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LIST OF ABBREVIATIONS 

ADC  apparent diffusion coefficient 

BWTP  bandwidth time product 

CAIPIRINHA Controlled Aliasing in Parallel Imaging Results in Higher Acceleration 

CAT  combined acquisition technique 

CPMG  Carr Purcell Meiboom Gill 

DWI  diffusion-weighted imaging 

EPI  echo planar imaging 

ETL  echo train length 

FLASH  fast low angle shot 

FSE  fast spin echo  

GRAPPA GeneRalized Autocalibrating Partial Parallel Acquisition 

MB  multiband 

MRI  magnetic resonance imaging 

ms-RARE multi-shot rapid acquisition with relaxation enhancement 

MUSE  multiplexed sensitivity encoding 

PINS  power independent number of slices  

PROPELLER periodically rotated overlapping parallel lines with enhanced reconstruction 

PSF  point spread function 

RARE  Rapid acquisition with relaxation enhancement 

RF  radiofrequency 

ROI  region of interest 

rs-EPI  readout-segment echo planar imaging 

SG  slice GRAPPA 

ss-EPI  single-shot echo planar imaging 

SSGR  slice selection gradient reversal 

 

  



page 3 
 

ABSTRACT 

 

Diffusion-weighted imaging (DWI) provides information about tissue microstructure. Single-shot 

echo planar EPI is the most common technique for DWI applications in the brain but is prone to 

geometric distortions and signal voids. Rapid Acquisition with Relaxation Enhancement imaging 

(RARE, also known as FSE) presents a valuable alternative for DWI with high anatomic accuracy. This 

work proposes a multi-shot diffusion-weighted RARE-EPI hybrid pulse sequence, joining the 

anatomical integrity of RARE with the imaging speed and radiofrequency (RF) power deposition 

advantage of EPI. Anatomical integrity of RARE-EPI was demonstrated and quantified by center of 

gravity analysis, both for morphological images and diffusion-weighted acquisitions in phantom and 

in-vivo experiments at 3.0 T and at 7.0 T. The results indicate that half of the RARE echoes in the 

echo train can be replaced by EPI echoes while maintaining anatomical accuracy. The reduced RF 

power deposition of RARE-EPI enabled multiband RF pulses facilitating simultaneous multi-slice 

imaging. This study shows that diffusion-weighted RARE-EPI has the capability to acquire high 

fidelity, distortion-free images of the eye and the orbit. It is shown that RARE-EPI maintains the 

immunity to B0 inhomogeneities reported for RARE imaging. This benefit can be exploited for the 

assessment of ocular masses and pathologic changes of the eye and the orbit. 
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INTRODUCTION 

Magnetic resonance imaging (MRI) of the eye and the orbit is an emerging application that is 

increasingly used in ophthalmology. The benefits of ocular MRI for studying the spatial 

arrangements 1-4, structure and function of the eye 5,6, for assessing ophthalmological disorders 7-14 

and for guiding diagnosis and treatment of ophthalmological diseases 2,14-20 are of proven value.  

Diffusion-weighted imaging (DWI) is an approach that provides information about tissue 

microstructure in-vivo allowing tissue characterization 21,22. It has been shown that ophthalmic DWI 

affords the detection of subchoroidal and subretinal abscesses 23,24. Also, the involvement of 

extraocular muscles in thyroid eye disease can be examined with ocular DWI 25 and solitary orbital 

tumors can be identified with DWI 26. Furthermore, DWI benefits the differentiation between ocular 

tumors and retinal detachment 8,10,27and it supports the diagnosis of ischemic optic neuropathy and 

optic neuritis 28-30. It also has been shown that DWI is sensitive to changes in the vitreous humor 

during aging 31. Recently, ophthalmic DWI has been applied to monitor proton beam therapy of 

uveal melanoma 32,33. This wide range of applications demonstrates the clinical value of ocular DWI. 

Single-shot echo planar imaging (ss-EPI) is the most widely applied technique for rapid in-

vivo DWI. It offers excellent acquisition speed, reduces sensitivity to bulk motion and provides 

reasonable spatial resolution. Notwithstanding these benefits, EPI is prone to magnetic susceptibility 

variations that result in signal voids and image distortion. These effects increase with magnetic field 

strength and are pronounced in regions with high deviations of the main magnetic field (B0). Thus, 

DWI of cranial regions proximal to air filled cavities, sinuses or in close vicinity to 

skin/muscle/bone/brain boundaries is particularly susceptible to geometric distortions. This 

constraint constitutes a severe challenge for diffusion-weighted EPI of the eye and orbit 27,34.  

To address this constraint, multi-shot approaches including interleaved EPI, periodically 

rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) strategies 35 and read-

out segmented k-space data acquisition schemes 36 have been proposed to reduce geometric 

distortion and to improve the anatomic accuracy of EPI. Readout segmented EPI (rs-EPI) supports 

DWI of the brain at 3.0 and at 7.0 T with largely reduced susceptibility artifacts 37,38, but was 

reported to be prone to severe distortions for DWI of the eye and orbit 34,39. Recent neuroimaging 

work demonstrated the feasibility of high spatial resolution diffusion imaging of the human 

cerebrum and brainstem using a hybrid spin-warp and echo-planar point spread function (PSF) 

encoded strategy 40. 

Fast spin-echo (FSE) or Rapid Acquisition with Relaxation Enhancement (RARE) techniques 

present a valuable alternative for DWI of the eye and orbit providing high anatomic accuracy 41-43. 

Diffusion-weighted single-shot RARE has been applied for the assessment of retinoblastoma 8, while 
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segmented diffusion-weighted RARE (ms-RARE) has been shown to be suitable for the detection of 

intraocular masses with ample diffusion contrast versus the subretinal hemorrhage and the vitreous 

body 39. 

RARE uses a train of refocusing pulses, resulting in an imaging speed and RF power 

deposition handicap over EPI. To address these constraints, Combined Acquisition Techniques (CAT) 

44 have been applied to boost imaging speed and to reduce RF power deposition by using a modular 

hybrid approach that integrates a minimum of two imaging strategies. CAT variants include FLASH-

EPI, FLASH-BURST and RARE-EPI hybrids that have been implemented for cardiac, abdominal and 

neuroimaging 45-47. A RARE-EPI hybrid is conceptually appealing for the pursuit of ocular MRI at 

(ultra)high fields due to the anatomical integrity of RARE in conjunction with the imaging speed and 

RF power deposition advantage of EPI. It holds the promise to further improve the usability and 

applicability of our previously reported diffusion-weighted ms-RARE variant 39. Due to the reduced 

power deposition, RARE-EPI offers the potential for increasing the spatial coverage by simultaneous 

multi-slice imaging 48 techniques, which are inherently RF power demanding.  

Recognizing the challenges of DWI free of geometric distortion and realizing the 

opportunities for ophthalmic imaging discovery along with the advances in (ultra)high field MRI, this 

work examines the applicability of diffusion-weighted RARE-EPI for anatomically accurate DWI of the 

eye and the orbit at 3.0 T and 7.0 T. To meet this goal we extended our previous work and 

implemented a multi-shot RARE-EPI variant and incorporated diffusion-sensitization preparation 

(DW-RARE-EPI). A navigator echo is added for shot-to-shot bulk motion induced phase error 

estimation and correction, and simultaneous multi-slice imaging is integrated for acceleration. The 

suitability of DW-RARE-EPI for geometric distortion free imaging is carefully examined in phantom 

experiments and benchmarked against single shot EPI, read-out segmented EPI and multi-shot RARE. 

The clinical feasibility of DW-RARE-EPI for imaging of the eye and the orbit free of geometric 

distortions is demonstrated in a feasibility study in healthy subjects at 3.0 T and 7.0 T as a mandatory 

precursor to broader clinical studies.  
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METHODS 

Diffusion-Weighted Imaging Techniques 

The diffusion-weighted RARE-EPI combined acquisition (DW-RARE-EPI) variant is shown 

schematically in Figure 1a including diffusion sensitization, phase correction for motion 

compensation and the imaging module 39,49. In the RARE-EPI hybrid [(1-λ)ETL] RARE echoes were 

replaced by EPI echoes (ETL = echo train length) where λ (0≤λ≤1) defines the fraction of echoes 

within the echo train covered by the RARE module 44. The dephasing gradient in frequency encoding 

direction is imbalanced to separate the echo into two groups 50. This approach is employed to avoid 

destructive interferences between even and odd echoes which result from violation of the Carr-

Purcell-Meiboom-Gill (CPMG) condition due to the diffusion preparation. Unipolar diffusion 

sensitization gradients were placed along the phase encoding direction and played out prior and 

after the first refocusing pulse. The first two echoes were acquired without phase encoding to 

enable 1D navigator phase correction to compensate for rigid body motion artifacts induced by 

unknown phase shifts generated by the diffusion sensitization preparation module. The temporal 

position of RARE and EPI echoes may differ due to system imperfections, eddy currents and main 

magnetic field inhomogeneities, possibly resulting in image artifacts. Therefore, one dummy 

excitation without phase encoding gradients turned on was acquired prior to the actual data 

acquisition as a reference to non-linearly correct the temporal position and phase of RARE and EPI 

echoes that are combined within one k-space 51. 

To maintain geometrical integrity of RARE-EPI the center of k-space was filled with data from 

the RARE echo train while a train of gradient recalled echoes was used to sample the periphery of k-

space. Data were acquired center-out in k-space together with a minimal TE for diffusion-weighted 

acquisitions (Figure 1b). In case of T2 weighted acquisitions a linear phase encoding scheme in 

conjunction with partial Fourier sampling was applied to allow for larger TE values while ensuring an 

ample share of RARE echoes in the center of k-space (Figure 1c). 

For comparison, three alternative diffusion-weighted pulse techniques were employed: (i) 

multi-shot RARE (ms-RARE) 39 that was recently proposed for diffusion-weighted imaging free of 

geometric distortions, which is identical to DW-RARE-EPI with λ = 1, (ii) single-shot EPI (ss-EPI) as the 

clinical standard for DWI and (iii) readout-segmented EPI (rs-EPI) as a sophisticated EPI variant 37,38. 

 

Magnetic Resonance Hardware 

Phantom experiments and in-vivo studies were performed on a 3.0 T whole body MR system 

(Magnetom Verio, Siemens, Erlangen, Germany; maximum gradient strength 40 mT/m, maximum 

slew rate 200 mT/m/ms) and on a 7.0 T whole body MR system (Magnetom, Siemens, Erlangen, 
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Germany; maximum gradient strength 38 mT/m, maximum slew rate 170 mT/m/ms). At 3.0 T a body 

volume RF coil was used for signal transmission and a 32-channel head RF coil (Siemens, Erlangen, 

Germany) was applied for signal reception. A dedicated six-element transceiver RF coil array 

consisting of loop elements was employed for in-vivo ophthalmic MRI at 7.0 T 13 (MRI.TOOLS GmbH, 

Berlin, Germany) utilizing the parallel transmission system with a fixed phase setting. For phantom 

and brain MRI at 7.0 T, a 24-element RF coil array (Nova Medical, Wilmington, USA) was used, which 

is equipped with a quadrature RF volume resonator used for transmission. Figure 2 shows 

photographs of the applied RF coil setups. 

 

Phantom Experiments 

To examine the geometric integrity of DW-RARE-EPI, a cylindrical structure phantom was 

used (Siemens Multipurpose-Phantom E, diameter = 18 cm, height = 14 cm). A transaxial slice 

covering five cylinders (diameter = 3.5 cm) containing different concentrations of MnCl2 in distilled 

water (MnCl2 per 1000g H2O dist.: 10 mg, 20 mg, 40 mg, 70 mg, 120 mg) was chosen for imaging. 

Relaxation properties are summarized in Table 1. Morphological images and diffusion-weighted data 

were acquired at 3.0 T and at 7.0 T for (i) ms-RARE (λ = 1), (ii) DW-RARE-EPI using λ = 0.7, λ = 0.6 and 

λ = 0.5 together with an ETL of 16, (iii) ss-EPI (GRAPPA 52 R = 3) and (iv) rs-EPI (nine readout 

segments, GRAPPA R =2). For each technique the shortest TE possible was set to maximize the 

signal. Eight b-values (b = 50 s/mm2 plus b = 100 s/mm2 to b = 700 s/mm2 with an increment of b = 

100 s/mm2) were used to acquire sets of diffusion-weighted data. A Fast Low Angle Shot (FLASH) 

acquisition exhibiting identical geometric parameters was used as a reference. The nominal flip 

angle of the refocusing pulses α was set to 180° in all imaging protocols. Table 2 provides the full 

compilation of imaging parameters used for the experiments in this work. 

 

Ethics Statement 

In-vivo feasibility studies at 3.0 T and 7.0 T were approved by the local ethical committee 

(registration number DE/CA73/5550/09, Landesamt für Arbeitsschutz, Gesundheitsschutz und 

technische Sicherheit, Berlin, Germany). Informed written consent was obtained from each 

volunteer prior to the study in compliance with the local institutional review board guidelines. 

 

Feasibility Study in Healthy Volunteers 

A feasibility study in healthy volunteers (n = 8 (3 male), mean age = (31.6 ± 8.0) years, mean 

BMI = (22.9 ± 2.7) kg/m2) was performed at 3.0 T and at 7.0 T. The experiments included anatomical 
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brain images, apparent diffusion coefficient (ADC) mapping of the eyes, morphological brain 

multiband imaging and multiband ADC mapping of the eyes. 

In-vivo anatomical brain images were acquired at 3.0 T and at 7.0 T in healthy volunteers  to 

demonstrate the comparability of RARE-EPI with conventional RARE. For the RARE-EPI hybrid an ETL 

of 16 was chosen, and λ = 0.6 (10 RARE echoes, 6 EPI echoes) and λ = 0.5 (8 RARE echoes, 8 EPI 

echoes) were applied. Slice selection gradient reversal (SSGR) was applied for fat suppression 53. 

To elucidate the immunity of DW-RARE-EPI, ms-RARE (λ = 1), ss-EPI and rs-EPI to geometric 

distortions, ADC mapping of the eyes was performed at 3.0 T. Six b-values (b = 50 s/mm2 plus 

b = 100 s/mm2 to b = 500 s/mm2 with an increment of b = 100s/mm2) were employed to generate 

series of diffusion-weighted data. A T2-weighted RARE image exhibiting identical geometric 

parameters was acquired for anatomical reference. 

To demonstrate the applicability of DW-RARE-EPI at ultrahigh magnetic field strengths, ADC 

mapping of the eyes was performed at 7.0 T using ms-RARE (λ = 1) and DW-RARE-EPI. Six b-values 

(b = 50 s/mm2 plus b = 100 s/mm2 to b = 500 s/mm2 with an increment of b = 100s/mm2) were 

employed to generate series of diffusion-weighted data. Phase encoding was set anterior-posterior 

at 7.0 T enabled by the coil’s low sensitivity in the posterior brain and thus allowing the acquisition 

of a reduced number of phase encoding lines to shorten the acquisition time. 

Multiband (MB) imaging with a MB factor of 2 was performed at 3.0 T to increase the spatial 

coverage. Two Hanning filtered SINC pulses with a bandwidth-time-product (BWTP) of 1.15 were 

added. The pulse duration was 0.8 ms for the excitation pulse and 1.6 ms for the refocusing pulses. 

An additional phase increment of 180° was added for every other k-space line for the second slice to 

facilitate CAIPIRINHA (Controlled Aliasing in Parallel Imaging Results in Higher Acceleration) encoding 

along the slice direction 54. A constant phase of 90° was applied for one slice to reduce the peak 

power of the multiband RF pulse 55. Morphological and diffusion-weighted images were acquired for 

the cylindrical structure phantom and for two brain slices separated by a 1 cm gap and covering the 

eyes were acquired as proof of principle using RARE and RARE-EPI (λ = 0.6) in three different 

volunteers. The range of applied b-values for multiband ADC mapping was identical to the in-vivo 

measurements described above. To explicate the immunity of multiband DW-RARE-EPI to geometric 

distortions, ADC mapping was performed in comparison to ms-RARE (λ = 1), ss-EPI and rs-EPI. 

 

Data Analysis 

To visualize the extent of geometric distortions, contours around the cylindrical structures in 

the phantom were defined in the FLASH reference image and copied to the data obtained with 

ms-RARE, RARE-EPI, ss-EPI and rs-EPI. Center of gravity analysis was performed to quantify 
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geometric distortions that occur primarily asymmetrically in phase encoding direction (MATLAB, The 

Mathworks, Natick, MA). For this purpose, the areas within the contours were determined and the 

center of gravity was calculated for each structure. The deviation of the center of gravity (in pixels) 

was calculated with respect to the FLASH reference image. All displacements obtained were 

averaged over all structures for each imaging approach. 

Edge sharpness was assessed by line profile analysis. For this purpose a profile covering the 

boundary between the vitreous humor and the sclera of the left eye and another profile covering 

the edge of the posterior skull area were chosen for the assay. The signal intensity SI along the 

profile was fitted to a sigmoid function described by 

𝑆𝐼(𝑥; 𝑐0, 𝑐1, 𝑐2, 𝑠) =
𝑐1

1 + 10𝑠(𝑐0−𝑥)
+ 𝑐2 

where x as the independent variable is the distance, c0 is the center location, c1 describes the vertical 

range and c2 determines the vertical offset while s defines the sharpness of the sigmoid. A least-

squares curve fit was chosen and the parameter s provides a measure for edge sharpness 56. 

ADC maps were generated by fitting a linear function to the data points obtained for a series 

of b-values after taking the logarithm of the signal intensity. The outer contour of the phantom was 

used to mask the ADC maps to only show values within the phantom. In-vivo ADC maps were 

masked using the boundaries of the eyeballs and superimposed to the anatomical reference images. 

Unaliasing of multiband data was performed using a slice GRAPPA (SG) algorithm 57. 

Reconstruction kernels (size: 5 x 5) were calibrated using single band RARE data acquired with a 

reduced matrix size of 128 x 128 to accelerate the acquisition of the calibration scan. These 

calibration data were applied for the reconstruction of all acquired multiband data with varying 

values of λ and for all b-values. To quantify the quality of the slice separation signal leakage Li→j (i,j = 

1,2) from slice i into slice j (ideally 0%) as well as the passing signal Li→i (ideally 100%) was 

determined by applying the SG reconstruction to the single-band data of slice i 58. The obtained 

leakage signal was normalized by the mean signal magnitude of the single-band image determined 

within a region of interest (ROI) covering the vitreous humor in the left eye. The 99th percentile of 

Li→j indicated by 𝐿𝑖→𝑗
99% was calculated as a measure for slice separation quality 59. 
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RESULTS 

Phantom Experiments 

Figure 3 summarizes the results obtained for phantom imaging using ms-RARE, DW-RARE-

EPI, ss-EPI and rs-EPI at 3.0 T and 7.0 T. Morphological images (Figure 3b) are shown as well as 

masked ADC maps (Figure 3c) and difference maps with respect to the FLASH reference image 

(Figure 3d). Using a factor λ of 0.7 (11 RARE echoes, 5 EPI echoes) and 0.6 (10 RARE echoes, 

6 EPI echoes) generates results exhibiting image quality comparable to conventional RARE 

imaging (λ = 1). Decreasing λ to 0.5 (8 RARE echoes, 8 EPI echoes) causes minor artifacts in regions 

with high signal intensity and strong signal intensity gradients like the phantom boundary both at 3.0 

T and at 7.0 T. The artifact is caused by a jump in signal intensity in k-space at the position of the 

change between RARE and EPI echoes. For lower values of λ the transition moves closer to the 

center of k-space meaning that the effect on image quality is more pronounced.  

Frequency offsets across the measured slices were ∆B0 = 29.2 Hz at 3.0 T and 56.6 Hz at 7.0 T 

(Figure 3a). A center of gravity examination of the phantom images revealed minor distortions for 

RARE of (1.66 ± 0.18) pixels for 3.0 T and (0.41 ± 0.14) pixels at 7.0 T with respect to the FLASH 

reference, which can be attributed to differences in the PSF of the two imaging techniques. The 

displacement in the center of gravity versus the FLASH reference was severely increased for ss-EPI (d 

= (3.00 ± 1.56) pixels at 3.0 T and d = (6.36 ± 4.08) pixels at 7.0 T). For the structure phantom used, 

rs-EPI yielded minor geometric distortions (d = (2.36 ± 0.17) pixels at 3.0 T and d = (1.87 ± 1.10) 

pixels at 7.0 T). Decreasing the factor λ in RARE-EPI, i.e. increasing the share of EPI echoes in the 

echo train, did not impede geometric integrity, meaning that no increase in deviations from the 

anatomic FLASH reference was observed. 

PSF measurement and analysis have been performed to quantify the extent of image 

blurring induced by replacing RARE by EPI echoes. The measurements revealed a 13% increase in the 

full width half maximum of the PSF when replacing half of the RARE echo train by EPI echoes 

(λ = 0.5). Figure 4 summarizes the results of the PSF analysis for RARE (λ = 1) and RARE-EPI with 

λ = 0.7, λ = 0.6 and λ = 0.5. 

The ADC maps in Figure 3c demonstrate the feasibility of diffusion-weighted RARE-EPI. The 

ADC maps calculated from diffusion-weighted data series acquired with λ = 0.7, λ = 0.6 and λ = 0.5 

showed no decrease in image quality due to the increasing replacement of RARE echoes by EPI 

echoes. Mean ADC values (± standard deviation) at room temperature determined in an ROI placed 

within the distilled water compartment in the phantom are summarized in Table 3.  
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The reduction of RF energy per TR with increasing factor λ was assessed using the integral of 

the squared RF pulses as a metric. Using λ = 0.5 reduces the administered RF power deposition by 

36% assuming an ETL of 16 plus 3 dummy RF pulses. 

 

Volunteer Feasibility Study  

Figure 5 shows anatomical data for brain slices including the eyes comparing conventional 

RARE (λ = 1) with RARE-EPI (λ = 0.6 and λ = 0.5) acquired at 3.0 T and at 7.0 T. Image quality and 

contrast are maintained for RARE-EPI which manifests itself in the visibility of subtle anatomical 

structures as demonstrated in the zoomed views of Figure 5. To keep minor artifacts at boundaries 

with high signal intensity gradients and in regions with high signal intensity like the vitreous humor 

at a minimum, the acquisitions were performed in conjunction with fat suppression. Figure 5c 

demonstrates the effect of the applied phase correction algorithm and how imaging artifacts 

generated by differences in phase and temporal position between RARE and EPI echoes are avoided. 

Additionally, one image where EPI echo lines were filled by zeros in k-space is shown. Replacing the 

RARE readout in part of the k-space with EPI echoes results in the desired spatial resolution without 

introducing blurring. 

To illustrate the immunity of DW-RARE-EPI to geometric distortions in comparison to 

diffusion-weighted RARE, ss-EPI and rs-EPI (Figure 6a), ADC maps acquired at 3.0 T are presented in 

Figure 6b,c. The overlay in Figure 6c shows the superposition of the masked ADC map and the 

anatomical reference image deduced from diffusion-weighted RARE (Figure 6a). Mean ADC values 

within the vitreous humor in the shown exemplary volunteer were ADCRARE = (2.73 ± 0.19) · 10-3 

mm2/s, ADCDW-RARE-EPI = (2.77 ± 0.20) · 10-3 mm2/s, ADCss-EPI = (2.86 ± 0.33) · 10-3 mm2/s and 

ADCrs-EPI = (3.19 ± 0.81) · 10-3 mm2/s. These apparent diffusion coefficients compare well with ADCs 

previously reported for the vitreous body using diffusion-weighted ss-EPI of the eye at 1.5 T 27,31.  

A closer examination of the anatomic integrity revealed severe geometric distortions of both 

eyeballs for ss-EPI (deviation d = (7.96 ± 2.57) pixels) while rs-EPI showed minor distortions 

(d = (1.73 ± 0.20) pixels) as demonstrated in Figure 6d. DW-RARE-EPI (λ=0.5) exhibited anatomical 

integrity comparable to RARE based ADC mapping, manifesting itself in a deviation 

of (1.12 ± 0.02) pixels of the center of gravity. No geometric distortions and no other imaging 

artifacts related to the replacement of RARE echoes by EPI echoes were detected for DW-RARE-EPI 

(λ = 0.5) as indicated by the match between the ADC maps superimposed to anatomic reference 

images. To demonstrate the feasibility of DW-RARE-EPI with reduced voxel sizes ADC maps 

exhibiting a spatial resolution of (0.9 x 0.9 x 3.0) mm3 are shown in Figure 6e.  
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When benchmarking the apparent diffusion coefficients of the eyes derived from DW-RARE-

EPI with those from RARE, a linear relationship between ADCRARE (λ = 1) and ADCRARE-EPI (λ = 0.5) was found, 

which can be described by y = 1.01 · x with a root mean square error of 2.73·10-4 (Figure 6f). This 

finding confirms the results obtained in the phantom assessment and endorses the validity of the 

diffusion-weighting within in DW-RARE-EPI. The Bland-Altman plot in Figure 6g underpins the close 

match between ADCRARE (λ = 1) and ADCRARE-EPI (λ = 0.5)  with a mean difference (ADCRARE (λ = 1) - ADCRARE-EPI (λ = 

0.5))  of -3.5 · 10-5 mm2/s and a +/-1.96 standard deviation of 4.98/-5.68 · 10-4 mm2/s. 

Figure 7 shows diffusion-weighted RARE-EPI and ms-RARE images obtained at 7.0 T with b-

values of 50 s/mm2 and 500 s/mm2 as well as corresponding ADC maps. A quantitative analysis 

revealed a mean ADC (± standard deviation) in the vitreous humor of (2.80 ± 0.26) · 10-3
 mm2/s for 

ms-RARE and (2.88 ± 0.23) · 10-3
 mm2/s for DW-RARE-EPI (λ = 0.5). These values agree with ADC 

values determined at 3.0 T and with literature values 27,31. Ghosts induced by the sharp eye ball 

boundary can be seen in the anatomical image acquired with conventional RARE (λ = 1) and are 

pronounced in the RARE-EPI (λ = 0.5) acquisition. This artifact can be attributed to the strong 

gradient in signal intensity due to the high signal intensity level within in the vitreous humor. In 

diffusion-weighted images this effect is offset due to lower signal intensity levels. The difference in 

center of gravity of RARE-EPI in comparison to ms-RARE was determined to be 0.14 pixel. Taking this 

result together with the phantom analysis into account demonstrates that no geometric distortions 

are induced by replacing RARE echoes within the echo train by EPI echoes at 7.0 T. 

Figure 8 shows the results of the edge sharpness and mean ADC value analysis performed for 

all subjects included in the feasibility study. For the edge sharpness using the eye boundary the 

mean s-value is reduced from 0.83 to 0.67 when reducing λ from 1.0 to 0.6 (Figure 8a). An unpaired 

t-test after a positive Kolmogorov-Smirnov normality test revealed a p-value of 0.21 meaning that 

this difference is non-significant. When using the skull boundary the mean s-value for λ = 1 is 0.87 

and 0.86 for λ = 0.6 (Figure 8b). The t-test revealed a non-significant p-value of 0.95. Mean ADC 

values for RARE and RARE-EPI (λ = 0.6) match very well as demonstrated in Figure 8c and reflect 

literature values reported before31. 

Figure 9 summarizes the results of the multiband DWI phantom study. MB RARE, MB RARE-

EPI with λ = 0.6, ss-EPI and rs-EPI are compared in terms of geometric distortions. The displacement 

of the center of gravity was determined with respect to the FLASH reference. ss-EPI and rs-EPI 

showed increased geometric distortions in comparison to RARE and RARE-EPI. The distortions for 

slice 1 and slice 2 were in the same range for all approaches. Also, the ADC values determined in the 

distilled water compartment of the phantom were comparable for both slices and match with the 

results obtained from the single slice study presented in Figure 3. 
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The results obtained for morphological simultaneous multi-slice RARE-EPI imaging are 

summarized in Figure 10. The location of the two selected slices displaced by 1 cm is illustrated in 

Figure 10a. Aliased and un-aliased images derived from multiband RARE, RARE-EPI (λ = 0.6) and 

RARE-EPI (λ = 0.5) are shown in Figure 10b together with normalized leakage values Li→j (Figure 10c). 

The unaliased MB images for slice 1 and slice 2 demonstrate successful slice separation for the 

applied range of λ-values. The quantitative analysis of signal leakage from slice 1 into slice 2 and vice 

versa revealed 𝐿𝑖→𝑗
99% values of 8.5%/8.3% (𝐿1→2

99%/𝐿2→1
99%) for λ = 1, 7.5%/7.5% for λ = 0.7 and 7.9%/8.1% 

for λ = 0.6. 

In analogy to the single band data presented in Figure 6, Figure 11 illustrates the immunity of 

multiband DW-RARE-EPI ADC mapping to geometric distortions. This manifests itself in the minor 

displacement of the center of gravity of both eye balls of less than one pixel for RARE-EPI with 

respect to ms-RARE. Contrary to that, ss-EPI and rs-EPI showed severe geometric distortions with 

displacements in the range of one magnitude higher than for RARE-EPI. 

Diffusion-weighted simultaneous multi-slice RARE-EPI (λ = 0.6) data and the corresponding 

ADC maps are displayed in Figure 12 for a healthy volunteer and a subject with an arachnoidal cyst 

as proof of principle. Successful slice separation was achieved for the complete range of applied 

b-values using a non-diffusion-weighted calibration data set with half resolution compared to the 

multiband data. The mean ADC value within the arachnoidal cyst was approximately 3 fold higher 

with an ADC value of (2.88 ± 0.45) · 10-3 mm2/s compared to adjacent white and gray matter brain 

tissues exhibiting ADCs of (0.92 ± 0.24) · 10-3 mm2/s (Figure 12b). The benign and asymptomatic cyst 

containing cerebrospinal fluid and being located in the left temporal lobe is sharply delineated from 

the surrounding tissue. No geometric distortions were observed despite the prefrontal location and 

the close proximity to the nasal and frontal sinuses allowing an anatomically accurate assessment of 

the cyst, underlining the benefit of anatomical integrity of DW-RARE-EPI.  
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DISCUSSION 

In this study, we demonstrate the feasibility of diffusion-weighted RARE-EPI for ophthalmic 

DWI free of geometric distortions at 3.0 T and at 7.0 T. Our findings indicate high anatomic integrity 

for RARE-EPI down to a CAT factor λ = 0.5, meaning that half of the RARE echoes within the echo 

train are replaced by EPI echoes. Our results demonstrate the anatomic integrity of DW-RARE-EPI for 

phantoms with distinct structure features as well as for in-vivo ophthalmic imaging. Unlike ss-EPI and 

rs-EPI no geometric distortions were observed for morphological RARE-EPI phantom imaging. Mean 

apparent diffusion coefficients derived from RARE-EPI for distilled water accord well with ADCs 

calculated from diffusion-weighted ss-EPI and rs-EPI. This accordance as well as the agreement with 

the literature values confirms the correct level of diffusion-sensitization in DW-RARE-EPI. It stands to 

reason that further reduction in the CAT factor λ can be accomplished by combining RARE-EPI with a 

PSF encoded strategy for correction of modest distortions evoked by the extension of the EPI echo 

train 40. 

Reduced repetition times and acquisition time shortening were enabled by the reduced RF 

power deposition in DW-RARE-EPI. Second the SAR advantage of RARE-EPI allowed sequential 

acquisition of several slices within one TR. Next the SAR economy of DW-RARE-EPI enabled 

multiband RF pulses for simultaneous multi-slice imaging. In a proof of principle study we showed 

the feasibility of multiband DW-RARE-EPI of the eye with a multiband factor of 2 and a slice center 

distance of 1 cm with ample slice separation. The close location of the slices compared to the slice 

thickness of 5 mm is of particular importance for ophthalmic imaging due to the small size of the eye 

as the target organ. Due to the RF pulses’ low BWTP of 1.15, an overlap of both excited slices is 

expected. Phantom experiments have been conducted to study the impact on the slice separation 

and the results reveal a 10% increase in the leakage 𝐿99% from 1.7% to 1.9% when reducing the slice 

distance from 3 cm to 1 cm. This result and the low leakage values in the in-vivo experiments render 

the slice distance of 1 cm reasonable. Yet, it is a recognized limitation to our feasibility study that the 

multiband factor was limited to 2. Replacing the current RF pulses by PINS pulses is a promising 

candidate to increase the number of simultaneous acquired slices 60-62. Our approach of applying a 

combined acquisition technique is compatible with the concept of hyperechoes 63 and variable 

refocusing flip angles 64 that can serve as measures to further reduce SAR for multiband applications 

if necessary. 

A recognized limitation of the current implementation is the use of 1D linear navigator phase 

correction to account for unknown phase shifts induced by the diffusion sensitization module within 

each excitation cycle during the multi-shot acquisition. By this, the diffusion sensitization gradients 

are limited to the phase encoding axis and the maximum achievable b-value is reduced versus a 
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scheme exploiting all axes. A 2D linear phase correction 65,66 or a 2D non-linear approach 67 promise 

to improve the correction robustness and to allow diffusion sensitization gradients along all three 

axes to increase the achievable maximum b-value. Extending the correction algorithm to a nonlinear 

algorithm in conjunction with a reacquisition scheme allows further gain in robustness 37. Navigator 

correction crosses its borders when motion changes between data and navigator acquisition. To 

circumvent this, an alternative approach termed multiplexed sensitivity encoding (MUSE) has been 

suggested 68. Adding MUSE to our current implementation promises to improve the correction of 

nonlinear shot-to-shot phase variations. Furthermore, the replacement of the current Cartesian 

sampling scheme is anticipated. Radial k-space trajectories hold the promise to render additional 

navigator data unnecessary since the densely sampled k-space center can be deployed for phase 

correction of motion corrupted data. The use of periodically rotated overlapping parallel lines with 

enhanced reconstruction (PROPELLER) presents an alternative to fully exploit the benefits of radial k-

space sampling for DWI 69. It is also a recognized limitation of the current implementation, that the 

acquisition times exceed those of the EPI techniques. However, anatomically correct images free of 

geometric distortions are obtained as a result of the acquisition time prolongation. Further 

acceleration in acquisition time can be accomplished by radial undersampling with iterative 

reconstruction 70 which is compatible to RARE-EPI. Also, the concept of inner volume 71 or ZOOM 

imaging 72 could be translated to RARE-EPI and thus a further reduction of acquisition times can be 

achieved. 

 

 Further studies with larger sample sizes including volunteers and patients of both sexes are 

required, but this mandatory precursor was essential before extra variances due to gender and/or 

pathophysiological conditions are introduced. Extending the current work to a study including 

patients with intraocular masses is an important step en route to the eye clinic. 
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CONCLUSIONS 

 To conclude, this study showed that diffusion-weighted RARE-EPI has the capability to 

acquire ample diffusion contrast, high fidelity, distortion-free images of the eye and the orbit. The 

results underpin the challenges of ocular imaging at 3.0 T and 7.0 T for echo planar imaging variants 

and demonstrate that these issues can be offset by using accelerated RARE based approaches. It was 

shown that RARE-EPI maintains the immunity to B0 inhomogeneities reported for RARE imaging, 

which renders RARE-EPI well suited for ophthalmic DWI. This benefit can be exploited for the 

assessment of spatial arrangements of the eye segments and their masses with the goal to provide 

guidance in diagnostic assessment and treatment of ophthalmological diseases and 

neuroophthalmological disorders. These developments may advance the capabilities of MRI based 

anatomical imaging and tissue characterization at a level of non-invasive interrogation not previously 

available in humans. 
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Table 1 

Relaxation parameters of the five compartments in the phantom presented in Figure 3 and 9. 

MnCl2 per 
1000g H2O 

dist. 

3.0 T 7.0 T 

T1 T2 T2
* T1 T2 T2

* 

(mean ± standard deviation) [ms] 

10 mg (A) 1615 ± 15 219 ± 2 122 ± 37 1557 ± 71 165 ± 3 83 ± 16 
20 mg (B) 1108 ± 21 115 ± 4 90 ± 15 1073 ± 90 94 ± 2 52 ± 4 
40 mg (C) 697 ± 8 65 ± 2 44 ± 5 647 ± 20 51 ± 4 30 ± 2 
70 mg (D) 431 ± 3 35 ± 2 24 ± 2 421 ± 11 33 ± 8 16 ± 1 
120 mg (E) 265 ± 5 21 ± 2 15 ± 1 265 ± 2 19 ± 7 10 ± 1 
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Table 2 

Experimental imaging protocols for phantom experiments and in-vivo examinations at 3.0 T and at 7.0 T. 

Experiment Figure 
TR 

[ms] 
TE 

[ms] 
ESP 
[ms] 

Receiver 
bandwidth 
[Hz/pixel] 

Acquisition matrix 
FOV 

[mm2] 
PE 

direction 

Spatial 
resolution 

[mm3] 
Acquistion time 

Phantom imaging at 3.0 T           
ms-RARE 

3 

750 32 6.4 630 

256 x 256 

  

1.0 x 1.0 x 3.0 

15 s per b-value 

RARE-EPI  750 32 6.4 (RARE); 2.1 (EPI) 630   15 s per b-value 

ss-EPI 6200 108 1.3 814 
250 x 
250 

RL 1:28 min 

rs-EPI 200 71 0.4 444   3:00 min 

FLASH reference 8.6 4.0  320    
           

Phantom imaging at 7.0 T       

250 x 
250 

   

ms-RARE 

3 

1500 31 6.2 630 

256 x 256 

 

1.0 x 1.0 x 3.0 

29 s per b-value 

RARE-EPI (λ = 0.7, λ = 0.6, λ = 0.5) 1500 31 6.2 (RARE); 1.9 (EPI) 630  29 s per b-value 

ss-EPI 3300 115 1.2 1028 RL 2:47 min 

rs-EPI 1000 75 0.3 574  9:59 min 

FLASH reference 8.3 3.7  320   

          

In-vivo brain morphology at 3.0 T       

188 x 
251 

RL 

 

42 s 
ms-RARE 

5 
2000 90 10.0  391 512 x 288 (Partial Fourier; 

zerofilled to 512 x 384) 
0.5 x 0.5 x 3.0 

RARE-EPI (λ = 0.6, λ = 0.5) 2000 90 10.0 (RARE); 2.9 (EPI) 391 

        

In-vivo brain morphology at 7.0 T       

251 x 
251 

RL 

 

54 s 
ms-RARE 

5 
2000 84 9.3  391 512 x 288 (Partial Fourier; 

zerofilled to 512 x 384) 
0.5 x 0.5 x 3.0 

RARE-EPI (λ = 0.6, λ = 0.5) 2000 84 9.3 (RARE); 2.8 (EPI) 391 

        

In-vivo ADC mapping at 3.0 T       

230 

   

ms-RARE 

5;11 1000 

33 6.6 630 

256 x 256 

 

0.9 x 0.9 x 5.0 

20 s per b-value 

RARE-EPI (λ = 0.5) 33 6.6 (RARE); 1.9 (EPI) 630  20 s per b-value 

ss-EPI 142 1.4 814 RL 11 s 

rs-EPI 81 0.4 444  1:10 min 

RARE reference 62 6.6 630   

          

In-vivo ADC mapping at 7.0 T       

100 x 
200 

AP 

 

23 s per b-value 
ms-RARE 

7 
1000 97 10.9 360 512 x 192 (Partial Fourier; 

zerofilled to 512 x 256) 
0.4 x 0.4 x 2.5 

RARE-EPI (λ = 0.5) 1000 97 10.9 (RARE); 3.2 (EPI) 360 

        

Morphological multiband imaging at 3.0 T       

230 RL 

 

38 s 
ms-RARE 

10 
2000 34 6.8 630 

256 x 256 0.9 x 0.9 x 5.0 
RARE-EPI (λ = 0.6) 2000 34 6.8 (RARE); 2.9 (EPI) 630 

        

Multiband ADC mapping at 3.0 T           
RARE-EPI (λ = 0.6) 12 1000 34 6.8 (RARE); 2.9 (EPI) 630 256 x 256 230 RL 0.9 x 0.9 x 5.0 20 s 
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Table 3 

Mean ADC values determined in an ROI placed within the distilled water compartment in the 

phantom presented in Figure 3. 

 

 

  

 
Mean ADC values  

(± standard deviation) [·10 -3 mm2/s] 
 3.0 T 7.0 T 

ms-RARE 2.33 ± 0.05  2.09 ± 0.04  
RARE-EPI (λ = 0.7) 2.34 ± 0.05  2.20 ± 0.05  
RARE-EPI (λ = 0.6) 2.32 ± 0.06  2.20 ± 0.05  
RARE-EPI (λ = 0.5) 2.35 ± 0.05  2.21 ± 0.04  

ss-EPI 2.19 ± 0.05  2.06 ± 0.04  
rs-EPI 2.20 ± 0.03  2.04 ± 0.03  

Literature value 73 2.13 (at 25°C) 
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FIGURE LEGENDS 

 

Figure 1 

(a) Basic scheme of the diffusion-weighted split-echo RARE-EPI (DW-RARE-EPI) pulse sequence 39,44,49 

showing the RF pulse train, the frequency encoding, the slice selection gradients and the phase 

encoding. Unipolar diffusion sensitization gradients of amplitude G and duration δ are placed along 

the phase encoding direction and played out prior and after the first refocusing RF pulse. A 1-

dimensional navigator signal is acquired for phase correction and motion compensation. The 

dephasing frequency encoding gradient is imbalanced to split odd and even echoes. The factor λ 

describes the ratio between RARE echoes and EPI echoes within the echo train. [λETL] RARE echoes 

are acquired followed by [(1- λ)ETL] EPI echoes. For better visualization the time scaling is different 

for the RARE and the EPI part of the echo train. Schematic drawings of the center-out phase encoding 

scheme (b) and the linear scheme which is applied in conjunction with partial Fourier (c) are 

displayed. 

 

Figure 2 

Photographs of the applied RF coil setups used in this study. (a) A 32-channel head RF coil (Siemens, 

Erlangen, Germany) used for signal reception in conjunction with a body volume RF coil for signal 

transmission for phantom and in-vivo studies at 3.0 T. (b) For phantom and brain MRI at 7.0 T, a 24-

element RF coil array (Nova Medical, Wilmington, USA) was used which is equipped with a 

quadrature RF volume coil for transmission. (c) A dedicated six-element transceiver RF coil array 

consisting of loop elements was employed together with a TX/RX interface for in-vivo ophthalmic 

MRI at 7.0 T 13 (MRI.TOOLS GmbH, Berlin, Germany). 

 

Figure 3 

(a) Field maps showing the offcenter frequency. Frequency offsets across the measured slices were 

∆B0 = 29.2 Hz at 3.0 T and 56.6 Hz at 7.0 T. (b) Images (transaxial slice) of a structure phantom 

(accommodating 5 cylinders filled with different liquids, d=3.5 cm) acquired at 3.0 T (left) and 7.0 T 

(right) using RARE, ss-EPI, rs-EPI and three RARE-EPI variants varying the ratio between RARE and EPI 

echoes: λ = 0.7 (11 RARE echoes, 5 EPI echoes), λ = 0.6 (10 RARE echoes, 6 EPI echoes), λ = 0.5 (8 

RARE echoes, 8 EPI echoes). All images exhibit a spatial resolution of (0.9x0.9x3.0) mm3. The red 

contour lines represent the geometry of the FLASH reference image that was acquired with identical 

geometrical parameters. The red contour was superimposed to all acquisitions to assess the degree 

of geometric distortions. (c) ADC maps masked by the outer contour of the cylindrical phantom are 



page 25 
 

shown for all six imaging approaches. (d) Difference maps were calculated based on the geometrical 

contours with respect to the FLASH reference image. Mean displacements ( standard deviation) in 

pixels (px) of the center of gravity of all cylinders are given for each acquisition. 

 

Figure 4 

PSF analysis: k-space profiles (a) are depicted for RARE (λ = 1) and three RARE-EPI variants 

with λ = 0.7, λ = 0.6 and λ = 0.5. The part of k-space sampled with RARE echoes is shaded in 

orange, while the parts filled by EPI echoes are marked in green. (b): The corresponding 

magnitude of the PSF for each approach is shown. The FWHM of the PSF in pixels (px) is 

noted as a measure of image quality. 

 

Figure 5 

In-vivo images of two healthy subjects acquired at 3.0 T (a) and at 7.0 T (b) showing a brain slice 

covering the eyes. Data acquisition was performed with RARE (λ=1; 16 RARE echoes), RARE-EPI 

(λ=0.6; 10 RARE echoes) and RARE-EPI (λ=0.5; 8 RARE echoes). Magnified views of ROI I covering the 

eyes (orange), ROI II in the center of the slice (red) and ROI III covering the posterior brain/skull 

boundary (blue) are shown. The magnified views demonstrate the ability of RARE-EPI to image subtle 

anatomical brain structures that compare very well with those obtained from RARE imaging. (c) 

Magnified views of the eyes acquired in a different subject demonstrate the effect of the applied 

phase correction that accounts for differences in phase and temporal position between RARE and EPI 

echoes. For comparison, an image where the EPI echo lines were substituted by zeros is shown. The 

spatial resolution is (0.5 x 0.5 x 3.0) mm3 for all acquisitions.  

 

Figure 6 

Comparison of (a) anatomical images and (b) ADC maps of the eyes calculated from 

diffusion-weighted data acquired with six b-values ranging from 50 s/mm2 to 500 s/mm2 at 3.0 T 

using RARE (λ = 1), RARE-EPI (λ = 0.5), ss-EPI and rs-EPI. The spatial resolution is (0.9x0.9x5.0) mm3 for 

all approaches. (c) The ADC maps were masked to show only the eyes and were superimposed to a 

T2-weighted RARE image (b=0 s/mm2) used as anatomical reference. (d) Difference maps were 

calculated based on the geometrical contours of both eye balls with respect to conventional RARE. 

The mean displacement of the center of gravity of both eye balls is given for RARE-EPI, ss-EPI and rs-

EPI. (e) ADC maps of the eyes exhibiting a spatial resolution of (0.9x0.9x3.0) mm3. (f) ADC values for 

pixels within the mask of both eyeballs are plotted for RARE (λ = 1) and RARE-EPI (λ = 0.5). A least-
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square fit revealed a linear relation with y = 1.01·x with a root mean square error (RMSE) of 2.73·10-4 

between the two quantities. (g) Bland-Altman-Plot correlating the values presented in (f). 

 

Figure 7 

Exemplary results derived from a healthy volunteer at 7.0 T using diffusion-weighted RARE and RARE-

EPI (λ = 0.5). Anatomical images and diffusion-weighted data with b-values of 50 s/mm2 and 

500 s/mm2 are shown together with the corresponding ADC maps. The difference map of the ADC 

map acquired using RARE-EPI with λ = 0.5 with respect to RARE is shown on the right. 

 

Figure 8 

(a) Scatter plot summarizing the results of the edge sharpness analysis for all subjects of the 

feasibility study at 3.0 T and 7.0 T using the eye boundary as profile. The mean is reduced from 0.83 

to 0.67 when reducing λ from 1.0 to 0.6. In case multiband imaging was performed both slices were 

evaluated. (b) Scatter plot summarizing the results of the edge sharpness analysis using the skull 

boundary as profile. Mean values are 0.87 for λ = 1 and 0.86 for λ = 0.86. The differences are non-

significant in both cases with a p-value of 0.21 for the analysis using the eye boundary and 0.95 for 

the skull boundary. (c) Scatter plot summarizing mean ADC values within the vitreous humor of the 

right and the left eye for the subjects included in the feasibility study. rs-EPI and ss-EPI was 

performed in only three subjects. 

 

Figure 9 

(a) Images (two transaxial slices separated by a gap of 1cm) of the structure phantom 

acquired at 3.0 T using MB RARE, MB RARE-EPI with λ = 0.6, ss-EPI and rs-EPI. All images 

exhibit a spatial resolution of (0.9x0.9x5.0) mm3. The red contour lines represent the 

geometry of the FLASH reference image that was acquired with identical geometrical 

parameters. The red contour was superimposed to all acquisitions to assess the degree of 

geometric distortions. For RARE and RARE-EPI the aliased MB images are shown on top. Slice 

1 and slice 2 were acquired sequentially for ss-EPI and rs-EPI. (b) ADC maps masked by the 

outer contour of the cylindrical phantom are shown for all four imaging approaches. (c) 

Difference maps were calculated based on the geometrical contours with respect to the 

FLASH reference image. Mean displacements ( standard deviation) in pixels (px) of the 

center of gravity of all cylinders are given for each acquisition. 
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Figure 10 

Aliased and reconstructed MB images acquired at 3.0 T for two slices covering the eyes (location 

shown in (a)) for RARE (λ= 1) and RARE-EPI with λ = 0.7 and λ = 0.6 (b). Corresponding signal leakage 

maps L1→2 and L2→1 in % of the mean vitreous humor signal amplitude are shown in (c). 

 

Figure 11 

(a) Aliased MB anatomical images of the eyes for RARE (λ = 1) and RARE-EPI with λ = 0.6. Comparison 

of (b) anatomical images and (c) ADC maps of the eyes calculated from diffusion-weighted data 

acquired with six b-values ranging from 50 s/mm2 to 500 s/mm2 at 3.0 T using RARE (λ = 1), RARE-EPI 

(λ = 0.6), ss-EPI and rs-EPI. The spatial resolution is (0.9x0.9x5.0) mm3 for all approaches. (d) The ADC 

maps were masked to show only the eyes and were superimposed to a T2-weighted RARE image (b=0 

s/mm2) used as anatomical reference. (e) Difference maps were calculated based on the geometrical 

contours of both eye balls with respect to conventional RARE. The mean displacement of the center 

of gravity of both eye balls is given for RARE-EPI, ss-EPI and rs-EPI. For RARE and RARE-EPI un-aliased 

images are shown for two slices separated by 1 cm. For rs-EPI and ss-EPI the two slices were acquired 

sequentially.  

 

Figure 12 

Diffusion-weighted simultaneous multi-slice images covering the eyes acquired with DW-RARE-EPI 

(λ = 0.6) at 3.0 T in a healthy volunteer (a) and in a subject with an arachnoidal cyst in the left 

temporal lobe (b). Corresponding ADC maps for both slices are shown on the right. The arachnoidal 

cyst showed increased ADC values compared to surrounding white and gray matter brain tissue. 



Figure 1 



Figure 1: 

(a) Basic scheme of the diffusion-weighted split-echo RARE-EPI (DW-RARE-EPI) pulse 
sequence 38,43,48 showing the RF pulse train, the frequency encoding, the slice 
selection gradients and the phase encoding. Unipolar diffusion sensitization gradients 
of amplitude G and duration δ are placed along the phase encoding direction and 
played out prior and after the first refocusing RF pulse. A 1-dimensional navigator 
signal is acquired for phase correction and motion compensation. The dephasing 
frequency encoding gradient is imbalanced to split odd and even echoes. The factor λ 
describes the ratio between RARE echoes and EPI echoes within the echo train. [λETL] 
RARE echoes are acquired followed by [(1- λ)ETL] EPI echoes. For better visualization 
the time scaling is different for the RARE and the EPI part of the echo train. Schematic 
drawings of the center-out phase encoding scheme (b) and the linear scheme which is 
applied in conjunction with partial Fourier (c) are displayed. 



Figure 2 



Figure 2: 

Photographs of the applied RF coil setups used in this study. (a) A 32-channel head RF 
coil (Siemens, Erlangen, Germany) used for signal reception in conjunction with a body 
volume RF coil for signal transmission for phantom and in-vivo studies at 3.0 T. (b) For 
phantom and brain MRI at 7.0 T, a 24-element RF coil array (Nova Medical, 
Wilmington, USA) was used which is equipped with a quadrature RF volume coil for 
transmission. (c) A dedicated six-element transceiver RF coil array consisting of loop 
elements was employed together with a TX/RX interface for in-vivo ophthalmic MRI at 
7.0 T [13] (MRI.TOOLS GmbH, Berlin, Germany). 



Figure 3 



Figure 3: 

 (a) Images (transaxial slice) of a structure phantom (accommodating 5 cylinders filled 
with different liquids, d=3.5 cm, the letters A-E refer to the labeling in Table 1) 
acquired at 3.0 T (left) and 7.0 T (right) using RARE, ss-EPI, rs-EPI and three RARE-EPI 
variants varying the ratio between RARE and EPI echoes: λ = 0.7 (11 RARE echoes, 5 
EPI echoes), λ = 0.6 (10 RARE echoes, 6 EPI echoes), λ = 0.5 (8 RARE echoes, 8 EPI 
echoes). All images exhibit a spatial resolution of (0.9x0.9x3.0) mm3. The red contour 
lines represent the geometry of the FLASH reference image that was acquired with 
identical geometrical parameters. The red contour was superimposed to all 
acquisitions to assess the degree of geometric distortions. (b) ADC maps masked by 
the outer contour of the cylindrical phantom are shown for all six imaging approaches. 
(c) Difference maps were calculated based on the geometrical contours with respect 
to the FLASH reference image. Mean displacements ( standard deviation) in pixels 
(px) of the center of gravity of all cylinders are given for each acquisition. 



Figure 4 



Figure 4: 

PSF analysis: k-space profiles (a) are depicted for RARE (λ = 1) and three RARE-EPI 
variants with λ = 0.7, λ = 0.6 and λ = 0.5. The part of k-space sampled with RARE 
echoes is shaded in orange, while the parts filled by EPI echoes are marked in green. 
(b): The corresponding magnitude of the PSF for each approach is shown. The FWHM 
of the PSF in pixels (px) is noted as a measure of image quality. 



Figure 5 
 



Figure 5: 

In-vivo images of two healthy subjects acquired at 3.0 T (a) and at 7.0 T (b) showing a 
brain slice covering the eyes. Data acquisition was performed with RARE (λ=1; 16 RARE 
echoes), RARE-EPI (λ=0.6; 10 RARE echoes) and RARE-EPI (λ=0.5; 8 RARE echoes). 
Magnified views of ROI I covering the eyes (orange), ROI II in the center of the slice 
(red) and ROI III covering the posterior brain/skull boundary (blue) are shown. The 
magnified views demonstrate the ability of RARE-EPI to image subtle anatomical brain 
structures that compare very well with those obtained from RARE imaging. (c) 
Magnified views of the eyes acquired in a different subject demonstrate the effect of 
the applied phase correction that accounts for differences in phase and temporal 
position between RARE and EPI echoes. For comparison, an image where the EPI echo 
lines were substituted by zeros is shown. The spatial resolution is (0.5 x 0.5 x 3) mm3 

for all acquisitions.  

 



Figure 6 



Figure 6: 

Comparison of (a) anatomical images and (b) ADC maps of the eyes calculated from 
diffusion-sensitized data acquired with six b-values ranging from 50 s/mm2 to 500 
s/mm2 at 3.0 T using RARE (λ = 1), RARE-EPI (λ = 0.5), ss-EPI and rs-EPI. The spatial 
resolution is (0.9x0.9x5.0) mm3 for all approaches. (c) The ADC maps were masked to 
show only the eyes and were superimposed to a T2-weighted RARE image (b=0 s/mm2) 
used as anatomical reference. (d) Difference maps were calculated with respect to 
conventional RARE. The mean displacement of the center of gravity of both eye balls is 
given for RARE-EPI, ss-EPI and rs-EPI. (e) ADC maps of the eyes exhibiting a spatial 
resolution of (0.9x0.9x3.0) mm3. (f) ADC values within the mask of both eyeballs are 
plotted for RARE (λ = 1) and RARE-EPI (λ = 0.5). A least-square fit revealed a linear 
relation with y = 1.01·x with a root mean square error (RMSE) of 2.73·10-4 between 
the two quantities. (g) Bland-Altman-Plot correlating the values presented in (f). 



Figure 7 



Figure 7: 

Exemplary results derived from two healthy volunteers at 7.0 T using diffusion-
weighted RARE and RARE-EPI (λ = 0.5). Anatomical images and diffusion-weighted data 
with b-values of 50 s/mm2 and 500 s/mm2 are shown together with the corresponding 
ADC maps. The difference map of the ADC map acquired using RARE-EPI with λ = 0.5 
with respect to RARE is shown on the right. 

 



Figure 8 



Figure 8: 

(a) Scatter plot summarizing the results of the edge sharpness analysis for all subjects 
of the feasibility study at 3.0 T and 7.0 T using the eye boundary as profile. The mean 
is reduced from 0.83 to 0.67 when reducing λ from 1.0 to 0.6. In case multiband 
imaging was performed both slices were evaluated. (b) Scatter plot summarizing the 
results of the edge sharpness analysis using the skull boundary as profile. Mean values 
are 0.87 for λ = 1 and 0.86 for λ = 0.86. The differences are non-significant in both 
cases with a p-value of 0.21 for the analysis using the eye boundary and 0.95 for the 
skull boundary. (c) Scatter plot summarizing mean ADC values within the vitreous 
humor of the right and the left eye for the subjects included in the feasibility study. rs-
EPI and ss-EPI was performed in only three subjects. 



Figure 9 



Figure 9: 

(a) Images (two transaxial slices separated by a gap of 1cm) of the structure phantom 
acquired at 3.0 T using MB RARE, MB RARE-EPI with λ = 0.6, ss-EPI and rs-EPI. All 
images exhibit a spatial resolution of (0.9x0.9x5.0) mm3. The red contour lines 
represent the geometry of the FLASH reference image that was acquired with identical 
geometrical parameters. The red contour was superimposed to all acquisitions to 
assess the degree of geometric distortions. For RARE and RARE-EPI the aliased MB 
images are shown on top. Slice 1 and slice 2 were acquired sequentially for ss-EPI and 
rs-EPI. (b) ADC maps masked by the outer contour of the cylindrical phantom are 
shown for all four imaging approaches. (c) Difference maps were calculated based on 
the geometrical contours with respect to the FLASH reference image. Mean 
displacements ( standard deviation) in pixels (px) of the center of gravity of all 
cylinders are given for each acquisition. 

 



Figure 10 



Figure 10: 

Aliased and reconstructed MB images acquired at 3.0 T for two slices covering the 
eyes (location shown in (a)) for RARE (λ= 1) and RARE-EPI with λ = 0.7 and λ = 0.6 (b). 
Corresponding signal leakage maps L1→2 and L2→1 in % of the mean vitreous humor 
signal amplitude are shown in (c). 



Figure 11 



Figure 11: 

(a) Aliased MB anatomical images of the eyes for RARE (λ = 1) and RARE-EPI with λ = 
0.6. Comparison of (b) anatomical images and (c) ADC maps of the eyes calculated 
from diffusion-weighted data acquired with six b-values ranging from 50 s/mm2 to 500 
s/mm2 at 3.0 T using RARE (λ = 1), RARE-EPI (λ = 0.6), ss-EPI and rs-EPI. The spatial 
resolution is (0.9x0.9x5.0) mm3 for all approaches. (d) The ADC maps were masked to 
show only the eyes and were superimposed to a T2-weighted RARE image (b=0 s/mm2) 
used as anatomical reference. (e) Difference maps were calculated based on the 
geometrical contours of both eye balls with respect to conventional RARE. The mean 
displacement of the center of gravity of both eye balls is given for RARE-EPI, ss-EPI and 
rs-EPI. For RARE and RARE-EPI un-aliased images are shown for two slices separated by 
1 cm. For rs-EPI and ss-EPI the two slices were acquired sequentially. 



Figure 12 



Figure 12: 

Diffusion-weighted simultaneous multi-slice images covering the eyes acquired with 
DW-RARE-EPI (λ = 0.6) at 3.0 T in a healthy volunteer (a) and in a volunteer with an 
incidental finding of an arachnoidal cyst in the left temporal lobe (b). Corresponding 
ADC maps for both slices are shown on the right. The arachnoidal cyst showed 
increased ADC values compared to surrounding white and gray matter brain tissue. 
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