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Abstract 

Modulation of energy metabolism is emerging as a key aspect associated with cell fate 

transition. The establishment of a correct metabolic program is particularly relevant for neural 

cells given their high bioenergetic requirements. Accordingly, diseases of the nervous system 

commonly involve mitochondrial impairment. Recent studies in animals and in neural 

derivatives of human pluripotent stem cells (PSCs) highlighted the importance of 

mitochondrial metabolism for neural fate decisions in health and disease. The mitochondria-

based metabolic program of early neurogenesis suggests that PSC-derived neural stem cells 

(NSCs) may be used for modeling neurological disorders. Understanding how metabolic 

programming is orchestrated during neural commitment may provide important information 

for the development of therapies against conditions affecting neural functions, including aging 

and mitochondrial disorders. 
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Within the nervous system, stem cells need to generate both neurons and glia [1–3]. Their 

derivation -collectively defined here as neurogenesis - requires the careful orchestration of 

cell type-specific epigenetic signatures. These signatures may be influenced by the metabolic 

state of the cells, given that metabolites can act as epigenetic regulators [4]. At the same time, 

the transcriptional reorganization associated with neural specification generates distinct 

metabolic programs that may also be cell type-specific and may in turn contribute to the 

correct establishment of the needed cellular identity. 

Here, we discuss recent literature addressing how the metabolic programs of neurons 

and glia are constructed. The works have been conducted both in animals and in neural 

derivatives of human pluripotent stem cells (PSCs). It is important to point out that the 

generation of neural cells in vitro can be influenced by the culture conditions, including 

signaling molecules and oxygen levels [5]. Therefore, the metabolism of in vitro derived 

human neural cells may not necessarily mirror that of the actual neural cells residing in the 

human brain. Nonetheless, the use of human PSC neural derivatives is allowing for the first 

time to investigate the metabolic regulation of human brain cells.  

Some of the recent findings that we will discuss here, generated from in vivo and in 

vitro experiments, have challenged the conventional idea associated with the metabolic 

remodeling of neurogenesis. The picture emerging is that metabolism is more plastic than 

previously expected and that it can be fine-tuned at different levels during neural 

commitment. We also comment on clinically relevant opportunities that are starting to be 

translated from these basic studies. We believe that this renewed interest in the metabolic 

contribution to neural specification may bring important insights for the study of diseases 

affecting the nervous system, including neurodegeneration and mitochondrial disorders.  
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Glycolytic metabolism and neurogenesis 

The metabolic programs of neurons and glia are considered to be very divergent. 

Neurons are dependent on mitochondrial-based oxidative phosphorylation (OXPHOS) while 

glia rely on glycolysis [6,7]. Both cell types are generated from multipotent neural stem cells 

(NSCs), which appear to share some of the features of glial cells, including the reliance on 

glycolytic metabolism [2,8]. Given that the modulation of metabolism may be instrumental 

during neural commitment [9], it becomes critical to investigate how the cell type-specific 

metabolic programs are regulated.  

The glycolytic nature of NSCs is usually explained by the fact that glycolysis is the 

preferred metabolic route of stemness [10]. Accordingly, PSC-derived neural progenitor cells 

(NPCs) have been found to depend on glycolytic metabolism [11]. Moreover, metabolic 

profiling of cells exiting pluripotency in vitro indicates that the metabolic switch towards 

OXPHOS does not occur uniformly for all germ layers, as ectodermal lineage and NPC 

induction still require the maintenance of a high glycolytic flux [12]. 

The picture becomes more complicated when we consider the proliferative rate of stem 

cells. In the case of PSCs, for example, the glycolytic metabolism is suggested to be a 

consequence of their elevated level of proliferation [13,14]. Highly proliferative cells like 

cancer cells prefer indeed glycolysis, since it provides the precursor molecules for biomass 

generation via the pentose phosphate pathway (PPP) that emerges from the upstream branches 

of glycolysis [15]. In the case of hematopoietic stem cells (HCS), however, glycolysis is 

considered to be chosen over OXPHOS due to the fact that HSCs do not actively proliferate 

and therefore do not have high bioenergetic needs [16,17]. These findings raise the question 

of why stem cells would prefer glycolysis regardless of their rate of proliferation. The 

relationship between proliferation and stem cell metabolism may be particularly important in 

the context of the nervous system. NSCs in vivo can in fact rapidly divide during development 

but become quiescent in adult age [18].  
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One possibility is that the stem cell reliance on glycolysis is linked to the regulation of 

redox metabolism. The use of glycolysis may reduce the intracellular levels of reactive 

oxygen species (ROS) generated as OXPHOS by-products and at the same time it may 

enhance the production of the antioxidant glutathione through the PPP-mediated generation of 

the NADPH [19]. ROS can also function as second messengers. The regulation of redox 

homeostasis may play a crucial role in the self-renewal of NSCs [20]. The physiological effect 

of ROS may contribute to the induction of neurogenesis in vivo [21]. Intermittent generation 

of ROS in proliferative NPCs in the developing cortex in vivo negatively influences their rate 

of proliferation [22], suggesting that low ROS levels are indeed beneficial for NPCs. Recent 

in vivo findings demonstrated that mouse embryonic NSCs exhibit reduced amount of ROS, 

while committed NPCs increase ROS production to promote differentiation [23]. NPC 

differentiation in vivo may be induced following a transcriptional program activated by the 

nuclear factor erythroid 2-related factor 2 (NRF2) [23]. NRF2 is indeed known to stimulate 

the expression of genes involved in redox signaling, thereby supporting neuronal 

differentiation by protecting against toxic insults [24]. 

The induction of glycolysis in NSCs might also be influenced by the level of oxygen 

and by the activation of hypoxia inducible factors (HIFs) [25]. This was found to be the case 

in the context of PSCs [26,27]. The oxygen sensing response can in fact be controlled by 

cellular ROS rather than by OXPHOS metabolism per se [28]. Nevertheless, the glycolytic 

metabolic state of ex vivo mouse NSCs has been found to be not dependent on HIFs [29]. At 

the same time, HIFs may be important in the in vitro derivation of NPCs from human PSCs, 

as the level of oxygen has been suggested to modulate whether NPCs can differentiate more 

efficiently into neurons or glia [30]. Therefore, the importance of HIF-mediated response in 

neurogenesis requires further investigations. 

Another possibility for explaining the reliance on glycolysis of NSCs and glia and the 

reliance on OXPHOS in the case of neurons may be that these metabolic programs may 
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contribute to the epigenetic regulation of the respective cell fate. The process of establishing a 

cell fate identity requires a complex integration between environmental cues and 

transcriptional states [13]. In this scenario, cellular metabolism may represent the mechanism 

through which a cell responds to both exogenous stimuli and gene expression programs [4]. 

Within the complex regulation of epigenetics during neural cell commitment [31], however, 

the importance of metabolism still remains largely unexplored. 

 

Mitochondrial metabolism and dynamics during neurogenesis 

An important aspect that has been recently challenged of the classical view of 

metabolism in neurogenesis relates to the time point in which the oxidative metabolic 

program is activated and to the respective morphology of mitochondria.  

As mentioned above, the NSC state is believed to be linked with glycolytic metabolism 

coupled to non-fused mitochondrial morphology, which is considered typical for glycolytic 

stem cells [32]. In the neural lineage, OXPHOS metabolism is usually associated only with 

differentiated neurons [7,33], which exhibit a tubular mitochondrial network. This has been 

confirmed in several recent works investigating the mitochondrial state of neurons derived in 

vitro from human PSCs [11,34,35]. Proteomics analysis further underscored the increase of 

OXPHOS-related proteins in differentiating neurons both in vitro and in vivo [36,37].  

In contrast to the assumptions about the mitochondrial state of NSCs, recent findings 

demonstrated that mouse embryonic NSCs exhibit elongated mitochondria in vivo while 

remaining glycolytic [23]. At the same time, proliferative NPCs in vivo displayed non-fused 

fragmented mitochondria [23]. Mouse adult NSCs in vivo have been found to possess 

mitochondria with a mixed globular and tubular shape that becomes consistently more 

elongated in proliferative intermediate progenitor cells (IPCs) [38]. Consequently, single cell 

transcriptomics identified the up-regulation of OXPHOS components and the down-regulation 

of glycolytic enzymes during the transition between NSCs and IPCs in vivo [38].  
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In agreement with a potential activation of the oxidative metabolic program in early 

neural fate commitment, NPCs derived in vitro from human PSCs have been found to display 

tubular mitochondria and a reduction of glycolytic metabolism when compared to PSCs [39]. 

The apparent disagreement of these latter findings with other published works on PSC-

derived NPCs [11,12], may perhaps be explained by the type of signaling molecules used for 

the derivation of NPCs in vitro. Glycolytic NPCs were cultivated using basal FGF [11], which 

may be per se associated with enhanced glycolysis [40]. Conversely, oxidative NPCs were 

grown with LIF [39], which promotes mitochondrial metabolism [41]. Collectively, these data 

indicate that activation of the OXPHOS program during neurogenesis may occur earlier than 

expected [42] and that it may be influenced by signaling and environmental cues (Figure 1).  

This novel concept of how metabolic programs are orchestrated during neural 

commitment underscores the metabolic plasticity associated with the cell fate transitions. In 

this emerging picture, it will be relevant to dissect the state of mitochondrial metabolism and 

dynamics of glia cells. Astrocytes are considered to be dependent on glycolytic metabolism, 

as they can produce glycolysis-derived lactate that is then secreted and used to fuel neurons 

[6]. Oligodendrocytes also rely on glycolysis [43], further supporting the metabolic 

compartmentalization of the central nervous system. Nonetheless, the lactate produced by 

astrocytes and oligodendrocytes can also be obtained from pyruvate generated from malate 

coming from the mitochondrial tricarboxylic acid (TCA) cycle [44]. Hence, mitochondrial 

metabolism might also be potentially relevant for glial cells. Accordingly, glioblastoma cells 

forced to increase OXPHOS and mitochondrial biogenesis efficiently differentiate into 

astrocytes [45].  

Understanding the relevance of mitochondria for glia cells might be important for 

facilitating the reprogramming of astrocytes into neurons [46], given that metabolism 

represents a critical roadblock in this process [47]. The investigation of astrocytic 

mitochondria may also provide essential clues to explain the phenomenon of mitochondrial 
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transfer between astrocytes and neurons that has been reported to occur in vivo in mice 

following ischemic insults [48]. 

 

Targeting mitochondria for improving neurogenesis in neurological diseases 

Mitochondrial defects are a known pathogenetic mechanism involved in conditions 

causing neurological impairment, including aging-associated neurodegeneration [49]. At the 

same time, mitochondrial disorders due to OXPHOS mutations usually cause symptoms at the 

level of the nervous system [50]. The findings discussed above open new avenues in our 

understanding of these human diseases and in the development of therapies. 

If OXPHOS metabolism is relevant not only for fully differentiated neurons but also for 

proliferative neural precursors, diseases impairing mitochondria could also affect 

neurogenesis and targeting mitochondrial function may represent a strategy for improving 

neural defects [51]. Accordingly, piracetam-mediated activation of mitochondrial respiration 

promoted neurogenesis in vivo in aged mice [38]. Furthermore, mitochondrial dysfunctions 

due to PINK1 deficiency caused defective neurogenesis in a mouse model of Parkinson’s 

disease [52]. Enhanced mitochondrial function upon modulation of microRNA-210 led to 

improved NSC proliferation and differentiation in vitro following inflammatory insults [53].  

The findings also suggest that iPSC-derived NPCs may represent a viable model for 

investigating neurological diseases. NPCs from patients affected by schizophrenia have been 

found to exhibit disease-associated phenotypes [54]. The use of NPCs may particularly be 

important for mitochondrial disorders that are caused by mutations in the mitochondrial DNA 

(mtDNA) and for which there is a lack of viable modeling systems [55]. iPSC-derived NPCs 

from patients affected by Leigh syndrome carrying a mtDNA mutation in the gene MT-ATP6 

have been used for the establishment of a drug discovery platform [39]. Leigh syndrome 

NPCs displayed a defect in calcium homeostasis that was observed in neurons but not in other 

peripheral cells [39]. The observed NPC defects might imply that Leigh syndrome also affects 
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neurogenesis. Interestingly, hypoxia stimulation was recently shown to significantly improve 

the life-span of a mouse model of Leigh syndrome [56]. The mechanisms underlying the 

beneficial effect of hypoxia in the Leigh syndrome mice remain unclear. However, given the 

above-mentioned importance of redox metabolism and HIFs signaling for NSCs and their 

glycolytic state, it is perhaps possible that hypoxic exposure may be beneficial to Leigh 

syndrome mice because it promotes NSC proliferation and neurogenesis. 

In conclusion, the recent data addressing how the metabolic programs of neural cells are 

established in vitro and in vivo is challenging the traditional view of neurogenesis and is 

opening new ways to approach and cure disorders of the nervous system. A deeper 

understanding of the metabolic programming occurring upon neural fate commitment will 

shed new lights on how brain cells are generated and how we can develop strategies to restore 

their function during disease states.  
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Figure legends 

Figure 1. Mitochondrial metabolism and dynamics during neurogenesis. Cartoon 

depicting the orchestration of metabolic programs and mitochondrial states during the 

generation of neurons and glia based on the studies conducted in mouse in vivo and in PSC 

derivatives in vitro. The color code refers to the energy metabolism of the cells: blue for 

glycolysis (in PSCs, NSCs, astrocytes, oligodendrocytes, and PSC-derived NPCs grown with 

basal FGF), light red for intermediate OXPHOS metabolism (in proliferative IPCs and PSC-

derived NPCs cultured with LIF), and dark red for marked OXPHOS metabolism (in mature 

neurons). The grey arrows above the cells refer to the reported proliferative rates. The 

morphology of mitochondria is simplified and shown as non-fused roundish organelles with 

sparse cristae (in PSC, glycolytic NPCs, and glial progenitors), as partly elongated organelles 

(in NSCs, IPCs, oxidative NPCs, and astrocytes and oligodendrocytes), and as strongly 

elongated organelles (in mature neurons). Abbreviations: PSC= pluripotent stem cell; NSC= 

neural stem cell; NPC= neural progenitor cell; IPC= intermediate progenitor cell; OXPHOS= 

oxidative phosphorylation. 
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