not using netSmooth at all. The procedure is robust to alpha, that is, most values of alpha produce
more robust clusters. A) HSPCs, B) embryonic cells, C) glioblastomas. The online version of this figure is interactive.
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Figure 12. the proportion of cells in robust clusters, and cluster purity for those robust clusters, for a range of alpha values, shows that
picking the alpha with the highest proportion in robust clusters also picks the alpha with the highest cluster purity. A) hematopoietic
stem/progenitor cells B) embryonic cells, C) glioblastomas. The online version of this figure is interactive.

The netSmooth R package” provides an alternative way to
optimize ¢« in the absence of true labels, by optimizing the
entropy in a 2D embedding of the data. See Methods for
details.

Discussion

Single cell RNA sequencing technology provides whole-genome
transcriptional profiles at unprecedented throughput and resolu-
tion. However, high variance and dropout events that happen in
all current scRNA-seq platforms complicate the interpretation
of the data. Methods that treat 0 counts as missing values
and impute them based on nonzero values in the data may amplify
biases in the data.

We presented netSmooth as a preprocessing step for scRNA-seq
experiments, overcoming these challenges by the use of prior
information derived from protein-protein interactions or other
molecular interaction networks. We demonstrated that network
smoothing assists in several standard analyses that are common

in scRNA-seq studies. This procedure enhances cell type iden-
tification in hematopoiesis; it elucidates time series data and
assists identification of the developmental stage of single cells.
Finally, it is also applicable in cancer, improving identification of
tumor of origin for glioblastomas. In addition, we showed that
network smoothing parameter can be optimized by cluster
robustness metrics, providing a workflow when there are no
other external labels to distinguish cells. We demonstrated that
netSmooth can use prior information from different sources in
order to achieve this. We compared netSmooth with sclmpute,
a statistical genome-wide imputation method, and MAGIC,
a genome-wide data smoothing algorithm, and demonstrated
that while scImpute and MAGIC reduce the drop-out phe-
nomenon more than netSmooth does, netSmooth outperforms
them in amplifying the biological/technical variability ratio.
netSmooth provides clusters that are more homogeneous and
have higher adjusted mutual information (AMI) with respect to
cell types. Although, in some cases data processed by MAGIC
produces more robust clusters, the clusters returned after
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MAGIC processing do not have higher AMI or cluster purity.
Higher robustness achieved by MAGIC processing might be
due to the fact that the algorithm reinforces local structures too
much in the data and producing artificially similar expression
profiles between cells. Comparisons to CIDR (Figures ?? - ??)
also show inferior performance to netSmooth.

In most of the benchmarks we ran, sclmpute shows similar
performance to netSmooth, while the former relies on other data
points in order to impute missing data, and the latter performs a
quasi-imputation based on priors from other experiments. Our
analysis shows that netSmooth affects the drop-out rate less
than sclmpute, while uncovering slightly more of the biological
signal. This happens across the different overall drop-out rates
in the 3 experiments we profiled, indicating that netSmooth
can achieve better results, with less obtrusive transformations of
the data, then the imputation methods, across a range of
experimental conditions.

Finally, netSmooth is a versatile algorithm that may be incor-
porated in any analysis pipeline for any experiment where the
organism in question has a high quality PPI network available.
Although not shown, the algorithm is applicable to any omics
data set that can be constructed as a genes-by-samples matrix,
such as proteomics, SNPs and copy number variation. In addition,
most of the computational load of network smoothing can be
done “off-line”. As such it scales well with the number of cells,
which is likely to increase in future sScRNA-seq experiments. We
have made available an R package to that end, which is available
on GitHub: https://github.com/BIMSBbioinfo/netSmooth, and Bio-
conductor:  https://bioconductor.org/packages/release/bioc/html/
netSmooth.html.

Methods and data

The data sets

The hematopoiesis dataset'” was obtained from the Gene Expres-
sion Omnibus*. The embryonic'® and glioblastoma'” datasets
were obtained from conquer™, a repository of uniformly proc-
essed scRNA-seq datasets. We have made the datasets available,
see Table 1.

The random walks with restarts process

The netSmooth algorithm takes a graph G = {V, E} where
V = {gene} is the set of genes, and E = {(i — j)} is the set of
edges between genes. The edge weights are degree-normalized,
so that each gene’s outgoing edges’ weights sum to 1. We then

Table 1. Datasets and availability.

URL

https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE81682

Dataset

Hematopoiesis

Embryonic cells  http://imlspenticton.uzh.ch/robinson_lab/

conquer/data-mae/GSE45719.rds

Glioblastoma http://imlspenticton.uzh.ch/robinson_lab/

conquer/data-mae/GSE57872.rds
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define a process of random walk with restarts as in 13, on the
PPI graph, where a conceptual random walker starts on a node
in the graph (a gene/protein) and at each step walks to an adja-
cent node with the probability determined by the o times
the edge weight. Further, at each step, there is a probability
of (1 — o) that the walker restarts to its original node.

Mathematically, given a graph defined by an adjacency matrix
A Where A, is the edge weight between gene i and gene
J (and O for unconnected genes), and a vector f, . Where
fi' is the probability that the walker is at node i at step 7, the

process is defined by
[ =aAf'+ (- a)f°
This process is convergent, and the stationary distribution is
given by
f7= (- o)l - aA)f,
Hence, the random walk with restarts process is a diffusion proc-

ess defined on the PPI graph, or through the diffusion kernel
(smoothing kernel)

KY=(1-a)l-ad)”

where (1 — o) is the restart probability, and A is the (column
normalized) adjacency matrix of the PPI graph. Consequently,
we define the network-smoothed expression profile

E, =KE,

where E[ o~

in the N cells.

is the normalized count values of the M genes

The clustering procedure

Clustering analysis features prominently in scRNA-seq analy-
ses; whether recapitulating known results or discovering new
cell types, clustering cells by their gene expression profiles is
commonly used to identify distinct populations. While some
approaches directly take into account the zero-inflation of
scRNA-seq data’, other studies use traditional methods'®. There
is no standard method for clustering single cell RNAseq data, as
different studies produce data with different topologies, which
respond differently to the various clustering algorithms.

In order to avoid optimizing different clustering routines for
the different datasets we benchmark on, we have implemented
a robust clustering routine based on clusterExperiment''®, a
framework for robust clustering based on consensus clustering
of clustering assignments obtained from different clustering
algorithms, different parameters for these algorithms, and
different views of the data. The different views are different
reduced dimensionality projections of the data based on
different techniques. Thus, no single clustering result will
dominate the data, and only cluster structures which are robust to

"Version 1.4.0, available from Bioconductor https:/bioconductor.org/packages/
release/bioc/html/clusterExperiment.html
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different analyses will prevail. The procedure we implemented
using the framework is as follows:

1. Perform different dimensionality reduction techniques on
the data

* PCA on the 500 most variable genes
— with 5 components
— with 15 components
— with 50 components

* Alternatively to PCA, t-SNE on the 500 most variable
genes

— with 2 dimensions
— with 3 dimensions

* Select the most variable genes
— 100 most variable genes
— 500 most variable genes
— 1000 most variable genes

2. On each reduced dimension view of the data, perform
PAM clustering with K ranging from 5 to 10

3. Calculate the co-clustering index for each pair of samples
(the proportion of times the samples are clustered together,
in the different clustering results based on the different
reduced dimensions and clustering parameters above)

4. Find a consensus clustering from the co-clustering
matrix. This is done by constructing a dendrogram using
average linkage, and traversing down the tree until a
block with a self-similarity of at least 0.6, and a minimum
size of 20 samples emerges. (instead of using cutree).

5. Perform hierarchical clustering of the cluster medioids,
with similarities based on expression of the 500 most
variable genes

6. Perform a DE analysis between clusters that are adja-
cent in the hierarchy from (5), and merge them if the
proportion of genes that are found to be significantly
differentially expressed between them (adjP < .05) is less
than than 0.1.

Using only the 500 most variable genes insures the biological
variation will dominate the technical variation, and enhances the
reproducibility of t-SNE*.

Importantly, samples that at step (4) don’t have a high enough
affinity to any emerging cluster, will not be assigned to any cluster.
The clustering is performed using the clusterExperiment: :
clusterSingle and clusterExperiment::cluster-—
Many functions, the consensus clustering is obtained using the
clusterExperiment::combineMany function, and the
cluster merging (steps 5 and 6) using the clusterExperi-
ment: :makeDendrogram and clusterExperiment::
mergeClusters functions. For more details, see 16.

Choice of dimensionality reduction technique in the
clustering procedure

In step (1) above, we cluster cells in a lower dimension embed-
ding using either PCA* or t-SNE”, in a dataset-dependent
manner. Different single cell datasets respond better to different
dimensionality reduction techniques which are better able to
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tease out the biological cluster structure of the data. In order to
pick the right technique algorithmically, we compute the entropy
in a 2D embedding. We obtained 2D embeddings from the 500
most variable genes using either PCA or t-SNE, binned them in
a 20x20 grid, and computed the entropy using the discretize
and entropy functions in the entropy R package™ *. The entropy
in the 2D embedding is a measure for the information captured by
it. For the clustering procedure, we pick the embedding with the
highest information content. For the hematopoiesis and glioblas-
toma datasets, this is t-SNE, while for the embryonic development
dataset it is PCA (Table 2). This method may be used to pick any
dimensionality reduction technique other than the ones mentioned
here, which might be more suitable for other analyses.

Cluster purity and adjusted mutual information

The cluster purity metric displayed above refers to the propor-
tion of the samples in a cluster which are of the dominant cell
type in that cluster. The purity for cluster i is given by

1, iflabeé. = dom,
jeCi

0, otherwise

Purity; =
7

where C, = {j|cellj € cluster,}, label/. is the cell type of cellj,
n, = |C]is the number of cells in cluster i, and

dom, = argmax Z

l JjeG

1, if labelj =1
0, otherwise

is the dominant cell type in cluster C..

In addition to the cluster purity metric, we computed the Adjusted
Mutual Information (AMI)”, an information theoretic measure
of clustering accuracy which accounts for true positives (two
cells of the same type in the same cluster) being caused by
chance. The AMI between a clustering C and the true labels
L is given by

MI(L.C)-E[MI(L,C)]

AMI (L’ C) - max (H (L),H(C)) - E[MI (L’ C)] ,

where M I(a, b) is the mutual information between labellings
a and b, H(a) is entropy of clustering a, and E[-] denotes the
expectation.

We do not compare the clusterings using the Rand index,
as that measure penalizes for so-called false negatives (two
cells of the same cell type but in different clusters), which is

Table 2. Entropy in 2D lower dimension
embeddings.

Dataset PCA Entropy t-SNE Entropy
Hematopoiesis 4.96 5.03
Embryonic cells 4.09 3.94
Glioblastoma 4.87 5.06

""Version 1.2.1, available from CRAN: https://cran.r-project.org/web/packages/
entropy/index.html
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undesirable as cells from the same cell type might be rightly
split into several clusters when a novel cell type is identified.

Construction of the smoothing kernel

The PPI graph from which the diffusion kernel was derived was
constructed using data from string-db'’. For each pair of pro-
teins, string-db provides a combined interaction score, which
is a score indicating how confident we can be in the interac-
tion between the proteins, given the different kinds of evidence
string-db collates. We subset the links to only those above the
90th percentile of combined interaction scores, only keeping the
10% most confident interactions. For mouse that is 1,020,816
interactions among 17013 genes. For human, 852,722 interactions
among 17467 genes.

MAGIC and sclmpute parameters

For all the results presented in this paper, sclmpute was run
using the default parameters (drop thre = 0.5). For
MAGIC, we used values for the diffusion time parameter (7" =
{1, 2,4, 8, 16}). Unlike netSmooth, for MAGIC the proportion of
samples in robust clusters and the cluster purities were anti-
correlated; thus we picked the one that gave the best cluster
purities as the best MAGIC parameter. The chosen T values are
given in Table 3. We used MAGIC version 0.1" and scImpute
version 0.0.2".

Table 3. Optimal diffusion
time values for MAGIC.

Dataset Optimal T
Hematopoiesis 1
Embryonic cells 4
Glioblastoma 2

Available from GitHub: https:/github.com/pkathail/magic.

VAvailable from GitHub: https:/github.com/Vivianstats/scImpute.

Supplementary material
Supplementary figures S1-S14.

Click here to access the data.
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the netSmooth R package

The analysis for this paper was done using the companion
netSmooth R-package”, which is available online: https:/github.
com/BIMSBbioinfo/netSmooth.

The netSmooth R package was included in the 3.7 release of
Bioconductor: https://bioconductor.org/packages/release/bioc/html/
netSmooth.html and was developed and tested under R version 3.5.

Archived code at time of publication: https://doi.org/10.5281/
zenodo.1119064.

License: GPLv3.
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Siddharth Dey
Center for Bioengineering, University of California, Santa Barbara, Santa Barbara, CA, 93106-5080, USA

In this manuscript, the authors have developed a new computational method to reduce technical biases
that result from dropout events in single-cell MRNA sequencing experiments, a problem that particularly
affects genes that are expressed at low levels. While single-cell mMRNA sequencing has revolutionized our
understanding of several biological systems in the last few years, the relatively low efficiency of amplifying
small quantities of mMRNA from a single cell results in dropout events that bias downstream analysis. To
reduce this technical bias, the authors use information from protein-protein interaction maps to smoothen
transcript counts across the entire dataset. Several groups are working on imputation based methods in
single-cell mRNA-seq, and this manuscript presents an exciting approach to reduce technical noise. It
would be helpful if the authors could clarify and discuss the points below in greater detail:

1. Does the smoothening process bias against genes or gene networks that are not well represented in
the protein-protein interaction network? One of the striking features of sc mRNA-seq is that it can identify
the expression of specific genes that were previously not associated with a particular cell-type. Would this
be impacted by netSmooth and can the authors provide examples from the datasets they have analyzed
that netSmooth still retains these observations?

2. There are several sc mRNA-seq methods (for example, CEL-Seq, Smart-Seq etc.) that are currently
used by different labs. These methods have different features, such as, full-length transcripts or 3’ end
sequencing, and the possibility of employing unique molecule identifiers. How do the 3 computational
methods compared in this manuscript work on different experimental techniques?

3. For most of the example datasets used in this manuscript, scimpute shows very similar performance to
netSmooth on all 3 metrics used to compare the methods. Can the authors discuss how these two
methods, while using different approaches, achieve similar performance. Are there conditions/datasets
where one method would perform better than the other?

4. The proportion of cells in robust clusters seems to be very sensitive to the choice of the free parameter
in netSmooth (Figure 12). Further, in contrast to a statement in the text (last paragraph on page 10), the
value of the free parameter that gives the highest proportion of cells in robust clusters does not
correspond to the highest median cluster purity in the glioblastoma dataset. This high sensitivity to alpha
can potentially pose a challenge. Can the authors comment on this? Could the authors propose alternate
strategies for picking the optimal alpha value.

Is the rationale for developing the new method (or application) clearly explained?
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Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Altuna Akalin,

We thank Dr. Dey for valuable comments. We tried to address them as demonstrated below and
we are in the process of uploading a new version with changes.

1. Does the smoothening process bias against genes or gene networks that are not well
represented in the protein-protein interaction network? One of the striking features of sc
MmRNA-seq is that it can identify the expression of specific genes that were previously not
associated with a particular cell-type. Would this be impacted by netSmooth and can the
authors provide examples from the datasets they have analyzed that netSmooth still
retains these observations?

Dr. Dey point out that we have demonstrated netSmooth using gene networks derived from all
sorts of general context experiments, while scRNAseq experiments might reveal cell-type-specific
gene interactions. We appreciate this comment, and have added a paragraph discussing this to
the text. We would mostly like to underline that, until such context-specific networks may be
constructed, we have demonstrated netSmooth's applicability using general context networks.

2. There are several sc mRNA-seq methods (for example, CEL-Seq, Smart-Seq etc.) that
are currently used by different labs. These methods have different features, such as,
full-length transcripts or 3’ end sequencing, and the possibility of employing unique
molecule identifiers. How do the 3 computational methods compared in this manuscript
work on different experimental techniques?
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Dr. Dey raised interesting questions about the performance of the different imputation methods we
compared, coupled with different scRNAseq methods (Smart-Seq, CEL-Seq, etc.). While this is a
highly relevant question, we feel it is beyond the scope of this study, as answering that question
would require obtaining relevant datasets with appropriate ground-truth labels, and using each
relevant technique

3. For most of the example datasets used in this manuscript, scimpute shows very similar
performance to netSmooth on all 3 metrics used to compare the methods. Can the authors
discuss how these two methods, while using different approaches, achieve similar
performance. Are there conditions/datasets where one method would perform better than
the other?

We agree that there is a similar performance of sclmpute and netSmooth, although netSmooth is
slightly better in our metrics when looking at all the data sets. Our analysis shows that netSmooth
affects the drop-out rate less than sclmpute, while uncovering slightly more of the biological signal.
This happens across the different overall drop-out rates in the 3 experiments we profiled, indicating
that netSmooth can achieve better results with less obtrusive transformations of the data than the
imputation methods, across a range of experimental conditions.

4. The proportion of cells in robust clusters seems to be very sensitive to the choice of the
free parameter in netSmooth (Figure 12). Further, in contrast to a statement in the text
(last paragraph on page 10), the value of the free parameter that gives the highest
proportion of cells in robust clusters does not correspond to the highest median cluster
purity in the glioblastoma dataset. This high sensitivity to alpha can potentially pose a
challenge.

We provide also a different way of picking alpha parameter in the R package, which is based on 2D
entropy. This way we can pick alpha that optimizes the entropy in 2D PCA embedding.

Competing Interests: No competing interests were disclosed.

Referee Report 05 February 2018

doi:10.5256/f1000research.14981.r30157

v

Fernando J. Calero-Nieto , Fiona Kathryn Hamey
Wellcome Trust and MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research,
Addenbrooke's Hospital, Cambridge, UK

In this manuscript, the authors describe a method for imputing values to overcome the problem of
technical dropouts in single-cell RNA-seq datasets. As stated by the authors, the problem is well known
and caused by technical limitations that affect low and high expressed genes. The approach discussed in
the manuscript uses prior knowledge about protein interactions in order to smooth the expression values
between pairs of genes encoding interacting proteins, thus reducing the number of zero values and
altering the expression values of detected genes in each cell and influencing clustering and visualisation
results.

The proposed fundament is interesting and certainly worth exploring. However, there are a few
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considerations when using this type of approach: 1) the possible enhancement of known relationships to
the detriment of the discovery of previously unknown ones; 2) Inferring dropouts using pre-known
interactions could result in the overestimation of the expression of certain genes; 3) the gene relationships
tend to be very cell-type specific so networks and PPIs should be different from cell type to cell type. In
relation to the latter point, it is very interesting that the method is flexible enough to accept networks
constructed from different sources.

This manuscript compares the netSmooth algorithm to two existing approaches: Magic and scimpute.
Overall, netSmooth presents an approach to smooth scRNA-seq data, which may prove useful in noisy
datasets affected heavily by dropouts. However, there are several aspects of the manuscript that we
found unclear or feel warrant further discussion.

An important point is how the performance of these type of methods can be assessed. The authors
decided to use a combination of clustered heatmaps, robustness and purity of the clustering,
including a measurement of the correspondence between the 2 of them (AMI). Important
downsides of this method are: a) external annotation of the datasets is required, which is not
always available; b) robustness of the clustering seems to be strongly affected by the processing of
the data, as the authors show in relation to MAGIC; ¢) the purity of the clustering could be strongly
biased by the size of the clusters, since small clusters could have a greater chance to get a higher
score. It would be interesting if the authors could comment on how their metrics are affected by the
number of robust clusters identified. For example, could identifying more small clusters in the
dataset have an effect in increasing the median cluster purity? And if so, is this a reliable measure
for comparing between algorithms.

It would be useful to include colour bars for the heatmaps. It should also be mentioned what scale
the data is plotted using e.qg. is it linear or log-transformed and is the scale comparable between all
of the processed datasets? Additionally, some panels (for example 2C and 2D) have more clusters
than there are colors shown in the cluster color key next to panel A, so the keys should be changed
to match the data.

Figures showing the cluster purity are quite confusing. From the legend and methods, we
understood that each point on the boxplot represents the purity for one of the clusters displayed in
the clustered heatmaps. Yet in figure 2A, for example, there are 4 robust clusters found in the raw
data, but 8 points for the raw clusters in figure 2B. It seems either that there is an error in one of the
plots, or that we have misunderstood the cluster purity metric in which case it needs to be more
clearly explained.

For continuity purposes, it would be better that either PCA or tSNE visualisations were shown for
all dataset comparisons in the main figures instead of alternation between clustered heatmaps,
PCA and tSNE.

In the introduction section, the authors mention the imputation programme CIDR along with
sclmpute and MAGIC, yet only compare the performance of netSmooth to scimpute and MAGIC.
The authors should either include benchmarking against CIDR on the three datasets, or discuss
why this is not appropriate.

When discussing applying netSmooth to the haematopoietic data, the authors state that “Figure
2a,b shows that after network-smoothing, we are able to identify clusters with a more pronounced
differential expression profile. Further, many more of the genes identified as differentially
expressed between the clusters (without smoothing) seem to have low and uninformative
expression values overall.” However, from visual inspection of Figure 2 there appears to be very
little difference in the expression levels of the differentially expressed genes in the two heatmaps,
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or in the number of genes with low expression levels. We are unsure exactly what the authors
mean by “more pronounced differential expression profile” as it is hard to see a difference in the
heatmaps.

The authors state that “Only MAGIC is able to increase the proportion of cells in this dataset which
fall into robust clusters (Figure 3a), but only netSmooth leads to more biologically meaningful
clusters, in terms of purity and AMI (Figures 3b,c), demonstrating that netfSmooth can assist in cell
type identification, and outperformed both MAGIC and scimpute in this task.” The increase in AMI
in 3B is marginal compared to the raw data, and the proportion in robust clusters is higher for raw
data than for netSmooth. There is also no clear improvement in the visualizations of figures S1 and
S2 between netSmooth and raw data. Combined with the heatmaps in figure 2, we didn’t feel that
there was compelling evidence that netSmooth was useful in cell type identification, and therefore
this statement should be toned down.

In figure 4, it is hard to see how either netSmooth or scimpute offer an improved visualization
compared to the raw data. This is backed up by very similar metric scores in Figure 5A and 5C
between the raw, netSmooth and scimpute bars. Therefore the statement “Although MAGIC and
sclmpute reduce the 0-count genes further than netSmooth (Figure S1), they do not add as much
clarity to the developmental stage signal inherent in the data.” appears to overstate how well
netSmooth performs on this dataset in comparison to the other two algorithms.

In several places the text references the wrong supplementary figures. For example, in the
sentence “Although MAGIC and scimpute reduce the 0-count genes further than netSmooth
(Figure S1)” the authors appear to be actually referring to Figure S5.

In Figure S5, it should be clarified what is plotted. The legend needs to be changed to make it clear
what this is showing. Is this the proportion of zero genes per cell in each dataset? Also, the data in
this figure suggests that this method has a stronger effect on the expression of genes that are
already expressed more than in the removal of zeros. The authors should comment on this in the
main manuscript.

When applying netSmooth to the tumor data, the authors assess the ability of their algorithm on the
extent to which it separates cells from different samples, stating “it is also applicable in cancer,
improving identification of tumor of origin for glioblastomas.” In fact, many researchers are actually
interested in removing this effect in order to be able to compare similar cell types between different
patients. Is it possible that netSmooth is actually enhancing “batch effect” in this dataset? It would
be interesting to see whether netSmooth increases technical (rather than biological) batch effect in
another dataset where a strong biological batch effect is not expected.

When assessing the importance of the PPI network structure, the authors calculate clustering
metrics for randomly permuted networks. Can the authors comment on the fact some random
networks have better cluster purity than the real network? Also, why do the authors not show AMI
for these random clusters when it is often used to support the success of netSmooth compared to
other approaches (e.g. in the haematopoiesis dataset)?

When discussing the parameter selection the authors state that “in the embryonic development
dataset, we would choose alpha= 0.7 as the value that produces the highest cluster purity”. But in
figure 11B it is actually alpha= 0.4 that has the highest cluster purity. It would be interesting if the
authors commented in why there are at least 2 alpha values that get very similar maximum values
for each dataset. Also, the figure would benefit from including alpha=0 values to compare with raw
data.

Is the rationale for developing the new method (or application) clearly explained?

Yes

Is the description of the method technically sound?
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Yes

Are sufficient details provided to allow replication of the method development and its use by
others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full
reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.
Referee Expertise: Haematopoiesis, single-cell technologies

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard.

Altuna Akalin,

We are thankful for these valuable comments by Drs. Hamey and Calero-Nieto. We responded to
the comments and changed the text and figures wherever necessary.

1. An important point is how the performance of these type of methods can be assessed.
The authors decided to use a combination of clustered heatmaps, robustness and purity
of the clustering, including a measurement of the correspondence between the 2 of them
(AMI). Important downsides of this method are: a) external annotation of the datasets is
required, which is not always available; b) robustness of the clustering seems to be
strongly affected by the processing of the data, as the authors show in relation to MAGIC;
c) the purity of the clustering could be strongly biased by the size of the clusters, since
small clusters could have a greater chance to get a higher score. It would be interesting if
the authors could comment on how their metrics are affected by the number of robust
clusters identified. For example, could identifying more small clusters in the dataset have
an effect in increasing the median cluster purity? And if so, is this a reliable measure for
comparing between algorithms.

The reviewers raised the accurate point that the cluster purity metric may be biased towards
clusterings with larger numbers of clusters. For instance, at the edge case, a clustering which
assigns a unique cluster to each sample, will score 100% on cluster purity. In order to address this
issue, we also computed the adjusted mutual information (AMI) for each clustering, which is a
chance-adjusted metric which is not biased in the same way. We expand on this both in the results
section under "Network smoothing improves cell type identification from single-cell RNA-seq", and
in the methods section.
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2.1t would be useful to include colour bars for the heatmaps. It should also be mentioned
what scale the data is plotted using e.g. is it linear or log-transformed and is the scale
comparable between all of the processed datasets? Additionally, some panels (for
example 2C and 2D) have more clusters than there are colors shown in the cluster color
key next to panel A, so the keys should be changed to match the data.

The Reviewers note that the heatmap figures (Figures 2, S3 and S6) are not clear about what the
value is in the heatmap, nor do they include a colorbar to gauge whether expression values in the
different methods are comparable. We agree that this was a shortcoming and have amended
those figures and legends to reflect what is plotted more accurately.

3. Figures showing the cluster purity are quite confusing. From the legend and methods,
we understood that each point on the boxplot represents the purity for one of the clusters
displayed in the clustered heatmaps. Yet in figure 2A, for example, there are 4 robust
clusters found in the raw data, but 8 points for the raw clusters in figure 2B. It seems
either that there is an error in one of the plots, or that we have misunderstood the cluster
purity metric in which case it needs to be more clearly explained.

The reviewers correctly point out a mistake in the plot where figure 2A only shows 4 robust
clusters, where there are in fact 8. We have re-created and corrected the error, and thank the
reviewers for pointing out our mistake.

4. For continuity purposes, it would be better that either PCA or tSNE visualisations were
shown for all dataset comparisons in the main figures instead of alternation between
clustered heatmaps, PCA and tSNE.

The reviewers point out that we alternate between using PCA and t-SNE for scatter plots of the
different datasets, and express a wish for consistency with the visialuzations throughout the paper.
While we understand the desire for consistency in the visual information presented, we wish to
stress that this was done on purpose. Different sScRNAseq datasets respond differently to the
different dimensionality reduction techniques, and it is standard practice in the community to try
more than one and then pick the best one ad-hoc. We present as a part of the netSmooth R
package a way to automate this step using the entropy of 2D embeddings. We expand on this in
more detail in the Methods section, under "Choice of dimensionality reduction technique in

the clustering procedure".

5. In the introduction section, the authors mention the imputation programme CIDR along
with scimpute and MAGIC, yet only compare the performance of netSmooth to scimpute
and MAGIC. The authors should either include benchmarking against CIDR on the three
datasets, or discuss why this is not appropriate.

The reviewers pointed out that while we included CIDR, a method for imputation and clustering of
scRNAseq in our introduction, we did not benchmark it against our method. The reason for this
omission was that CIDR uses a built-in clustering procedure as a part of the imputation workflow.
We chose to compare to MAGIC and scimpute, which are agnostic to the clustering procedure, in
order to have an apples-to-apples comparison of imputation methods using the same
post-imputation analysis. However we agree with the reviewers that the omission may have been
glaring, and have included benchmarks that were possible. We were not able to compare them on
the cluster robustness metric, as CIDR assigns all samples to clusters, and does now have a
notion of robust clusters.

6. When discussing applying netSmooth to the haematopoietic data, the authors state that
“Figure 2a,b shows that after network-smoothing, we are able to identify clusters with a
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more pronounced differential expression profile. Further, many more of the genes
identified as differentially expressed between the clusters (without smoothing) seem to
have low and uninformative expression values overall.” However, from visual inspection
of Figure 2 there appears to be very little difference in the expression levels of the
differentially expressed genes in the two heatmaps, or in the number of genes with low
expression levels. We are unsure exactly what the authors mean by “more pronounced
differential expression profile” as it is hard to see a difference in the heatmaps.

We agree with the reviewers that the claim about the more pronounced differential expression
pattern in the heatmap was unsubstantiated, and have accordingly changed the text to point out
that the difference in the heatmaps is negligible

7. The authors state that “Only MAGIC is able to increase the proportion of cells in this
dataset which fall into robust clusters (Figure 3a), but only netSmooth leads to more
biologically meaningful clusters, in terms of purity and AMI (Figures 3b,c), demonstrating
that netSmooth can assist in cell type identification, and outperformed both MAGIC and
scimpute in this task.” The increase in AMI in 3B is marginal compared to the raw data,
and the proportion in robust clusters is higher for raw data than for netSmooth. There is
also no clear improvement in the visualizations of figures S1 and S2 between netSmooth
and raw data. Combined with the heatmaps in figure 2, we didn’t feel that there was
compelling evidence that netSmooth was useful in cell type identification, and therefore
this statement should be toned down.

The reviewers point out that the difference in benchmark scores shown in Figure 3 represent only a
modest improvement over the raw data, and that the statement about the improvement gained
from applying netSmooth should be toned down. We've taken this advice and updated the text to
make more modest claims.

8. In figure 4, it is hard to see how either netSmooth or sclmpute offer an improved
visualization compared to the raw data. This is backed up by very similar metric scores in
Figure 5A and 5C between the raw, netSmooth and scimpute bars. Therefore the
statement “Although MAGIC and scimpute reduce the 0-count genes further

than netSmooth (Figure S1), they do not add as much clarity to the developmental stage
signal inherent in the data.” appears to overstate how well netSmooth performs on this
dataset in comparison to the other two algorithms.

The reviewers suggest that several of the statements about results, in Figures 2, S2, S3, and 4,
over-state the performance of netSmooth relative to the other methods we compared it to. We
have toned down several of the statements, and hope the reviewers will find the current text more
acceptable.

9. In several places the text references the wrong supplementary figures. For example, in
the sentence “Although MAGIC and sclmpute reduce the 0-count genes further
than netSmooth (Figure S1)” the authors appear to be actually referring to Figure S5.

Thank you. This is corrected

10. In Figure S5, it should be clarified what is plotted. The legend needs to be changed to
make it clear what this is showing. Is this the proportion of zero genes per cell in each
dataset? Also, the data in this figure suggests that this method has a stronger effect on
the expression of genes that are already expressed more than in the removal of zeros.

Page 23 of 25



FIOOOResearch F1000Research 2018, 7:8 Last updated: 10 JUL 2018

The authors should comment on this in the main manuscript.

We have changed the legend in order to make this figure more clear. We also appreciate the note
from the reviewers about netSmooth having a stronger effect on nonzero genes than the dropouts,
compared with other imputation methods, and have added a short discussion of this, under the
section "Network smoothing improves capture of developmental expression patterns".

11. When applying netSmooth to the tumor data, the authors assess the ability of their
algorithm on the extent to which it separates cells from different samples, stating “it is
also applicable in cancer, improving identification of tumor of origin for glioblastomas.” In
fact, many researchers are actually interested in removing this effect in order to be able to
compare similar cell types between different patients. Is it possible that netSmooth is
actually enhancing “batch effect” in this dataset? It would be interesting to see whether
netSmooth increases technical (rather than biological) batch effect in another dataset
where a strong biological batch effect is not expected.

The reviewers note that in the Glioblastoma case, we benchmark the methods' ability to identify
cells' tumor of origin, while researchers might in fact be interested in the opposite - removing this
effect in order to compare cells between cell types. The reviewers are correct and Patel et. al. (the
originators of the data) note that these heterogenous tumors consist of different cell types
(Pro-neural, Neural, Mesenchymal, and Classical). Identifying such subsets across tumors is an
interesting question for researchers of tumor heterogeneity, and we believe that netSmooth might
in fact assist in identifying such groups, in this case by making clear which part of the expression
signature is patient specific, and which one owed to cross-tumor signatures.

12. When assessing the importance of the PPI network structure, the authors calculate
clustering metrics for randomly permuted networks. Can the authors comment on the fact
some random networks have better cluster purity than the real network? Also, why do the
authors not show AMI for these random clusters when it is often used to support the
success of netSmooth compared to other approaches (e.g. in the haematopoiesis
dataset)?

Reviewers point out that some random networks produces better cluster purity. Actually, figure 8
demonstrates that using the real network in netSmooth leads to cluster purity in the extreme edge
of the distribution of random networks. Certainly, with enough random perturbations, a random
network can be constructed that will outperform a real network. We demonstrate that in spite of
this, the real network scores significantly above expectation in each of the metrics, which
demonstrates that the real network holds useful information.

The reviewers point out that when we run the benchmarks using randomized networks in order to
demonstrate that the true network structure is important to the results, we only showed the cluster
purity and proportion in robust clusters. We agree with the reviewers that the AMI metric also
belongs in this context, and have added the AMI to that plot as well.

13. When discussing the parameter selection the authors state that “in the embryonic
development dataset, we would choose alpha= 0.7 as the value that produces the highest
cluster purity”. But in figure 11B it is actually alpha= 0.4 that has the highest cluster
purity. It would be interesting if the authors commented in why there are at least 2 alpha
values that get very similar maximum values for each dataset. Also, the figure would
benefit from including alpha=0 values to compare with raw data.
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The reviewers noted a mistake in the text referring the the value of alpha which results in the
optimal cluster purity in figure 11. We have corrected the misprint.

Competing Interests: No competing interests were disclosed.
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