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Abstract

New Hi-C technologies have revealed that chromosomes have a complex network of spatial

contacts in the cell nucleus of higher organisms, whose organisation is only partially under-

stood. Here, we investigate the structure of such a network in human GM12878 cells, to

derive a large scale picture of nuclear architecture. We find that the intensity of intra-chro-

mosomal interactions is power-law distributed. Inter-chromosomal interactions are two

orders of magnitude weaker and exponentially distributed, yet they are not randomly

arranged along the genomic sequence. Intra-chromosomal contacts broadly occur between

epigenomically homologous regions, whereas inter-chromosomal contacts are especially

associated with regions rich in highly expressed genes. Overall, genomic contacts in the

nucleus appear to be structured as a network of networks where a set of strongly individual

chromosomal units, as envisaged in the ‘chromosomal territory’ scenario derived from

microscopy, interact with each other via on average weaker, yet far from random and func-

tionally important interactions.

Introduction

New technologies, such as Hi-C, can measure the frequency of physical contacts between

DNA segment pairs genome-wide and are revealing the complex spatial organization of the

mammalian genome [1–4]. A complex network of interactions exists, having functional roles

as, for instance, regulatory regions, such as enhancers, often control gene expression at long

genomic distances through the formation of loops with their target genes based on physical

interactions. Network analyses of Hi-C contacts between DNA segments have provided several

insights on chromatin organization, including the identification of their enrichment for genes

and chromatin marks, the presence of gene hubs and the possibility to reconstruct 3D confor-

mations of genomic loci (see, e.g., [5–7] and ref.s therein). It has been discovered, in particular,

that each chromosome is composed by a sequence of domains (also named Topological Asso-

ciated Domains, TADs [8, 9]) that are enriched for internal interactions with respect to
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background [8, 9] and have a hierarchy of long range contacts [10]. Identified by different

computational methods (see, e.g., ref.s [8–11]), they are partially conserved across cell types.

To derive a large-scale picture of the structure of nuclear organization of human chromo-

somes, here we investigate specifically the interaction network of the contact domains defined

by Rao and others [11] from in-situ Hi-C data in human GM12878 cells (see Methods—Con-

tact Domains): contact domains are identified by the Arrowhead algorithm that scores the

DNA regions of sites having similarly enhanced levels of Hi-C mutual interactions and, corre-

spondingly, a drop in contacts at their borders. We focus on contact domains as they represent

single architectural units and are marked by coherent epigenetic signatures. Additionally, they

have a median length of 185kb (which sets the genomic resolution of our study) that is one

order of magnitude larger than the size of genes, providing stability to our analysis against the

noise inherent to long-range Hi-C data, without compromising too strongly on resolution.

We find that their intra-chromosomal contact networks are marked by a ‘universal’ power

law distribution of interaction frequencies. Inter-chromosomal contacts are found to be

approximateley three orders of magnitude weaker [1, 11], yet, we show that they are also far

from randomly positioned along the genome. We find that their network is structurally differ-

ent from the net of intra-chromosomal interactions, as the intensity of contacts is exponen-

tially distributed. Interestingly, intra-chromosomal contacts are typically enriched between

epigenomically similar domains, whereas inter-chromosomal contacts are found especially

between domains rich in highly expressed genes. The picture of the nucleus emerging from

our analysis (schematically shown in Fig 1) returns a scenario where chromosomes contacts

form a net of networks. Single chromosomes are mainly folded in territorial units, as seen by

microscopy [12], having a complex internal organization. Different territories, though, interact

with each other in a non-random, functional way, as envisaged in the ‘chromosome intermin-

gling’ scenario, where chromosome pairs intermingle as revealed by in situ-hybridization tech-

nique (cryoFISH) [13].

Results

The system

In our analysis, the nodes of the chromosome interaction network are the contact domains,

while the edges between nodes are defined by the intensity of their interactions. Human

GM12878 cell chromosomes are divided in 9274 contact domains, having an exponentially

distributed genomic length with a median equal to 185kb, covering roughly 70% of the entire

genome [11]. They have been grouped in six categories, named ‘subcompartments’, A1, A2,

B1, B2, B3, B4, having a median length of 300kb, which correlate with specific epigenetic pat-

terns [11]. Subcompartments A1 and A2 belong to ‘compartment A’ [1] and are rich in highly

expressed genes and activating chromatin marks. A1 and A2 exhibit early replication times,

with A2 having lower GC content, longer genes and stronger association with the H3K9me3

histone mark than A1. B1, B2, and B3 are associated with ‘compartment B’: B1 correlates with

facultative heterochromatin, B2 with pericentromeric heterochromatin and B3 with nuclear

lamina. B4 is present only in chromosome 19 and correlates with both activating chromatin

and heterochromatin. Genomic regions within a single contact domain also have correlated

histone marks, while 66,5% of contact domains overlap with a single subcompartment.

The interaction between two domains is defined as the sum of their shared entries in the

normalized in-situ Hi-C contact frequency matrix divided by the product of their genomic

lengths (see Methods—Contact Domains). Some contact domains are contained within

another contact domain. Albeit they represent only a fraction of the total (*35%), in our

analysis we disregard them to avoid double counting of interactions. However, we checked
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that our results remain unchanged if the entire set in considered. The median length of

the remaining domains is 250kb. Based on in-situ Hi-C data, the ratio of the average interac-

tion strengths of domain pairs respectively on the same and on different chromosomes is

Iin−cis/Iin−trans = 850, showing that the mean interaction within a chromosome is almost three

orders of magnitude higher than across chromosomes [11]. Hence, we initially focus on

intra-chromosomal interaction networks.

Intra-chromosomal interaction networks

To characterize the structure of inter-chromosomal contacts, we first measured the node aver-

age normalised degree of connectivity, n. This quantity is defined as the number of domains

linked to a given domain on the same chromosome, normalized to the total number of

domains on that chromosome. To establish whether two nodes are linked, we check if their

interaction level is higher than a chosen minimum threshold, in order to avoid spurious effects

related to noise in the data. A typical way to identify significant interactions [10] is to retain

only those that fall above a threshold, so to filter the noise due to random interactions; here,

Fig 1. Our analysis of Hi-C genomic interactions shows that the nucleus of human GM12878 cells is structured as a net of

networks. Each individual chromosome form a strong intra-chromosomal network of contacts, consistent with the ‘chromosomal territories’

seen by microscopy. Yet, chromosomes intermingle via weaker, yet non-random and functionally important contacts, whereby distinct

chromosomal networks form a global nuclear network. Panel a: A pictorial representation of the 3D organization of chromosomes (colored

spheres) within the nucleus, as emerging from our network analysis. Panel b: A real network reconstruction (using the visualization tool

described in [14]) of chromosomal contacts of chromosomes 19 and 20. For clarity of presentation, each sphere inside a chromosome

represents * 1Mb (5 contact domains) and a high threshold is set for link visualization.

https://doi.org/10.1371/journal.pone.0188201.g001
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we consider as threshold the value corresponding to the lowest 25-percentile of the distribu-

tion of inter-chromosomal domain interactions. The rationale behind such a choice is that

measured contacts between pairs of domains on different chromosomes are more likely to be

random, also considering the vastly higher number of possible pairs for the experimentally set

sequencing depth. For such a set threshold we find n = 0.998. To check that different threshold

values do not alter our scenario, we measured that when the 75-percentile is considered we get

n = 0.979. The order of magnitude of n is unchanged even when the threshold is set based on

percentiles of the distribution of intra-chromosomal interactions. Hence, at the considered

genomic resolution, we find that the domains of a single chromosomes form a fully connected

network, where approximately all nodes interact with all. That points out the highly dynamical

nature of chromatin contacts.

We focused next on the distribution of the intensity of intra-chromosomal interactions,

P(I). We found that it has a power law decay over roughly two orders of magnitude, P(I)’ I−γ

(Fig 2). The exponent is close to γ’ 2 and very similar in different chromosomes. This is an

interesting observation because an exponent γ = 2 marks scale free networks [15], which have

a special relevance as they are characterized by the presence of hubs, i.e., nodes with very high

levels of contacts. To test the statistical significance of our analysis, we used the python library

powerlaw, a package for the analysis of heavy-tailed distributions [16]. For every chromosome,

we found that the tail of the distribution fits the best with a power law, with a negligible

p − value. This points out that contact frequencies can extend to very large values for some

genomic regions. Interestingly, the distribution, P(I), and its exponent γ’ 2 are ‘universal’

across chromosomes, hinting that the structure of their domain networks is similar, as shown

in Fig 2.

To help dissecting the molecular nature of the determinants of contacts, we then investi-

gated the enrichment of intra-chromosomal domain interactions across the different

Fig 2. The distribution of intra-chromosomal interactions between contact domains (here in a log10 − log10 plot) decays as a

power law, P(I)’ I−γ, with an exponent close to γ’ 2 (dashed line), which appear to be ‘universal’ across different chromosomes.

So, the structures of their contact networks exhibit similar quantitative features. I0 and P0 are factors to rescale on top of each other the data

from different chromosomes.

https://doi.org/10.1371/journal.pone.0188201.g002
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subcompartments, which are known to be associated each with a different set of epigenetic fea-

tures [11]. In our analysis we consider only domains overlapping with a single subcompart-

ment (77% of total), but our conclusions stay unchanged if all domains are considered and

each one is assigned to a single subcompartment, e.g., by a majority rule. We repeated our

analysis also for the top interacting domains, i.e., those in the top 5% of P(I) distribution (see

Methods—Chromosomal domain interactions across subcompartments). While single

domains are prevalently overlapping with A1, followed by A2 and B1 [1], we found that the

top interacting ones are more evenly spread across the different subcompartments (see Meth-

ods—Contact domain distribution across subcompartments). The heatmap in Fig 3, Panel a,

reports the average interaction between domains in different subcompartments, normalized

by the overall average value. Interestingly, enrichments of contacts are mainly seen along the

diagonal, showing that intra-chromosomal contacts tend to be homotypical, i.e., usually occur

between epigenomically homologous regions. In particular, the strongest homotypic interac-

tions are found within the heterochromatin B1 and B2 subcompartments, and to a minor

extent within A1 domains that are rich in active genes. The lamina linked B3 subcompartment

has, instead, comparatively lower levels of homotypic interactions. Similar results are found

when only the top interacting domains are considered (see Methods—Chromosomal domain

interactions across subcompartments).

Inter-chromosomal interaction networks

Next, we turned to the inter-chromosomal interaction network. Interestingly, it results to be

also fully connected, albeit less dense than intra-chromosomal nets as its normalised average

degree of connectivity is n = 0.749 in the case where the threshold is set, as above, to the 25th-

percentile of the distribution, moving down to n = 0.249 for a 75th-percentile threshold.

To understand whether there are pairs of chromosomes more strongly interacting than oth-

ers, we investigated their overall pairwise interactions (normalized by their genomic lengths).

The heatmap in Fig 4 shows indeed that, as expected, different pairs have different degrees of

Fig 3. Heatmaps representing, across the different subcompartments A1-B4, the domain average excess interactions over

background within single chromosomes (in-cis, Panel a) and between chromosomes (in-trans, Panel b). Intra-chromosomal

contacts (a) especially occur between homologous subcompartments (diagonal), while inter-chromosomal contacts (b) are particularly

frequent with subcompartment A1, rich in highly expressed genes, hinting to a functional role.

https://doi.org/10.1371/journal.pone.0188201.g003
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contact intensities. In particular, gene richer, shorter chromosomes tend to have higher rela-

tive reciprocal interactions, consistent with the role of A1 subcompartment in establishing

homotypical contacts (see below). To identify whether there are particularly isolated clusters

of interacting chromosomes, we followed a standard procedure using the RSS (Residual Sum

of Square) objective function [17]. More precisely, we plot the RSS quantity as a function of

number of clusters k and seek for the value where the curve has a sharp slope variation (elbow

method). From this analysis, we found that there are no evident preferentially isolated clusters

at the length scale of contact domains (’ 200kb). Hence, while different chromosomal pairs

can have different degrees of interactions, a global, single main inter-chromosomal network

exists.

Interestingly, a cross-analysis of chromosomal interactions with the sub-compartment

membership (Fig 3, Panel b) reveals that domains belonging to sub-compartment A1 tend to

interact mostly. Since sub-compartment A1 is rich in highly expressed genes, that suggests a

Fig 4. The heatmap of the overall contacts between chromosome pairs. While different chromosomal pairs have different degrees of

interactions, the RSS analysis points out that there are no significant isolated subgroups and the system forms a single nuclear network.

https://doi.org/10.1371/journal.pone.0188201.g004
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functional role of highly interacting nodes in the inter-chromosomal network, in agreement

with previous findings ([18]). Furthermore, as discussed below, a non trivial pattern of interac-

tion exists.

The distribution of the intensity of inter-chromosomal interactions, Pinter(I), is similar

across different chromosome pairs and has roughly an exponential decay, Pinter(I)’ exp (−I/I0)

(Fig 5), as would be expected for a random network [15]. To statistically prove the robusteness

of this result, we fitted the tail of the distributions with an exponential function and with a

power law function. We performed the analysis using the optimize python package. For every

possible pair of chromosomes we obtained a coefficient of determination R2 higher in the expo-

nential case than in the power law case, and extremely close to 1 (average R2 = 0.989). More-

over, in the 26% of the cases, the power law fit was not convergent. As additional check, to test

if intra- and inter-chromosomal distributions were statistically different, we performed the

same analysis on the intra-chromosomal datasets, finding a coefficient of determination R2 sis-

tematically higher for the power law fit than for the exponential one. Thus, we can conclude

that the two distributions are not compatible, suggesting that the inter- and intra-chromosomal

contact networks are structurally different.

However, we find that inter-chromosomal interactions are not randomly distributed over

the genomic sequence. This is visible in the example of Fig 6 showing a heatmap with the fre-

quency of contact between the domains of chromosome 22 v.s. 19: genomic bands with

markedly strong interaction are seen, pointing out that regions enriched for contacts tend to

cluster along the chromosomal sequence. For comparison, we also show a random contact

heatmap generated by mixing the positions of the values in the experimental matrix so that the

distribution of the intensities is unaffected.

To quantify such observations, we computed the differential interaction score, DR, across

the domains of each single chromosome. For a given domain k, DRk is defined as follows:

Fig 5. The distribution of interactions between contact domains on different chromosomes (here in a lin − log10 plot) has an

exponential decay (dashed line) across chromosome pairs. That shows that the inter-chromosomal network of contacts is structurally

different from the power-law distributed intra-chromosomal networks (Fig 2).

https://doi.org/10.1371/journal.pone.0188201.g005
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DRk = (Sk −< S>)/ < S>, where Sk is the sum of its contacts with all the other domains of the

other considered chromosome (i.e. the sum of rows in the matrix of Fig 6), and< S> is the

average over the matrix (see Methods—The differential interaction score, DR). The DR signal

of chromosome 22 v.s. 19 is shown in Fig 6-right panel. As expected, DR varies around zero,

yet its standard deviation σ = 0.3 is one order of magnitude larger than in the random boot-

strapped case (σrand = 0.05, red line), reflecting the much stronger variations present in the real

contacts. We also find that the average size of genomic regions where DR is coherent in sign

spans approximately 5.4 consecutive domains, against 2.5 in the random case, highlighting the

clustering of genomic positions enriched in contacts with domains on a different chromo-

some. Similar results are found across other chromosome pairs.

Finally, as mentioned before, Fig 3, Panel b reports the average inter-chromosomal interac-

tion strength of domain pairs across the different subcompartments, showing that A1 domains

are enriched for interactions, especially with homologous domains. As above, similar observa-

tions apply when only the top interacting domains are considered (see Methods—Chromo-

somal domain interactions across subcompartments). The finding that domains in the A1

subcompartment have preferentially homotypic interactions also supports the view that inter-

chromosomal contacts are far from random, as random contacts would be equally enriched

across subcompartments.

Discussion

Taken together, our results show that, at the 200kb resolution, chromosomes are characterised

by an extended network of contacts. Intra-chromosomal interactions have a similar structure

Fig 6. Heatmap of the normalized in-situ Hi-C interactions between the contact domains of chromosomes 19 and 22. Bands of

regions with above background signal are visible, in contrast to the corresponding random matrix (top-right, see details in the text). The

differential interaction score, DR, of the domains of chromosome 22 with 19 (rightmost panel) quantifies the dissimilarity with the random

control and highlights the clustering of genomic locations enriched in contacts with domains on the other chromosome.

https://doi.org/10.1371/journal.pone.0188201.g006
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across chromosomes, marked by broad, power-law distributed interaction frequencies with an

exponent γ’ 2 typical of scale-free nets. In facts, scale-free networks are well known in biolog-

ical systems and are thought to reflect fundamental organizational principles [15].

Chromosomes are also widely interacting with each other, without isolated subgroups, yet

their global interaction network is two orders of magnitude weaker in intensity than intra-

chromosomal nets, and exponentially distributed. Hence, the net of inter-chromosomal con-

tacts is structurally different from intra-chromosomal ones. A limitation of our study is that

the data do not allow to distinguish the different alleles. Our analysis suggests, though, a non-

random genomic positioning of inter-chromosomal interactions.

Our analysis of correlations between epigenetic signals and domain contacts, albeit limited

to a few general marks, shows that intra-chromosomal interactions tend to occur between

homotypic epigenomic regions and inter-chromosomal interactions are especially found

between regions rich in highly expressed genes.

The relative position of chromosomes in the nucleus, based on their domain in-situ Hi-C

interactions, is shown in Fig 1, Panel a, as produced by a standard tool for the 3D visualization

of network graphs [14]. The zoom in Panel b shows, in particular, the reciprocal interactions

of chromosome 19 and 20, along with their intra-chromosomal networks (for clarity of presen-

tation, a high threshold is set for link visualization). Multilayer networks, or networks of net-

works, are thought to be important to process and spread efficiently information across

different nets to produce emergent, collective behaviours in complex natural and biological

systems [19, 20]. Our analysis suggests a networked organization of chromosomal interactions

where the distinct nets of intra-chromosomal contacts are assembled in a weaker, yet non-ran-

dom global nuclear network of nets. This important feature is known as modularity. Many net-

work systems in nature have strong modular aspects [21]. An important reason explaining

such a peculiar behaviour lies in the high stability that those networks exhibit as response to

external perturbations, as recently highlighted by important studies [22]. Hence, our finding

could hint towards the modular and structurally stable structure of the 3D architecture of the

human genome within the cell nucleus. Our early investigations of the network features of

chromosomal interactions may raise the attention of the scientific community on such an

interesting topic and pave the way to more extensive bioinformatics and computational analy-

ses to better understand the underlying features and mechanisms leading to the observed pat-

tern in the considered framework, as known for other networked systems ([23, 24])

The emerging large-scale picture of chromosome contact networks in the cell nucleus is

complemented by current higher-resolution studies employing models from polymer physics,

which try to explain the molecular mechanisms shaping the 3D conformation of specific geno-

mic loci [25–31]. Brief reviews of such models can be found in ref.s [32–34]. Our results are

derived from human GM12878 cell data, however, Hi-C interaction patterns are broadly con-

served across different cell types in higher mammals [2–4, 8–10], hinting towards a broader

validity of our conclusions. In particular, the picture emerging from our quantitative investiga-

tion of Hi-C data reconciles the so-called “chromosomal territory scenario” [12] with the “chro-

mosomal intermingling sceanio” [13], as in the nuclear network of contacts chromosomes tend

indeed to form strong territorial units, but have also relevant inter-chromosomal interactions.

Methods

Hi-C dataset

We employed the primary in-situ Hi-C dataset produced by Rao and others [11], relative to

human cells, cell line GM12878, MAPQGE30 at 10Kb of resolution. The row data were nor-

malized by the Knight-Ruiz method [35].

The chromosome interaction network
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Contact domains

We used the list of contact domains provided by Rao and others [11], obtained by their Arrow-
head Algorithm. As discussed in the previous sections of the paper, we excluded from our anal-

ysis internal contact domains, i.e. those completely contained in other contact domains, to

avoid double counting of contacts.

In Fig 7 we report the distribution of the lengths of the contact domains, considering all of

them (left panel) and removing the internal ones (right panel). We have 9274 contact domains

in total, having an average length of 258Kb and a median length of 185Kb. After removing the

internal domains, we are left with 5370 contact domains, having an average length of 320Kb

and a median length of 250Kb. Different mechanisms of polymer physics [36–40] could con-

tribute to the assembly of contact domains [11, 25–29, 41–43], while additional effects, such as

confinement, crowding, entanglement could have a role as found in other complex fluids (see,

e.g., [44–53] and ref.s therein).

To analyze the structure of the domain network, we considered the average frequency of

contacts between all pairs of domains. The average frequency of contacts, Ia, b, between

domain a and b is defined as the sum of their shared entries in the normalized in-situ Hi-C

matrix divided by the product of their genomic lengths.

Chromosomal domain interactions across subcompartments

To investigate the enrichment of intra- and inter-chromosomal domain interactions across

the different subcompartments, we computed the average interaction between domains in dif-

ferent subcompartments, Hi,j, normalized by the overall average value. More precisely, the val-

ues Hi,j in each bin of the heatmaps relative to Fig 3, are obtained by the following expression:

Hi,j = (< H(i, j)> − H0)/H0, where<H(i, j)> is the average frequency of contact between

the contact domains belonging to the subcompartments i and j. Here H0 = (∑<H(i, j)>)/Nc

is the average value across subcompartments, and Nc is the number of the couples of

subcompartments.

We did the same analysis considering only the top interacting contact domains in-cis and

in-trans, i.e. we considered only the 5% of all contacts domains having the highest average fre-

quency of interaction with the other contact domains, respectively on a given chromosome

Fig 7. Panel a: Distribution of the lengths of all the contact domains, i.e. the probability to find a contact domains with a given genomic

length, represented in a log-lin scale. Panel b: The same analysis for the case where ‘internal domains’ are removed from the list.

https://doi.org/10.1371/journal.pone.0188201.g007
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and on an other chromosome (for all the possibile couples of chromosomes). The results are

reported in Fig 8

Contact domain distribution across subcompartments

We also analyzed how domains are distributed across the compartments. In this analysis, we

considered the domains overlapping with a single subcompartment (77% of total), but our

conclusions stay unchanged if all domains are considered and each one is assigned to a single

subcompartment by a majority rule. In Fig 9 we represented two cases: all domains and only

the top interacting domains, i.e. the 5% of the domain with the higest average frequency of

interaction, for in-cis and in-trans cases (left and right panel respectively). While considering

all the contact domains we have a prevalence of domains in compartment A1, with A2 and B1

Fig 8. Heatmap representing the average frequency of interactions between ‘top interacting’ contact domains (see text). Panel a:

in-cis and Panel b: in-trans, belonging to the different subcompartments.

https://doi.org/10.1371/journal.pone.0188201.g008

Fig 9. Panel a: Fraction of domains in each subcompartment in-cis (N.A. means Not Assigned) in two cases: for all domains (yellow) and for

the ‘top interacting’ domains in-cis (blue). Panel b: The same analysis in-trans.

https://doi.org/10.1371/journal.pone.0188201.g009
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following, if we consider only the top interacting domains the most abundant group is in com-

partment A2. Top interacting domains are present in compartment B for about 35%, while

there is only a small percentage if we consider all the domains.

The differential interaction score, DR

The differential interaction score, DR, is defined in the in section about inter-chromosomal

interactions network. It was computed for all chromosome pairs, i.e., for all the domains of a

given chromosome with respect to its interactions with the domains of all other single chro-

mosomes. For example, Fig 6 refers to the DR’s of the domains of chromosome 22 in their

interaction with those on chromosome 19.

Finally, for each chromosome, we also measured the average size of genomic regions where

DR is coherent in sign, i.e., we calculated the number of contact domains between two conse-

cutive crossings of the zero by DR. The distribution of sizes is reported in Fig 10 for the real

and the bootstrapped matrices in the case of chromosome 19 v.s 22 discussed in the previous

sections of the paper. In both cases an exponential fit is overlaid on the data. Similar findings

are obtained for other chromosome pairs.
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