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Abstract 

Mitochondrial dysfunctions are a known pathogenetic mechanism of a number of neurological 

and psychiatric disorders. At the same time, mutations in genes encoding for components of 

the mitochondrial respiratory chain cause mitochondrial diseases, which commonly exhibit 

neurological symptoms. Mitochondria are therefore critical for the functionality of the human 

nervous system. The importance of mitochondria stems from their key roles in cellular 

metabolism, calcium handling, redox and protein homeostasis, and overall cellular 

homeostasis through their dynamic network. Here, we describe how the use of pluripotent 

stem cells (PSCs) may help addressing the physiological and pathological relevance of 

mitochondria for the human nervous system. PSCs allow the generation of patient-derived 

neurons and glia and the identification of gene-specific and mutation-specific cellular 

phenotypes via genome engineering approaches. We discuss the recent advances in PSC-

based modeling of brain diseases and the current challenges of the field. We anticipate that 

the careful use of PSCs will improve our understanding of the impact of mitochondria in 

neurological and psychiatric disorders and the search for effective therapeutic avenues. 
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Mitochondria are intracellular organelles that are present in multiple copies in all nucleated 

cells. They contain their own genome and are maternally inherited (Dyall et al., 2004). The 

major function of mitochondria is to provide energy in the form of ATP through the process 

of oxidative phosphorylation (OxPhos). OxPhos occurs through the action of five protein 

complexes -known as respiratory chain (RC) complexes- localized in the mitochondrial inner 

membrane. Complexes I-IV transfer electrons and at the same time they expel protons into the 

space between the inner and outer mitochondrial membrane. This generates a proton gradient 

across the inner membrane that is known as mitochondrial membrane potential (MMP). The 

energy stored in this gradient is used by Complex V to produce ATP by allowing the entry of 

protons into the mitochondrial matrix (Vafai and Mootha, 2012). 

In addition to bioenergetics, mitochondria are involved in the metabolism of fatty 

acids, amino acids, and steroids, as well as in numerous signaling pathways such as apoptosis, 

calcium homeostasis, and in the generation of reactive oxygen species (ROS) (Dyall et al., 

2004). Hence, dysfunction of mitochondria can impact an array of cellular homeostatic 

processes. Mitochondrial impairment will cause more detrimental consequences on cells that 

are strictly dependent on their functionality.  

In this review, we first describe the physiological and pathological importance of 

mitochondria for the human brain. The human nervous system is highly complex and 

significantly different from that of other species. In order to understand the mitochondrial 

contribution to human brain function and to the pathogenesis of brain diseases, it is important 

to investigate human brain cells, which can now be generated in vitro from human pluripotent 

stem cells (PSCs). In the second part of the review, we discuss the promises and challenges of 

PSCs for understanding the role of mitochondria in the function and dysfunction of the human 

nervous system.  

 

Mitochondria in human brain physiology  
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Bioenergetics 

Despite representing only 2–3% of total body weight, the human brain consumes 

around 25% of the daily intake of glucose (Clarke and Sokoloff, 1999). These requirements 

are even higher during development, as the brains of infants utilize more than 40% of the 

basal metabolic rate (Goyal et al., 2014). Mitochondria might therefore be particularly 

relevant for the function of the central nervous system (CNS) given its high energy demands. 

In fact, cell types with high bioenergetic needs -like skeletal muscle and heart muscle- 

commonly rely on OxPhos metabolism (Kunz, 2001; Padrão et al., 2011). 

Nonetheless, bioenergetics alone may not be sufficient to explain the importance of 

mitochondria for CNS physiology. Other cell types with high energetic needs do not appear to 

rely on mitochondrial respiration. This is the case of proliferative cells like cancer cells and 

pluripotent stem cells (PSCs), which instead exhibit a glycolytic-dependent metabolism 

(Prigione et al., 2010; Vander Heiden et al., 2009). In these proliferative cells with high 

necessity for anabolic growth, there is an energy re-routing leading to enhanced rates of 

glycolysis and pentose phosphate pathway (PPP) as well as reduced entry of pyruvate into 

mitochondria (Prigione et al., 2015). This bears the crucial advantages of supporting the 

biosynthetic needs and maintaining low oxidative stress levels through the reduction of 

OxPhos-mediated ROS production and the increase of the level of the PPP-derived 

antioxidant glutathione (GSH) (Stincone et al., 2015). However, neuronal cells do not rely on 

glycolysis, since they favor a metabolic program that fully depends on mitochondrial 

respiration, despite its potential detrimental consequences on redox homeostasis (Figure 1). 

The metabolic profile of the cells can influence the epigenetic state, which refers to 

chromatin reorganization leading to a defined gene expression program in the absence of 

changes in the DNA sequence (Gut and Verdin, 2013). Metabolism-driven chromatin 

regulation is crucial for cellular plasticity, as it dictates the changes required to modulate the 

cell fate identity as it is in the case of reprogramming to iPSCs (Mathieu and Ruohola-Baker, 
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2017). Epigenetics is tightly regulated upon neural fate commitment (Imamura et al., 2014). 

However, the contribution of metabolism in the epigenetic regulation of neural fate remains to 

be investigated. 

  

Redox and protein homeostasis 

Oxygen is an important substrate for cellular energy production (Semenza, 2007). The 

use of oxygen for cellular energy generation is, however, not without risks. During the 

transfer of electrons in the mitochondrial respiratory chain, electrons may escape and 

prematurely react with oxygen to form ROS (Turrens, 2003). Oxidative stress, which can be 

described as an imbalance between the production of ROS and the capacity of the cell to 

counteract ROS, results in macromolecular damage (oxidizing of lipids, proteins, and nucleic 

acids) (Stadtman, 2006). This can in turn cause necrotic or apoptotic cell death (Balaban et al., 

2005) (Figure 1).  

The adult human brain consumes about 20% of the oxygen that is inspired at rest 

(Erecińska and Silver, 2001). Hence, neuronal cells need to be prepared to balance ROS with 

antioxidant defenses. To this aim, the production of NADPH within the oxidative branch of 

the PPP is critical, as it is needed for the generation of GSH (Stincone et al., 2015) (Figure 1). 

Any imbalance of this fine equilibrium may contribute to oxidative stress and 

neurodegeneration (Lin and Beal, 2006). 

Among the detrimental consequences of oxidative stress, there is protein oxidation, 

which can be associated with the loss of protein function and the cytoplasmic accumulation of 

protein aggregates. Protein defects and protein aggregation may also be caused by an 

impairment of protein clearance pathways, including the ubiquitin-proteasome system and 

autophagy. Although it is still debated which kind of protein states (large aggregates or small 

oligomers) are the most toxic species, a disruption of protein homeostasis -in short 

proteostasis- is harmful to the cells (Díaz-Villanueva et al., 2015; Ruan et al., 2017). Aberrant 
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proteostasis could particularly affect neuronal cells, which are long-lived cells and may 

therefore sustain increased accumulation of damaged proteins over time. In accordance, the 

presence of intracellular protein aggregates is a common feature of neurodegenerative 

diseases (Lim and Yue, 2015).  

 

Calcium homeostasis 

Calcium homeostasis is essential for excitable cells like neurons that require 

cytoplasmic calcium for the regulation of neurotransmitter release (Neher and Sakaba, 2008). 

Calcium-activated potassium channels regulate plasma membrane polarization and cellular 

excitability as synaptic transmission requires the initial entrance of calcium into the cells (Sah 

and Louise Faber, 2002).  

In order to avoid toxic consequences of calcium overload and to allow the cells to 

become excitable again, cytoplasmic calcium needs to be quickly buffered. This process is 

energetically demanding and relies on calcium-ATPases in the plasma membrane and in the 

endoplasmic reticulum (ER). The ER can efficiently clear low amounts of cytoplasmic 

calcium. When the amount of calcium increases in the cytoplasm, or within a 

microenvironment of the cytoplasm, mitochondria become responsible for the clearance. 

Mitochondria are in fact low-specificity high-capacity buffers, which means that they can take 

up the largest amount of cytoplasmic calcium once it reaches a certain level (Williams et al., 

2013). The MMP is the driver for this mitochondrial calcium uptake (Rizzuto et al., 2012). 

Given their motility, mitochondria can travel to areas of high calcium concentration in order 

to reduce it to normal level (Wang and Schwarz, 2009). Mitochondrial calcium uptake is in 

turn beneficial for cellular energetics, since calcium within mitochondria induces ATP 

production via activation of calcium-dependent NADH dehydrogenases (McCormack and 

Denton, 1990; Wan et al., 1989). 
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The fine tuning of calcium homeostasis by mitochondria is critical, as mitochondrial 

calcium overload can trigger cell death through the opening of the permeability transition pore 

(PTP), which consists of dimers of ATP synthase (Giorgio et al., 2013) (Figure 1). Defective 

mitochondrial calcium handling is therefore highly detrimental for neuronal cells, and may 

contribute to the neuronal cell death observed in neurodegenerative diseases (Abeti and 

Abramov, 2015) and in mitochondrial disorders (Abramov et al., 2010).  

 

Mitochondrial dynamics 

Mitochondria are highly dynamic organelles and continuously change their shape 

through the processes of fusion and fission (Chan, 2006). The plasticity and dynamics of the 

mitochondrial network enable mitochondria to reach all subcellular regions and to respond to 

local needs by distributing calcium, ATP, and ROS, thereby contributing to the maintenance 

of cellular homeostasis (van der Bliek et al., 2013). The energetic status of the cells and the 

MMP are important regulator of mitochondrial fusion, as loss of MMP results into 

mitochondrial fragmentation (Hoppins and Nunnari, 2009). 

Mitochondrial dynamics is critical for highly polarized cells like neurons, where 

energy needs to be supplied to regions that are distant from the cell body (Hollenbeck, 2005). 

Accordingly, pathogenic mutations that disrupt proteins involved in fusion and fission cause 

neurological diseases (Burté et al., 2015). At the same time, disturbed mitochondrial 

dynamics has been implicated in the pathogenesis of many neurodegenerative disorders (Chen 

and Chan, 2009). 

The degradation of dysfunctional mitochondria plays an important physiological role. 

Mitochondrial fission can generate a defective mitochondrial daughter unit that is eliminated 

by the autophagic machinery through a process called mitophagy (Twig and Shirihai, 2011). 

The degradation of impaired mitochondria is essential in maintaining the quality control for 

correct cellular function. This control may be particularly relevant for long-living cells like 
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neurons that have to maintain tight homeostatic control for a long time in order to avoid the 

persistence of dysfunctional mitochondria (de Castro et al., 2010).  

 

Neuron-glia interactions 

Glial cells are active components of synapses and contribute to neurotransmission 

(Auld and Robitaille, 2003; Kettenmann et al., 2013). Glial cells also provide metabolic 

support. Within the CNS, astrocytes regulate the flux of energy substrates to neurons, thereby 

generating a physiological metabolic compartmentalization (Pellerin and Magistretti 2012).  

Astrocytes take up glucose and convert into lactate via glycolysis, and neurons take up 

the astrocyte-produced lactate and use it for ATP generation via OxPhos (Pellerin and 

Magistretti, 1994; Pellerin and Magistretti 2012). This leaves neurons free to use glucose in 

the PPP pathway for antioxidant defenses via GSH production (Herrero-Mendez et al., 2009) 

(Figure 1). This dependency on PPP-based utilization of glucose in neuronal cells may make 

neurons more sensitive to mitochondrial dysfunction, as they are unable to increase glycolysis 

and glycolytic-based utilization of glucose. Neurons may even release their damaged 

mitochondria to take up healthy ones from astrocytes (Hayakawa et al., 2016). 

Despite their apparent glycolytic metabolism, glia may also need active mitochondria. 

In fact, it has been suggested that the lactate that is released from glia may come not only 

from glycolysis-derived pyruvate but also from mitochondria-derived malate converted into 

pyruvate (Dienel and McKenna, 2014) (Figure 1). Moreover, the communication between 

astrocytes and neurons occurs through elaborated “calcium waves”, whose homeostatic 

control requires functional mitochondria (Bazargani and Attwell, 2016; Jackson and 

Robinson, 2015; Skupin et al., 2010).  

 

Mitochondria in human brain pathology 

Neurodegenerative diseases  
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Neurodegenerative diseases are a group of disorders characterized by progressive 

degeneration of cells of the nervous system. Neurodegenerative diseases include Alzheimer’s 

disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and 

Huntington’s disease (HD). All of these neurodegenerative diseases show a specific 

accumulation of dysfunctional mitochondria (Burté et al., 2015; de Castro et al., 2010; Johri 

and Beal, 2012; Lin and Beal, 2006) (Figure 2).  

In AD, mitochondrial dysfunction appears to precede Aβ deposition (Moreira et al., 

2010; Swerdlow et al., 2010). The accumulation of Aβ-species leads to metabolic 

dysfunctions in the tricarboxylic acid (TCA) cycle and in the activity of mitochondrial 

complex IV (Lustbader et al., 2004; Morán et al., 2012). Defects in mitochondrial dynamics 

and mitochondrial biogenesis may also occur (Reddy et al., 2012; Sheng et al., 2012). Finally, 

reduced glucose metabolism in the brain is a recognized early feature of AD (Calsolaro and 

Edison, 2016), as also seen in a fly model of AD where reduced Aβ toxicity was achieved by 

counteracting glucose hypometabolism (Niccoli et al., 2016).  

The involvement of mitochondrial dysfunction in PD has been assumed since the early 

1980s, when drug addicts were observed to develop parkinsonism from the drug by-product 

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which causes inhibition of the 

mitochondrial complex I (Winklhofer and Haass, 2010). Complex I inhibition via MTPT or 

rotenone is now commonly employed to generate animal models of PD. Deficiency in 

complex I activity was detected in the substantia nigra pars compacta (SNpc) of PD patients 

(Schapira et al., 1990) and oxidative stress has been observed in post-mortem studies of 

sporadic PD (Michel et al., 2014). Finally, most of the genes associated with familial PD 

encode for proteins that belong to mitochondria or that have a direct link to mitochondrial 

function, morphology, or dynamics (Bose and Beal, 2016).  

In familial ALS, mutations in the gene superoxide dismutase 1 (SOD1) cause defective 

mitochondrial function, morphology, and distribution (Tafuri et al., 2015). Impaired 
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bioenergetics, mitochondrial calcium homeostasis, mitochondrial apoptosis, and axonal 

transport of mitochondria have all been reported in sporadic ALS (Shi et al., 2010). These 

defects also occur in peripheral cells, as ALS-derived fibroblasts display reduced MMP and 

decreased mitochondrial content (Kirk et al., 2014).  

There is evidence for overall bioenergetic defects in HD, as indicated by weight loss 

and increased energy expenditure that HD patients exhibit in spite of sustained calorie intake 

(Lodi et al., 2000). Although largely cytosolic, mutant huntingtin (HTT) can associate with 

the outer mitochondrial membrane. There, it impairs mitochondrial protein import and 

proteostasis via cytoplasmic protein accumulation (Ruan et al., 2017; Yano et al., 2014) and 

affects mitochondrial dynamics by binding with the mitochondrial fission GTPase, dynamin-

related protein-1 (DRP1), which induces mitochondrial fragmentation (Song et al., 2011). 

Finally, reduced activity of the respiratory complexes II, III and IV, impaired calcium 

homeostasis, and oxidative damage have all been implicated in HD pathogenesis (Panov et 

al., 2002; Sorolla et al., 2008). 

 

Psychiatric diseases 

Mitochondrial defects have been observed in many psychiatric conditions, including 

schizophrenia (SCZ), bipolar disorder (BPD), autism spectrum disorder (ASD), and alcohol 

use disorder (AUD) (Marazziti et al., 2011).  

In SCZ altered metabolic pathways have been found in brain tissue from schizophrenic 

patients, pointing towards a disturbance in brain energy metabolism and oxidative stress as 

contributing causes of SCZ (Michel et al., 2011; Prabakaran et al., 2004). The mitochondrial 

defects in SCZ vary within different brain regions (Roberts, 2017). The perturbation of 

mitochondrial network dynamics in SCZ may also contribute to the dysfunction of immuno-

inflammatory pathways that are associated with the origin on SCZ (Rajasekaran et al., 2015). 
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BPD has been proposed to result from a phasic dysregulation of mitochondrial 

function (Morris et al., 2017), thereby leading to recurrent fluctuations in mood and energy. 

The reduced pH observed during manic phases may in fact be a consequence of lactate 

accumulation caused by defective mitochondrial metabolism in neurons (Weber et al., 2013). 

In accordance, complex I activity has been found decreased in the prefrontal cortex of BPD 

patients (Andreazza et al., 2010) and depressed BPD patients showed reduced glucose brain 

metabolism (Hosokawa et al., 2009).  

The prevalence of mitochondrial dysfunction was reported to be higher in ASD 

compared to the general population (Rossignol and Frye, 2012; Hollis et al., 2017). Almost 

one third of ASD patients have increased lactate-to-pyruvate ratio (Correia et al., 2006). Post-

mortem brain tissues studies identified decreased activity of RC complexes, elevated ROS, 

and mtDNA mutations in individuals with ASD (Chauhan et al., 2011; Tang et al., 2013).  RC 

defects included complexes II and V in frontal lobe, temporal lobe, cortex, and cerebellum 

(Chauhan et al., 2011) and complexes I, III, IV and V in temporal lobe (Tang et al., 2013). 

Additionally, decreased pyruvate dehydrogenase activity has been associated with reduced 

activity in RC complexes I and II and increased copy number variations (CNVs) in the genes 

encoding for these complexes (Gu et al., 2013).  

In the context of AUD, it is known that ethanol intoxication has detrimental effects on 

mitochondria of CNS cells (Hoek et al., 2002). Mitochondria might also play a role in the 

establishment of the alcohol addiction behavior. The abnormally increased release of 

dopamine (DA) in the ventral tegmental area, which is a key region regulating central reward, 

depends on calcium homeostasis, and therefore may be influenced by mitochondrial 

functionality. Reduced DA release, and subsequently reduced alcohol consumption, were 

observed in mice upon administration of the liver hormone FGF21 (Talukdar et al., 2016), 

suggesting the presence of metabolic-based regulatory mechanisms for glucose and alcohol-

reward behaviors (Potthoff, 2017).  
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Mitochondrial disorders 

Mitochondrial diseases are a group of inherited metabolic disorders caused by OxPhos 

defects due to mutations in the nuclear DNA (nDNA) or mitochondrial DNA (mtDNA) 

(Koopman et al., 2012). Unlike mitochondrial dysfunctions in neurological and psychiatric 

diseases, which may be secondary within the pathogenic mechanism, in mitochondrial 

disorders the mitochondrial defects are primary and of clear genetic origin. Mutations in over 

150 genes encoding for proteins of the mitochondrial respiratory chain have been associated 

with mitochondrial disorders (Vafai and Mootha, 2012). Although any organ or tissue can be 

affected, patients generally display neurological symptoms (Carelli and Chan, 2014; 

Koopman et al., 2013; McFarland et al., 2010).  

Neurological conditions caused by mtDNA mutations include Leber’s hereditary optic 

neuropathy (LOHN), mitochondrial encephalomyopathy with lactic acidosis and stroke-like 

episodes (MELAS), and neurogenic weakness, ataxia and retinitis pigmentosa (NARP).  

The most severe mitochondrial disease is Leigh syndrome (LS), a progressive 

encephalopathy with basal ganglia involvement. LS can be caused by several mutations of 

OxPhos components encoded by nDNA, such as NDUFS4 (complex I) and SURF1 (assembly 

factor of complex IV), or by mtDNA, like MT-ATP6 (complex V) and MT-ND2 (complex I) 

(Koopman et al., 2013). 

 

Mitochondria in PSC models of neurological and psychiatric diseases 

PSC-based disease modeling 

Human pluripotent stem cells (PSCs) include human embryonic stem cells (ESCs) and 

human induced pluripotent stem cells (iPSCs), which are obtained from somatic cells through 

the process of cellular reprogramming (Takahashi et al., 2007). iPSCs exhibit mitochondrial 

properties that are comparable to those of ESCs, regardless of the donor age of the parental 



 13 

somatic cells (Bukowiecki et al., 2014; Xu et al., 2013). Upon conversion of iPSCs into neural 

cells, a mitochondrial maturation occurs, as mitochondria develop into an elongated network 

and the metabolism shifts from glycolysis towards OxPhos (Choi et al., 2015; Lorenz et al., 

2017). A number of iPSC-based models have been generated to investigate 

neurodegenerative, psychiatric, and mitochondrial disorders. Several of these models 

identified mitochondrial dysfunctions in the patient-derived neural cells (Figure 2).   

In the context of AD, neurons generated from iPSCs derived from patients with 

sporadic AD showed defective expression of genes involved in mitochondrial function and 

respiratory chain, including nuclear-encoded OxPhos genes (Hossini et al., 2015). Oxidative 

stress has been detected also in neurons and astrocytes derived from familial AD patients 

(Kondo et al., 2013). 

For familial PD patients, defects in mitochondrial function and bioenergetics have 

been found in neural progenitor cells (NPCs) (Flierl et al., 2014), while mature neurons 

displayed dysfunctional mitochondrial dynamics and reduced response to oxidative stress 

(Cooper et al., 2012; Nguyen et al., 2011) and reduced mitochondrial volume fraction 

(Shaltouki et al., 2015). Decreased mitochondrial spare-respiration and increased production 

of basal ROS and increased mtDNA damage have been also described in familial PD-derived 

neurons (Ryan et al., 2013; Sanders et al., 2014). Mitochondrial morphology and 

mitochondrial motility appeared disrupted in human motor neurons obtained from ALS 

patients carrying mutant SOD1 (Kiskinis et al., 2014).  

NPCs derived from HD iPSCs displayed decreased intracellular ATP levels compared 

to control NPCs (HD iPSC Consortium, 2012). Aberrant bioenergetics in HD NPCs was also 

confirmed using genome-edited iPSCs (An et al., 2012; Xu et al., 2017). iPSC-derived 

neurons from HD patients showed store-operated channel (SOC)-mediated calcium 

dysregulation (Nekrasov et al., 2016) and impaired mitophagy (Guo et al., 2016). A small 
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molecule compound (P110-TAT) was found to inhibit mtHTT-induced mitochondrial 

fragmentation and to increase cell viability in HD patient-derived neurons (Guo et al., 2013). 

In the context of psychiatric disorders, iPSC-derived NPCs from SCZ patients 

exhibited increased oxidative stress (Brennand et al., 2015), and dissipation of MMP together 

with perturbations of the mitochondrial network (Robicsek et al., 2013). Transfer of isolated 

normal mitochondria into iPSCs from SCZ patients rescued the defective neuronal 

differentiation, suggesting a direct effect of mitochondrial dysfunction in the pathogenesis of 

SCZ (Robicsek et al., 2017).  

Hippocampal dentate gyrus-like neurons derived from iPSCs of BPD patients showed 

mitochondrial abnormalities, including upregulated mitochondrial gene expression, reduced 

organelle size, and higher MMP (Mertens et al., 2015a). Interestingly, these defects were 

rescued by lithium only if the cells were derived from BDP patients that responded clinically 

to lithium treatment. 

For mitochondrial disorders, iPSCs lines have been generated and used to dissect the 

extent of neuronal dysfunction. In the case of MELAS, impaired mitochondrial dynamics and 

complex I degradation were observed during iPSC differentiation into neuronal-like cells 

(Hämäläinen et al., 2013). Defective bioenergetics was also found in NPCs carrying mtDNA 

mutations that cause MELAS and LS (Ma et al., 2015). NPCs and neurons carrying a 

mutation in the MT-ATP6 gene showed aberrant bioenergetics, which was improved in 

response to mTOR inhibition (Zheng et al., 2016). NPCs and neurons carrying a different MT-

ATP6 mutation exhibited defective mitochondrial calcium homeostasis and abnormally 

increased MMP, which were rescued following treatment with the PDE5 inhibitor avanafil 

(Lorenz et al., 2017).  

 

Genome engineering 
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Genome editing tools, including zinc finger nuclease (ZFNs), transcriptional activator-

like effector nucleases (TALENs), and the leading-edge clustered regularly interspaced short 

palindromic repeats (CRISPR)/Cas9 system have become significantly important in PSC-

based disease modeling (Kim and Kim, 2014). Their use allow the generation of so-called 

isogenic control PSC lines with respect to any disease-causing nDNA mutation (Hockemeyer 

and Jaenisch, 2016). This can be accomplished by either correcting the mutation in patient-

derived iPSCs or by introducing the mutation into control PSCs (Grobarczyk et al., 2015). 

Given the heterogeneity of PSC lines, the use of isogenic iPSC controls can help uncovering 

the functional differences that are solely caused by the specific mutation (Ross and Akimov, 

2014). This approach has been successfully employed in the context of several iPSC models 

of neurological diseases (Figure 2).  

TALEN technology has been used in iPSCs from familial AD patients to generate an 

allelic series of mutations in the gene Presenilin 1 (PS1) (Woodruff et al., 2013). In iPSCs 

from familial PD, ZFNs were used to correct mutations in the gene LRRK2 (Reinhardt et al., 

2013; Sanders et al., 2014) and in alpha-synuclein gene SNCA (Soldner et al., 2011) 

CRISPR/Cas9 system was employed to generate isogenic PSCs carrying specific disease-

associated genetic risk variants associated with sporadic PD (Soldner et al., 2016). For 

familial ALS, SOD1 mutations were corrected in iPSCs using ZNF-based editing (Kiskinis et 

al., 2014) and CRISPR/Cas9 (Wang et al., 2017). CRISPR/Cas9 was also used to repair a 

mutation in the gene C9ORF72 in familial ALS iPSCs (Mutihac et al., 2015). In the context of 

HD, the expanded CAG repeat in the HTT gene was corrected with homologous 

recombination (An et al., 2012) and, more recently, with CRISPR/Cas9 technology (Xu et al., 

2017). 

In the context of mutations in the mtDNA, however, genome editing is still not 

practicable. The generation of isogenic lines remains a major challenge for  iPSC-based 

modeling of mitochondrial DNA disorders (Inak et al., 2017). There are only two solutions 
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available for mtDNA mutations. First, to replace the whole mitochondria via somatic cell 

nuclear transfer (SCNT) (Ma et al., 2015). This approach, however, does not correct a specific 

mutation but creates a novel cell carrying a mismatch between the original nDNA and 

mtDNA, which in itself may cause altered cellular phenotypes (Sterneckert et al., 2014). In 

fact, the introduction of a distinct mtDNA into a recipient cell can cause extensive 

transcriptional reprogramming (Picard et al., 2015). Second, to decrease the level of mutation 

by selective elimination of the mutated mtDNA molecules (Gammage et al., 2014; Moraes, 

2014). This technology however is only applicable for heteroplasmic mtDNA mutations, 

where a mixture of wild type and mutated mtDNA is present in the cells.  

It is interesting to notice that a change in the level of heteroplasmic mtDNA mutations 

can also occur naturally during the derivation of iPSCs from somatic cells (Prigione et al., 

2011). This effect can lead to the spontaneous derivation of iPSCs with reduced mtDNA 

mutation levels that may act as isogenic control lines (Folmes et al., 2013; Fujikura et al., 

2012; Hämäläinen et al., 2013; Kodaira et al., 2015; Ma et al., 2015; Perales-Clemente et al., 

2016).  

 

Challenges and future directions 

PSC-based disease modeling is now widely used and can be coupled with 

conventional disease modeling approaches. In the context of neurological, psychiatric, and 

mitochondrial diseases, human PSCs are becoming particularly relevant given that animal 

models may not be available or may not fully recapitulate the disease phenotypes (Sandoe and 

Eggan, 2013). In particular, the use of PSCs is shedding light on the importance of 

mitochondrial function for brain pathologies, as highlighted above. Nonetheless, critical 

challenges still remain.  

One of the major issues is the degree of maturation of PSC-derived neurons and glia 

(Tao and Zhang, 2016). A long time of in vitro culture is needed in order for these cells to 
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reach a certain degree of maturity. The use of PSC-derived neurons and glia is therefore 

highly costly and time-consuming. Overexpression of neural specific transcription factors can 

be used to speed up the process (Zhang et al., 2013). However, the generated neurons and glia 

may still be more resembling cells of the fetal rather than adult brain. This is also the case for 

PSC-derived three dimensional brain organoids, which are starting to be used given their 

more faithful mirroring of brain development (Lancaster et al., 2013; Paşca et al., 2015; Yang 

and Ng, 2017). Furthermore, due to the epigenetic reprogramming occurring during the 

generation of iPSCs, aging-related features may be erased. The use of neurons and glia 

directly derived from fibroblasts may thus represent a promising strategy to allow capturing 

aging-related phenomena (Mertens et al., 2015b). However, this approach may not yet be 

ideal for disease modeling applications due to limited number of neurons and glia generated. 

Alternatively, aging may be accelerated in vitro using progerin overexpression (Miller et al., 

2013) or by inducing cellular stresses (Studer et al., 2015).  

Among the most interesting applications of PSC-derived cells of the nervous system is 

their use in drug discovery platforms. In order to reach this goal, however, several aspects 

need to be met including cost-effective cell generation and high reproducibility (Avior et al., 

2016). The differentiation of iPSCs into post-mitotic neurons is in fact costly and time-

consuming and thus not amenable yet for high-throughput compound screening studies. On 

the other hand, iPSC-derived neural progenitor cells (NPCs) are homogenous and easy to 

expand and their transcriptional profile resemble that of NPCs residing in the human adult 

brain (Lorenz et al., 2017). iPSC-derived NPCs may thus potentially be suitable for large-

scale screenings, once disease-specific and relevant phenotypes have been identified and 

confirmed both in NPCs and post-mitotic neurons (Inak et al., 2017). The gene editing of 

human PSCs still presents numerous challenges. Most importantly, there is the risk to 

introduce off-target effects that may mask or alter the actual disease phenotypes (Hockemeyer 

and Jaenisch, 2016). Secondarily, this approach may be highly valuable only for monogenic 
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diseases, while complex sporadic forms may be hard to tackle. Finally, editing of mtDNA still 

remains to be demonstrated.  

Future studies should apply genome-editing technologies in iPSCs to target nuclear 

genes regulating mitochondrial function. By investigating the consequences on PSC-derived 

neurons and glia, it may be possible to gain important new knowledge regarding the role of 

mitochondria in human brain function (Figure 2).  

Overall, the use of PSCs may help unveiling the contribution of mitochondria in the 

healthy and diseased human brain. This information may ultimately lead to improved 

therapies for debilitating neurological and psychiatric diseases. 

 

Acknowledgements 

We apologize to all of the authors whose important works have not been cited due to space 

limitations. The authors declare no competing financial or commercial interests. We 

acknowledge financial support from the German Ministry of Education and Research 

(Bundesministerium für Bildung und Forschung, BMBF) (e:Bio Young Investigator grant 

#AZ.031A318 to A.P. and Forschungsnetz für psychische Erkrankungen AERIAL P1 to J.P.). 

 

References 

Abeti, R., and Abramov, A.Y. (2015). Mitochondrial Ca2+ in neurodegenerative disorders. 
Pharmacol. Res. 99, 377–381. 

Abramov, A.Y., Smulders-Srinivasan, T.K., Kirby, D.M., Acin-Perez, R., Enriquez, J.A., 
Lightowlers, R.N., Duchen, M.R., and Turnbull, D.M. (2010). Mechanism of 
neurodegeneration of neurons with mitochondrial DNA mutations. Brain 133, 797–807. 

An, M.C., Zhang, N., Scott, G., Montoro, D., Wittkop, T., Mooney, S., Melov, S., and 
Ellerby, L.M. (2012). Genetic correction of Huntington’s disease phenotypes in induced 
pluripotent stem cells. Cell Stem Cell 11, 253–263. 

Andreazza, A.C., Shao, L., Wang, J.-F., and Young, L.T. (2010). Mitochondrial Complex I 
Activity and Oxidative Damage to Mitochondrial Proteins in the Prefrontal Cortex of Patients 
With Bipolar Disorder. Arch. Gen. Psychiatry 67, 360–368. 



 19 

Auld, D.S., and Robitaille, R. (2003). Glial Cells and Neurotransmission. Neuron 40, 389–
400. 

Avior, Y., Sagi, I., and Benvenisty, N. (2016). Pluripotent stem cells in disease modelling and 
drug discovery. Nat. Rev. Mol. Cell Biol. 17, 170–182. 

Balaban, R.S., Nemoto, S., and Finkel, T. (2005). Mitochondria, oxidants, and aging. Cell 
120, 483–495. 

Bazargani, N., and Attwell, D. (2016). Astrocyte calcium signaling: the third wave. Nat. 
Neurosci. 19, 182–189. 

van der Bliek, A.M., Shen, Q., and Kawajiri, S. (2013). Mechanisms of Mitochondrial Fission 
and Fusion. Cold Spring Harb. Perspect. Biol. 5, a011072–a011072. 

Bose, A., and Beal, M.F. (2016). Mitochondrial dysfunction in Parkinson’s disease. J. 
Neurochem. 139, 216–231. 

Brennand, K., Savas, J.N., Kim, Y., Tran, N., Simone, A., Hashimoto-Torii, K., Beaumont, 
K.G., Kim, H.J., Topol, A., Ladran, I., et al. (2015). Phenotypic differences in hiPSC NPCs 
derived from patients with schizophrenia. Mol. Psychiatry 20, 361–368. 

Bukowiecki, R., Adjaye, J., and Prigione, A. (2014). Mitochondrial function in pluripotent 
stem cells and cellular reprogramming. Gerontology 60, 174–182. 

Burté, F., Carelli, V., Chinnery, P.F., and Yu-Wai-Man, P. (2015). Disturbed mitochondrial 
dynamics and neurodegenerative disorders. Nat. Rev. Neurol. 11, 11–24. 

Calsolaro, V., and Edison, P. (2016). Alterations in Glucose Metabolism in Alzheimer’s 
Disease. Recent Pat. Endocr. Metab. Immune Drug Discov. 10, 31–39. 

Carelli, V., and Chan, D.C. (2014). Mitochondrial DNA: impacting central and peripheral 
nervous systems. Neuron 84, 1126–1142. 

de Castro, I.P., Martins, L.M., and Tufi, R. (2010). Mitochondrial quality control and 
neurological disease: an emerging connection. Expert Rev. Mol. Med. 12. 

Chan, D.C. (2006). Mitochondria: Dynamic Organelles in Disease, Aging, and Development. 
Cell 125, 1241–1252. 

Chauhan, A., Gu, F., Essa, M.M., Wegiel, J., Kaur, K., Brown, W.T., and Chauhan, V. 
(2011). Brain region-specific deficit in mitochondrial electron transport chain complexes in 
children with autism. J. Neurochem. 117, 209–220. 

Chen, H., and Chan, D.C. (2009). Mitochondrial dynamics–fusion, fission, movement, and 
mitophagy–in neurodegenerative diseases. Hum. Mol. Genet. 18, R169–R176. 

Choi, H.W., Kim, J.H., Chung, M.K., Hong, Y.J., Jang, H.S., Seo, B.J., Jung, T.H., Kim, J.S., 
Chung, H.M., Byun, S.J., et al. (2015). Mitochondrial and metabolic remodeling during 
reprogramming and differentiation of the reprogrammed cells. Stem Cells Dev. 24, 1366–
1373. 



 20 

Clarke, D.D., and Sokoloff, L. (1999). Circulation and Energy Metabolism of the Brain. In: 
Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 6th edition. Siegel GJ, 
Agranoff BW, Albers RW, et al., editors. Philadelphia: Lippincott-Raven; 1999. 

Cooper, O., Seo, H., Andrabi, S., Guardia-Laguarta, C., Graziotto, J., Sundberg, M., McLean, 
J.R., Carrillo-Reid, L., Xie, Z., Osborn, T., et al. (2012). Familial Parkinson’s disease iPSCs 
show cellular deficits in mitochondrial responses that can be pharmacologically rescued. Sci. 
Transl. Med. 4, 141ra90. 

Correia, C., Coutinho, A.M., Diogo, L., Grazina, M., Marques, C., Miguel, T., Ataíde, A., 
Almeida, J., Borges, L., Oliveira, C., et al. (2006). Brief Report: High Frequency of 
Biochemical Markers for Mitochondrial Dysfunction in Autism: No Association with the 
Mitochondrial Aspartate/Glutamate Carrier SLC25A12 Gene. J. Autism Dev. Disord. 36, 
1137–1140. 

Díaz-Villanueva, J., Díaz-Molina, R., and García-González, V. (2015). Protein Folding and 
Mechanisms of Proteostasis. Int. J. Mol. Sci. 16, 17193–17230. 

Dienel, G.A., and McKenna, M.C. (2014). A dogma-breaking concept: glutamate oxidation in 
astrocytes is the source of lactate during aerobic glycolysis in resting subjects. J. Neurochem. 
131, 395–398. 

Dyall, S.D., Brown, M.T., and Johnson, P.J. (2004). Ancient invasions: from endosymbionts 
to organelles. Science 304, 253–257. 

Erecińska, M., and Silver, I.A. (2001). Tissue oxygen tension and brain sensitivity to hypoxia. 
Respir. Physiol. 128, 263–276. 

Flierl, A., Oliveira, L.M.A., Falomir-Lockhart, L.J., Mak, S.K., Hesley, J., Soldner, F., Arndt-
Jovin, D.J., Jaenisch, R., Langston, J.W., Jovin, T.M., et al. (2014). Higher vulnerability and 
stress sensitivity of neuronal precursor cells carrying an alpha-synuclein gene triplication. 
PloS One 9, e112413. 

Folmes, C.D.L., Martinez-Fernandez, A., Perales-Clemente, E., Li, X., McDonald, A., 
Oglesbee, D., Hrstka, S., Perez-Terzic, C., Terzic, A., and Nelson, T.J. (2013). Disease-
causing mitochondrial heteroplasmy segregated within induced pluripotent stem cell clones 
derived from a MELAS patient. Stem Cells Dayt. Ohio 31, 1298–1308. 

Fujikura, J., Nakao, K., Sone, M., Noguchi, M., Mori, E., Naito, M., Taura, D., Harada-Shiba, 
M., Kishimoto, I., Watanabe, A., et al. (2012). Induced pluripotent stem cells generated from 
diabetic patients with mitochondrial DNA A3243G mutation. Diabetologia 55, 1689–1698. 

Gammage, P.A., Rorbach, J., Vincent, A.I., Rebar, E.J., and Minczuk, M. (2014). 
Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial 
genomes bearing large-scale deletions or point mutations. EMBO Mol. Med. 6, 458–466. 

Giorgio, V., von Stockum, S., Antoniel, M., Fabbro, A., Fogolari, F., Forte, M., Glick, G.D., 
Petronilli, V., Zoratti, M., Szabo, I., et al. (2013). Dimers of mitochondrial ATP synthase 
form the permeability transition pore. Proc. Natl. Acad. Sci. 110, 5887–5892. 

Goyal, M.S., Hawrylycz, M., Miller, J.A., Snyder, A.Z., and Raichle, M.E. (2014). Aerobic 
glycolysis in the human brain is associated with development and neotenous gene expression. 
Cell Metab. 19, 49–57. 



 21 

Grobarczyk, B., Franco, B., Hanon, K., and Malgrange, B. (2015). Generation of Isogenic 
Human iPS Cell Line Precisely Corrected by Genome Editing Using the CRISPR/Cas9 
System. Stem Cell Rev. 11, 774–787. 

Gu, F., Chauhan, V., Kaur, K., Brown, W.T., LaFauci, G., Wegiel, J., and Chauhan, A. 
(2013). Alterations in mitochondrial DNA copy number and the activities of electron transport 
chain complexes and pyruvate dehydrogenase in the frontal cortex from subjects with autism. 
Transl. Psychiatry 3, e299. 

Guo, X., Disatnik, M.-H., Monbureau, M., Shamloo, M., Mochly-Rosen, D., and Qi, X. 
(2013). Inhibition of mitochondrial fragmentation diminishes Huntington’s disease-associated 
neurodegeneration. J. Clin. Invest. 123, 5371–5388. 

Guo, X., Sun, X., Hu, D., Wang, Y.-J., Fujioka, H., Vyas, R., Chakrapani, S., Joshi, A.U., 
Luo, Y., Mochly-Rosen, D., et al. (2016). VCP recruitment to mitochondria causes mitophagy 
impairment and neurodegeneration in models of Huntington’s disease. Nat. Commun. 7, 
12646. 

Gut, P., and Verdin, E. (2013). The nexus of chromatin regulation and intermediary 
metabolism. Nature 502, 489–498. 

Hämäläinen, R.H., Manninen, T., Koivumäki, H., Kislin, M., Otonkoski, T., and 
Suomalainen, A. (2013). Tissue- and cell-type-specific manifestations of heteroplasmic 
mtDNA 3243A>G mutation in human induced pluripotent stem cell-derived disease model. 
Proc. Natl. Acad. Sci. U. S. A. 110, E3622-3630. 

Hayakawa, K., Esposito, E., Wang, X., Terasaki, Y., Liu, Y., Xing, C., Ji, X., and Lo, E.H. 
(2016). Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535, 551–
555. 

HD iPSC Consortium (2012). Induced pluripotent stem cells from patients with Huntington’s 
disease show CAG-repeat-expansion-associated phenotypes. Cell Stem Cell 11, 264–278. 

Herrero-Mendez, A., Almeida, A., Fernández, E., Maestre, C., Moncada, S., and Bolaños, J.P. 
(2009). The bioenergetic and antioxidant status of neurons is controlled by continuous 
degradation of a key glycolytic enzyme by APC/C–Cdh1. Nat. Cell Biol. 11, 747–752. 

Hockemeyer, D., and Jaenisch, R. (2016). Induced pluripotent stem cells meet genome 
editing. Cell Stem Cell 18, 573–586. 

Hoek, J.B., Cahill, A., and Pastorino, J.G. (2002). Alcohol and Mitochondria: A 
Dysfunctional Relationship. Gastroenterology 122, 2049–2063. 

Hollenbeck, P.J. (2005). The axonal transport of mitochondria. J. Cell Sci. 118, 5411–5419. 

Hollis, F., Kanellopoulos, A.K., and Bagni, C. (2017). Mitochondrial dysfunction in Autism 
Spectrum Disorder: clinical features and perspectives. Curr. Opin. Neurobiol. 45, 178–187. 

Hoppins, S., and Nunnari, J. (2009). The molecular mechanism of mitochondrial fusion. 
Biochim. Biophys. Acta BBA - Mol. Cell Res. 1793, 20–26. 



 22 

Hosokawa, T., Momose, T., and Kasai, K. (2009). Brain glucose metabolism difference 
between bipolar and unipolar mood disorders in depressed and euthymic states. Prog. 
Neuropsychopharmacol. Biol. Psychiatry 33, 243–250. 

Hossini, A.M., Megges, M., Prigione, A., Lichtner, B., Toliat, M.R., Wruck, W., Schröter, F., 
Nuernberg, P., Kroll, H., Makrantonaki, E., et al. (2015). Induced pluripotent stem cell-
derived neuronal cells from a sporadic Alzheimer’s disease donor as a model for investigating 
AD-associated gene regulatory networks. BMC Genomics 16, 84. 

Imamura, T., Uesaka, M., and Nakashima, K. (2014). Epigenetic setting and reprogramming 
for neural cell fate determination and differentiation. Philos. Trans. R. Soc. B Biol. Sci. 369. 

Inak, G., Lorenz, C., Lisowski, P., Zink, A., Mlody, B., and Prigione, A. (2017). Concise 
Review: Induced Pluripotent Stem Cell-Based Drug Discovery for Mitochondrial Disease. 
Stem Cells Dayt. Ohio 35, 1655–1662. 

Jackson, J.G., and Robinson, M.B. (2015). Reciprocal Regulation of Mitochondrial Dynamics 
and Calcium Signaling in Astrocyte Processes. J. Neurosci. 35, 15199–15213. 

Johri, A., and Beal, M.F. (2012). Mitochondrial Dysfunction in Neurodegenerative Diseases. 
J. Pharmacol. Exp. Ther. 342, 619–630. 

Kettenmann, H., Kirchhoff, F., and Verkhratsky, A. (2013). Microglia: New Roles for the 
Synaptic Stripper. Neuron 77, 10–18. 

Kim, H., and Kim, J.-S. (2014). A guide to genome engineering with programmable 
nucleases. Nat. Rev. Genet. 15, 321–334. 

Kirk, K., Gennings, C., Hupf, J.C., Tadesse, S., D’Aurelio, M., Kawamata, H., Valsecchi, F., 
Mitsumoto, H., and Manfredi, G. (2014). Bioenergetic markers in skin fibroblasts of sporadic 
ALS and PLS patients. Ann. Neurol. 76, 620–624. 

Kiskinis, E., Sandoe, J., Williams, L.A., Boulting, G.L., Moccia, R., Wainger, B.J., Han, S., 
Peng, T., Thams, S., Mikkilineni, S., et al. (2014). Pathways Disrupted in Human ALS Motor 
Neurons Identified Through Genetic Correction of Mutant SOD1. Cell Stem Cell 14, 781–
795. 

Kodaira, M., Hatakeyama, H., Yuasa, S., Seki, T., Egashira, T., Tohyama, S., Kuroda, Y., 
Tanaka, A., Okata, S., Hashimoto, H., et al. (2015). Impaired respiratory function in MELAS-
induced pluripotent stem cells with high heteroplasmy levels. FEBS Open Bio 5, 219–225. 

Kondo, T., Asai, M., Tsukita, K., Kutoku, Y., Ohsawa, Y., Sunada, Y., Imamura, K., Egawa, 
N., Yahata, N., Okita, K., et al. (2013). Modeling Alzheimer’s disease with iPSCs reveals 
stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell 
Stem Cell 12, 487–496. 

Koopman, W.J.H., Willems, P.H.G.M., and Smeitink, J.A.M. (2012). Monogenic 
Mitochondrial Disorders. N. Engl. J. Med. 366, 1132–1141. 

Koopman, W.J.H., Distelmaier, F., Smeitink, J.A.M., and Willems, P.H.G.M. (2013). 
OXPHOS mutations and neurodegeneration. EMBO J. 32, 9–29. 



 23 

Kunz, W.S. (2001). Control of oxidative phosphorylation in skeletal muscle. Biochim. 
Biophys. Acta BBA - Bioenerg. 1504, 12–19. 

Lancaster, M.A., Renner, M., Martin, C.-A., Wenzel, D., Bicknell, L.S., Hurles, M.E., 
Homfray, T., Penninger, J.M., Jackson, A.P., and Knoblich, J.A. (2013). Cerebral organoids 
model human brain development and microcephaly. Nature 501, 373–379. 

Lim, J., and Yue, Z. (2015). Neuronal Aggregates: Formation, Clearance, and Spreading. 
Dev. Cell 32, 491–501. 

Lin, M.T., and Beal, M.F. (2006). Mitochondrial dysfunction and oxidative stress in 
neurodegenerative diseases. Nature 443, 787–795. 

Lodi, R., Schapira, A.H., Manners, D., Styles, P., Wood, N.W., Taylor, D.J., and Warner, T.T. 
(2000). Abnormal in vivo skeletal muscle energy metabolism in Huntington’s disease and 
dentatorubropallidoluysian atrophy. Ann. Neurol. 48, 72–76. 

Lorenz, C., Lesimple, P., Bukowiecki, R., Zink, A., Inak, G., Mlody, B., Singh, M., Semtner, 
M., Mah, N., Auré, K., et al. (2017). Human iPSC-Derived Neural Progenitors Are an 
Effective Drug Discovery Model for Neurological mtDNA Disorders. Cell Stem Cell 20, 
659–674.e9. 

Lustbader, J.W., Cirilli, M., Lin, C., Xu, H.W., Takuma, K., Wang, N., Caspersen, C., Chen, 
X., Pollak, S., Chaney, M., et al. (2004). ABAD Directly Links Aß to Mitochondrial Toxicity 
in Alzheimer’s Disease. Science 304, 448–452. 

Ma, H., Folmes, C.D.L., Wu, J., Morey, R., Mora-Castilla, S., Ocampo, A., Ma, L., Poulton, 
J., Wang, X., Ahmed, R., et al. (2015). Metabolic rescue in pluripotent cells from patients 
with mtDNA disease. Nature 524, 234–238. 

Marazziti, D., Baroni, S., Picchetti, M., Landi, P., Silvestri, S., and Dell’Osso, E.V. and M.C. 
(2011). Mitochondrial Alterations and Neuropsychiatric Disorders. 

Mathieu, J., and Ruohola-Baker, H. (2017). Metabolic remodeling during the loss and 
acquisition of pluripotency. Development 144, 541–551. 

McCormack, J.G., and Denton, R.M. (1990). Intracellular calcium ions and 
intramitochondrial Ca in the regulation of energy metabolism in mammalian tissues. Proc. 
Nutr. Soc. 49, 57–75. 

McFarland, R., Taylor, R.W., and Turnbull, D.M. (2010). A neurological perspective on 
mitochondrial disease. Lancet Neurol. 9, 829–840. 

Mertens, J., Wang, Q.-W., Kim, Y., Yu, D.X., Pham, S., Yang, B., Zheng, Y., Diffenderfer, 
K.E., Zhang, J., Soltani, S., et al. (2015a). Differential responses to lithium in hyperexcitable 
neurons from patients with bipolar disorder. Nature 527, 95–99. 

Mertens, J., Paquola, A.C.M., Ku, M., Hatch, E., Böhnke, L., Ladjevardi, S., McGrath, S., 
Campbell, B., Lee, H., Herdy, J.R., et al. (2015b). Directly Reprogrammed Human Neurons 
Retain Aging-Associated Transcriptomic Signatures and Reveal Age-Related 
Nucleocytoplasmic Defects. Cell Stem Cell 17, 705–718. 



 24 

Michel, T.M., Sheldrick, A.J., Camara, S., Grünblatt, E., Schneider, F., and Riederer, P. 
(2011). Alteration of the pro-oxidant xanthine oxidase (XO) in the thalamus and occipital 
cortex of patients with schizophrenia. World J. Biol. Psychiatry Off. J. World Fed. Soc. Biol. 
Psychiatry 12, 588–597. 

Michel, T.M., Käsbauer, L., Gsell, W., Jecel, J., Sheldrick, A.J., Cortese, M., Nickl-Jockschat, 
T., Grünblatt, E., and Riederer, P. (2014). Aldehyde dehydrogenase 2 in sporadic Parkinson’s 
disease. Parkinsonism Relat. Disord. 20, S68–S72. 

Miller, J.D., Ganat, Y.M., Kishinevsky, S., Bowman, R.L., Liu, B., Tu, E.Y., Mandal, P.K., 
Vera, E., Shim, J., Kriks, S., et al. (2013). Human iPSC-based modeling of late-onset disease 
via progerin-induced aging. Cell Stem Cell 13, 691–705. 

Moraes, C.T. (2014). A magic bullet to specifically eliminate mutated mitochondrial genomes 
from patients’ cells. EMBO Mol. Med. 6, 434–435. 

Morán, M., Moreno-Lastres, D., Marín-Buera, L., Arenas, J., Martín, M.A., and Ugalde, C. 
(2012). Mitochondrial respiratory chain dysfunction: Implications in neurodegeneration. Free 
Radic. Biol. Med. 53, 595–609. 

Moreira, P.I., Carvalho, C., Zhu, X., Smith, M.A., and Perry, G. (2010). Mitochondrial 
dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim. Biophys. Acta 
BBA - Mol. Basis Dis. 1802, 2–10. 

Morris, G., Walder, K., McGee, S.L., Dean, O.M., Tye, S.J., Maes, M., and Berk, M. (2017). 
A model of the mitochondrial basis of bipolar disorder. Neurosci. Biobehav. Rev. 74, 1–20. 

Mutihac, R., Ababneh, N., Scaber, J., Wade-Martins, R., Cowley, S., and Talbot, K. (2015). 
Modelling amyotrophic lateral sclerosis (ALS) using mutant and CAS9/CRISPR-corrected 
motor neurons from patients with C9ORF72 mutations reveals disease-specific cellular 
phenotypes. J. Neurol. Sci. 357, e48. 

Neher, E., and Sakaba, T. (2008). Multiple Roles of Calcium Ions in the Regulation of 
Neurotransmitter Release. Neuron 59, 861–872. 

Nekrasov, E.D., Vigont, V.A., Klyushnikov, S.A., Lebedeva, O.S., Vassina, E.M., 
Bogomazova, A.N., Chestkov, I.V., Semashko, T.A., Kiseleva, E., Suldina, L.A., et al. 
(2016). Manifestation of Huntington’s disease pathology in human induced pluripotent stem 
cell-derived neurons. Mol. Neurodegener. 11, 27. 

Nguyen, H.N., Byers, B., Cord, B., Shcheglovitov, A., Byrne, J., Gujar, P., Kee, K., Schüle, 
B., Dolmetsch, R.E., Langston, W., et al. (2011). LRRK2 mutant iPSC-derived DA neurons 
demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8, 267–280. 

Niccoli, T., Cabecinha, M., Tillmann, A., Kerr, F., Wong, C.T., Cardenes, D., Vincent, A.J., 
Bettedi, L., Li, L., Grönke, S., et al. (2016). Increased Glucose Transport into Neurons 
Rescues Aβ Toxicity in Drosophila. Curr. Biol. 26, 2291–2300. 

Padrão, A.I., Ferreira, R.M.P., Vitorino, R., Alves, R.M.P., Neuparth, M.J., Duarte, J.A., and 
Amado, F. (2011). OXPHOS susceptibility to oxidative modifications: The role of heart 
mitochondrial subcellular location. Biochim. Biophys. Acta BBA - Bioenerg. 1807, 1106–
1113. 



 25 

Panov, A.V., Gutekunst, C.-A., Leavitt, B.R., Hayden, M.R., Burke, J.R., Strittmatter, W.J., 
and Greenamyre, J.T. (2002). Early mitochondrial calcium defects in Huntington’s disease are 
a direct effect of polyglutamines. Nat. Neurosci. 5, 731–736. 

Paşca, A.M., Sloan, S.A., Clarke, L.E., Tian, Y., Makinson, C.D., Huber, N., Kim, C.H., Park, 
J.-Y., O’Rourke, N.A., Nguyen, K.D., et al. (2015). Functional cortical neurons and astrocytes 
from human pluripotent stem cells in 3D culture. Nat. Methods 12, 671–678. 

Pellerin, L., and Magistretti, P.J. (1994). Glutamate uptake into astrocytes stimulates aerobic 
glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl. Acad. 
Sci. U. S. A. 91, 10625–10629. 

Pellerin, L., and Magistretti, P.J. (2012). Sweet sixteen for ANLS. J. Cereb. Blood Flow 
Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 32, 1152–1166. 

Perales-Clemente, E., Cook, A.N., Evans, J.M., Roellinger, S., Secreto, F., Emmanuele, V., 
Oglesbee, D., Mootha, V.K., Hirano, M., Schon, E.A., et al. (2016). Natural underlying 
mtDNA heteroplasmy as a potential source of intra-person hiPSC variability. EMBO J. 35, 
1979–1990. 

Picard, M., McManus, M.J., Gray, J.D., Nasca, C., Moffat, C., Kopinski, P.K., Seifert, E.L., 
McEwen, B.S., and Wallace, D.C. (2015). Mitochondrial functions modulate neuroendocrine, 
metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proc. 
Natl. Acad. Sci. 112, E6614–E6623. 

Potthoff, M.J. (2017). FGF21 and metabolic disease in 2016: A new frontier in FGF21 
biology. Nat. Rev. Endocrinol. 13, 74–76. 

Prabakaran, S., Swatton, J.E., Ryan, M.M., Huffaker, S.J., Huang, J.-J., Griffin, J.L., 
Wayland, M., Freeman, T., Dudbridge, F., Lilley, K.S., et al. (2004). Mitochondrial 
dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative 
stress. Mol. Psychiatry 9, 684–697. 

Prigione, A., Fauler, B., Lurz, R., Lehrach, H., and Adjaye, J. (2010). The senescence-related 
mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. 
Stem Cells Dayt. Ohio 28, 721–733. 

Prigione, A., Lichtner, B., Kuhl, H., Struys, E.A., Wamelink, M., Lehrach, H., Ralser, M., 
Timmermann, B., and Adjaye, J. (2011). Human induced pluripotent stem cells harbor 
homoplasmic and heteroplasmic mitochondrial DNA mutations while maintaining human 
embryonic stem cell-like metabolic reprogramming. Stem Cells Dayt. Ohio 29, 1338–1348. 

Prigione, A., Ruiz-Pérez, M.V., Bukowiecki, R., and Adjaye, J. (2015). Metabolic 
restructuring and cell fate conversion. Cell. Mol. Life Sci. CMLS 72, 1759–1777. 

Rajasekaran, A., Venkatasubramanian, G., Berk, M., and Debnath, M. (2015). Mitochondrial 
dysfunction in schizophrenia: Pathways, mechanisms and implications. Neurosci. Biobehav. 
Rev. 48, 10–21. 

Reddy, P.H., Tripathi, R., Troung, Q., Tirumala, K., Reddy, T.P., Anekonda, V., Shirendeb, 
U.P., Calkins, M.J., Reddy, A.P., Mao, P., et al. (2012). Abnormal mitochondrial dynamics 
and synaptic degeneration as early events in Alzheimer’s disease: implications to 
mitochondria-targeted antioxidant therapeutics. Biochim. Biophys. Acta 1822, 639–649. 



 26 

Reinhardt, P., Schmid, B., Burbulla, L.F., Schöndorf, D.C., Wagner, L., Glatza, M., Höing, S., 
Hargus, G., Heck, S.A., Dhingra, A., et al. (2013). Genetic Correction of a LRRK2 Mutation 
in Human iPSCs Links Parkinsonian Neurodegeneration to ERK-Dependent Changes in Gene 
Expression. Cell Stem Cell 12, 354–367. 

Rizzuto, R., De Stefani, D., Raffaello, A., and Mammucari, C. (2012). Mitochondria as 
sensors and regulators of calcium signalling. Nat. Rev. Mol. Cell Biol. 13, 566–578. 

Roberts, R.C. (2017). Postmortem studies on mitochondria in schizophrenia. Schizophr. Res. 
187, 17–25. 

Robicsek, O., Karry, R., Petit, I., Salman-Kesner, N., Müller, F.-J., Klein, E., Aberdam, D., 
and Ben-Shachar, D. (2013). Abnormal neuronal differentiation and mitochondrial 
dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. 
Mol. Psychiatry 18, 1067–1076. 

Robicsek, O., Ene, H.M., Karry, R., Ytzhaki, O., Asor, E., McPhie, D., Cohen, B.M., Ben-
Yehuda, R., Weiner, I., and Ben-Shachar, D. (2017). Isolated Mitochondria Transfer 
Improves Neuronal Differentiation of Schizophrenia-Derived Induced Pluripotent Stem Cells 
and Rescues Deficits in a Rat Model of the Disorder. Schizophr. Bull. 

Ross, C.A., and Akimov, S.S. (2014). Human-induced pluripotent stem cells: potential for 
neurodegenerative diseases. Hum. Mol. Genet. 23, R17–R26. 

Rossignol, D.A., and Frye, R.E. (2012). Mitochondrial dysfunction in autism spectrum 
disorders: a systematic review and meta-analysis. Mol. Psychiatry 17, 290–314. 

Ruan, L., Zhou, C., Jin, E., Kucharavy, A., Zhang, Y., Wen, Z., Florens, L., and Li, R. (2017). 
Cytosolic proteostasis through importing of misfolded proteins into mitochondria. Nature 543, 
443–446. 

Ruhoy, I.S., and Saneto, R.P. (2014). The genetics of Leigh syndrome and its implications for 
clinical practice and risk management. Appl. Clin. Genet. 7, 221–234. 

Ryan, S.D., Dolatabadi, N., Chan, S.F., Zhang, X., Akhtar, M.W., Parker, J., Soldner, F., 
Sunico, C.R., Nagar, S., Talantova, M., et al. (2013). Isogenic Human iPSC Parkinson’s 
Model Shows Nitrosative Stress-Induced Dysfunction in MEF2-PGC1α Transcription. Cell 
155, 1351–1364. 

Sah, P., and Louise Faber, E.S. (2002). Channels underlying neuronal calcium-activated 
potassium currents. Prog. Neurobiol. 66, 345–353. 

Sanders, L.H., Laganière, J., Cooper, O., Mak, S.K., Vu, B.J., Huang, Y.A., Paschon, D.E., 
Vangipuram, M., Sundararajan, R., Urnov, F.D., et al. (2014). LRRK2 mutations cause 
mitochondrial DNA damage in iPSC-derived neural cells from Parkinson’s disease patients: 
reversal by gene correction. Neurobiol. Dis. 62, 381–386. 

Sandoe, J., and Eggan, K. (2013). Opportunities and challenges of pluripotent stem cell 
neurodegenerative disease models. Nat. Neurosci. 16, 780–789. 

Schapira, A.H.V., Cooper, J.M., Dexter, D., Clark, J.B., Jenner, P., and Marsden, C.D. (1990). 
Mitochondrial Complex I Deficiency in Parkinson’s Disease. J. Neurochem. 54, 823–827. 



 27 

Semenza, G.L. (2007). Life with oxygen. Science 318, 62–64. 

Shaltouki, A., Sivapatham, R., Pei, Y., Gerencser, A.A., Momčilović, O., Rao, M.S., and 
Zeng, X. (2015). Mitochondrial Alterations by PARKIN in Dopaminergic Neurons Using 
PARK2 Patient-Specific and PARK2 Knockout Isogenic iPSC Lines. Stem Cell Rep. 4, 847–
859. 

Sheng, B., Wang, X., Su, B., Lee, H., Casadesus, G., Perry, G., and Zhu, X. (2012). Impaired 
Mitochondrial Biogenesis Contributes to Mitochondrial Dysfunction in Alzheimer’s Disease. 
J. Neurochem. 120, 419–429. 

Shi, P., Gal, J., Kwinter, D.M., Liu, X., and Zhu, H. (2010). Mitochondrial Dysfunction in 
Amyotrophic Lateral Sclerosis. Biochim. Biophys. Acta 1802, 45–51. 

Skupin, A., Kettenmann, H., and Falcke, M. (2010). Calcium Signals Driven by Single 
Channel Noise. PLOS Comput. Biol. 6, e1000870. 

Soldner, F., Laganière, J., Cheng, A.W., Hockemeyer, D., Gao, Q., Alagappan, R., Khurana, 
V., Golbe, L.I., Myers, R.H., Lindquist, S., et al. (2011). Generation of isogenic pluripotent 
stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146, 318–
331. 

Soldner, F., Stelzer, Y., Shivalila, C.S., Abraham, B.J., Latourelle, J.C., Barrasa, M.I., 
Goldmann, J., Myers, R.H., Young, R.A., and Jaenisch, R. (2016). Parkinson-associated risk 
variant in distal enhancer of α-synuclein modulates target gene expression. Nature 533, 95–
99. 

Song, W., Chen, J., Petrilli, A., Liot, G., Klinglmayr, E., Zhou, Y., Poquiz, P., Tjong, J., 
Pouladi, M.A., Hayden, M.R., et al. (2011). Mutant huntingtin binds the mitochondrial fission 
GTPase DRP1 and increases its enzymatic activity. Nat. Med. 17, 377–382. 

Sorolla, M.A., Reverter-Branchat, G., Tamarit, J., Ferrer, I., Ros, J., and Cabiscol, E. (2008). 
Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free 
Radic. Biol. Med. 45, 667–678. 

Stadtman, E.R. (2006). Protein oxidation and aging. Free Radic. Res. 40, 1250–1258. 

Sterneckert, J.L., Reinhardt, P., and Schöler, H.R. (2014). Investigating human disease using 
stem cell models. Nat. Rev. Genet. 15, 625–639. 

Stincone, A., Prigione, A., Cramer, T., Wamelink, M.M.C., Campbell, K., Cheung, E., Olin-
Sandoval, V., Grüning, N.-M., Krüger, A., Tauqeer Alam, M., et al. (2015). The return of 
metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol. Rev. 90, 
927–963. 

Studer, L., Vera, E., and Cornacchia, D. (2015). Programming and Reprogramming Cellular 
Age in the Era of Induced Pluripotency. Cell Stem Cell 16, 591–600. 

Swerdlow, R.H., Burns, J.M., and Khan, S.M. (2010). The Alzheimer’s Disease 
Mitochondrial Cascade Hypothesis. J. Alzheimers Dis. JAD 20, 265–279. 



 28 

Tafuri, F., Ronchi, D., Magri, F., Comi, G.P., and Corti, S. (2015). SOD1 misplacing and 
mitochondrial dysfunction in amyotrophic lateral sclerosis pathogenesis. Front. Cell. 
Neurosci. 9. 

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, 
S. (2007). Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined 
Factors. Cell 131, 861–872. 

Talukdar, S., Owen, B.M., Song, P., Hernandez, G., Zhang, Y., Zhou, Y., Scott, W.T., 
Paratala, B., Turner, T., Smith, A., et al. (2016). FGF21 Regulates Sweet and Alcohol 
Preference. Cell Metab. 23, 344–349. 

Tang, G., Gutierrez Rios, P., Kuo, S.-H., Akman, H.O., Rosoklija, G., Tanji, K., Dwork, A., 
Schon, E.A., Dimauro, S., Goldman, J., et al. (2013). Mitochondrial abnormalities in temporal 
lobe of autistic brain. Neurobiol. Dis. 54, 349–361. 

Tao, Y., and Zhang, S.-C. (2016). Neural Subtype Specification from Human Pluripotent 
Stem Cells. Cell Stem Cell 19, 573–586. 

Turrens, J.F. (2003). Mitochondrial formation of reactive oxygen species. J. Physiol. 552, 
335–344. 

Twig, G., and Shirihai, O.S. (2011). The Interplay Between Mitochondrial Dynamics and 
Mitophagy. Antioxid. Redox Signal. 14, 1939–1951. 

Vafai, S.B., and Mootha, V.K. (2012). Mitochondrial disorders as windows into an ancient 
organelle. Nature 491, 374–383. 

Vander Heiden, M.G., Cantley, L.C., and Thompson, C.B. (2009). Understanding the 
Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033. 

Wan, B., LaNoue, K.F., Cheung, J.Y., and Scaduto, R.C. (1989). Regulation of citric acid 
cycle by calcium. J. Biol. Chem. 264, 13430–13439. 

Wang, X., and Schwarz, T.L. (2009). The Mechanism of Ca2+-Dependent Regulation of 
Kinesin-Mediated Mitochondrial Motility. Cell 136, 163–174. 

Wang, L., Yi, F., Fu, L., Yang, J., Wang, S., Wang, Z., Suzuki, K., Sun, L., Xu, X., Yu, Y., et 
al. (2017). CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis 
patient iPSCs. Protein Cell 8, 365–378. 

Weber, W.A., Dudley, J., Lee, J.-H., Strakowski, S.M., Adler, C.M., and DelBello, M.P. 
(2013). A pilot study of alterations in high energy phosphoryl compounds and intracellular pH 
in unmedicated adolescents with bipolar disorder. J. Affect. Disord. 150, 1109–1113. 

Williams, G.S.B., Boyman, L., Chikando, A.C., Khairallah, R.J., and Lederer, W.J. (2013). 
Mitochondrial calcium uptake. Proc. Natl. Acad. Sci. 110, 10479–10486. 

Winklhofer, K.F., and Haass, C. (2010). Mitochondrial dysfunction in Parkinson’s disease. 
Biochim. Biophys. Acta BBA - Mol. Basis Dis. 1802, 29–44. 

Woodruff, G., Young, J.E., Martinez, F.J., Buen, F., Gore, A., Kinaga, J., Li, Z., Yuan, S.H., 
Zhang, K., and Goldstein, L.S.B. (2013). The presenilin-1 ΔE9 mutation results in reduced γ-



 29 

secretase activity, but not total loss of PS1 function, in isogenic human stem cells. Cell Rep. 
5, 974–985. 

Xu, X., Duan, S., Yi, F., Ocampo, A., Liu, G.-H., and Izpisua Belmonte, J.C. (2013). 
Mitochondrial Regulation in Pluripotent Stem Cells. Cell Metab. 18, 325–332. 

Xu, X., Tay, Y., Sim, B., Yoon, S.-I., Huang, Y., Ooi, J., Utami, K.H., Ziaei, A., Ng, B., 
Radulescu, C., et al. (2017). Reversal of Phenotypic Abnormalities by CRISPR/Cas9-
Mediated Gene Correction in Huntington Disease Patient-Derived Induced Pluripotent 
Stem Cells. Stem Cell Rep. 8, 619–633. 

Yang, L., and Ng, H.-H. (2017). Lab-grown mini-brains upgraded. Nat. Cell Biol. 19, 1010–
1012. 

Yano, H., Baranov, S.V., Baranova, O.V., Kim, J., Pan, Y., Yablonska, S., Carlisle, D.L., 
Ferrante, R.J., Kim, A.H., and Friedlander, R.M. (2014). Inhibition of mitochondrial protein 
import by mutant huntingtin. Nat. Neurosci. 17, 822–831. 

Zhang, Y., Pak, C., Han, Y., Ahlenius, H., Zhang, Z., Chanda, S., Marro, S., Patzke, C., 
Acuna, C., Covy, J., et al. (2013). Rapid single-step induction of functional neurons from 
human pluripotent stem cells. Neuron 78, 785–798. 

Zheng, X., Boyer, L., Jin, M., Kim, Y., Fan, W., Bardy, C., Berggren, T., Evans, R.M., Gage, 
F.H., and Hunter, T. (2016). Alleviation of neuronal energy deficiency by mTOR inhibition as 
a treatment for mitochondria-related neurodegeneration. ELife 5. 

 



 30 

Figure legends 

 

Figure 1. Mitochondria in human brain cells. Mitochondria contribute to the physiological 

functionality of human neurons and glia. Their roles include the control of cellular 

bioenergetics, redox balance, apoptosis, and calcium homeostasis (see text for details). 

Abbreviations: PPP: pentose phosphate pathway; GSH: glutathione; Glucose-6P: glucose-6-

phosphate; ROS: reactive oxygen species; TCA cycle: tricarboxylic acid cycle; Acetyl-CoA: 

acetyl coenzyme A; ATP: adenosine triphosphate. 

Figure 2. Probing mitochondrial brain function with PSCs and genome editing. The use 

of human PSCs, combining patient-derived material with precise genome engineering, can 

allow dissecting the contribution of mitochondria to human brain function. Numbers in 

brackets refer to the following references: (1) Hossini et al., 2015; (2) Kondo et al., 2013; (3) 

Woodruff et al., 2013; (4) Fierli et al., 2014; (5) Shaltouki et al., 2015; (6) Cooper et al., 2012; 

(7) Nguyen et al., 2011; (8) Ryan et al., 2013; (9) Sanders et al., 2014; (10) Reinhardt et al., 

2013; (11) Soldner et al., 2011; (12) Soldner et al., 2016; (13) Kiskinis et al., 2014; (14) Wang 

et al., 2017; (15) Mutihac et al., 2015; (16) The HD Consortium, 2012; (17) An et al., 2012; 

(18) Xu et al., 2017; (19) Nekrasov et al., 2016; (20) Gou et al., 2013; (21) Brennand et al., 

2015; (22) Robicsek et al., 2013; (23) Mertens et al., 2015a; (24) Zheng et al., 2016; (25) Ma 

et al., 2015; (26) Lorenz et al., 2017; (27) Johri et al., 2012; (28) Reddy et al.,2012; (29) 

Sheng et al., 2012; (30) Lustbader et al., 2004; (31) Schapira et al., 1990; (32) Michel et al., 

2013; (33) Bose et al., 2016; (34) Tafuri et al., 2015; (35) Shi et al., 2010; (36) Yano et al., 

2014; (37) Song et al., 2011; (38) Panov et al., 2002; (39) Sorolla et al., 2008; (40) Chauhan 

et al., 2011; (41) Tang et al., 2013. 
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