
Additional file 2

Semi-supervised interpolated Markov chain model

The goal of this step is to assign a class label for each DHS indicating the
gene expression cluster(s) that this DHS is associated with. After initialization,
for each group of genes belonging to the same expression cluster, sequences
of their associated known DHSs are assumed to represent regulatory sequences
required for regulation of this specific expression pattern. A 3-order IMM model
is trained on sequences of this initial assignment, positive model. Another IMM
model is trained on a null model. This null model represents DHS sequences
that are known to regulate one other gene expression cluster.

When presented with a sequence for an unlabeled DHS, a DHS that does
not have a class label assigned to, the model evaluates the likelihood of this
sequence being generated by the trained positive model and contrast it to the
likelihood of being generated by the null model. This DHS is considered to
be regulating the positive expression cluster (assigned to labeled DHSs) if its
positive computed likelihood is greater than its negative/null likelihood.

This is a semi-supervised learning problem, in which a small set of labeled
examples is known, but a large set of all other DHSs have no class labels (unla-
beled examples). McEnhancer assigns a label to each of the unlabeled examples
in an iterative manner. It first learns the sequences of the enriched motifs (k-
mers) from the few known DHSs for a group of genes having similar expression
patterns. This is achieved by building two 3-order interpolated Markov (IMM)
models from the initially assigned DHSs that overlap REDfly and VT; one for a
given gene cluster (positive model) and one for the other cluster against which
the first cluster is compared (negative model). A schematic representation of
the model is shown in given in Methods

In order to guarantee convergence, an expectation-maximization (EM) algo-
rithm is then applied to predict other DHSs with similar sequence composition
in a semi-supervised learning technique. The EM algorithm is a general algo-
rithm for maximum likelihood estimation (MLE) with missing data. It is used
to infer the label for each DHS. In each iteration, McEnhancer updates the
IMM positive model to incorporate the newly assigned labeled examples, and
remove DHSs that changed their label. Pseudocode for the model is displayed
in Suplementary Figure 2.

In an attempt to protect a given gene cluster from labeled DHSs with slightly
higher likelihood for the positive example, but not sufficiently high to be specific
to such cluster, McEnhancer allows for a “reject option”. This is equivalent to
“I don’t know” which abstains hazardous decisions [1]. This is better than
assigning a positive label for a DHSs with low sequence content and generating
much noise that would interfere with further assignments.

For each gene cluster, this model runs 16 times, each time against a different
gene cluster, to allow the algorithm to pick DHSs with sequences specific to the
given positive gene cluster. SRILM toolkit was used for IMM implementation
[2]. Since the number of known examples used in training is very small, it is

1



advised to use Witten-Bell discounting/smoothing. As a final step, selected
DHSs from the 16 pairwise runs against each of the other clusters are grouped
together. Only DHSs that gets selected at least 60% of the times (10 out of the
16 pairwise runs) are assigned to this expression cluster.

Sparse logistic regression classifier

To determine how well selected DHSs are specific for a given gene cluster, sparse
logistic regression classifiers are used. These classifiers balance the use of many
available features against model complexity, ending up with a selection of a small
subset of features that are used in the classification. Sparse logistic regression
classifiers minimizes an objective function that is a linear combination of the
sum of squared residuals and the `1 norm of the weights [3]. Since the goal is
to predict expression pattern of each gene expression clusters given the assigned
DHSs, this classifier will be used to measure the power of assignment of DHSs
to their gene clusters.

Given two groups of DHS sequences that are predicted to regulate two dif-
ferent gene groups, the classifier performs 4-fold cross validation, with data
shuffled before each iteration. In each round, three parts of the data are further
divided into six parts, one of which is used as the validation set to learn the
hyperparameter. The classifier uses the score for all 5-mers, by counting the
frequencies of occurrences of each of the 5-mers in the input DHS sequences for
both positive and negative examples. Each of the 5-mers is used as a separate
feature. A k-mer and its reverse complement are treated as a single feature with
counts representing the frequencies of occurrences of the k-mer and its reverse
complement. A total of 10 iterations are conducted and the average area under
the receiver operating characteristics (AuROC) for classification is computed.
AuROC is a measure of classification performance, where a value of 0.5 indi-
cates random assignments and 1.0 indicates perfect classification. Overlapping
DHSs assigned to the same gene are merged into a single DHS, so as to avoid
double counting of kmer features. In case of having unbalanced datasets, where
number of positive examples is greater than negative examples or vise versa, the
classifier randomly samples from the class with larger number of examples the
same number of examples as that of the smaller class.

As a general note, since most of genes are generally regulated by more than
one DHS, there exists two normalization alternatives. The first is to assume
that each DHS regulates the gene separately, therefore k-mer frequencies are
normalized by the length of each DHS. The second alternative is to assume that
DHSs associated with a gene play a collaborative role and thus normalize k-mer
frequencies by the total length of DHSs. Both alternatives generally gave similar
performance in classification. Results reported in this work adopt the second
view.

Model assumptions

Model assumptions include:
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• DHSs overlapping promoter regions often have different properties than
those overlapping distal regions. McEnhancer accounts for different ef-
fects of the two regulatory processes. It is already accepted that most of
regulatory elements located in a core promoter region of a gene influence
expression of their strictly downstream gene. Therefore, DHSs overlap-
ping promoter regions are assigned to genes whose TSSs they overlap.
The model then focuses on assigning distal DHSs to their target genes.
All classifiers that are built to predict specific expression patterns use
features from distal DHSs only.

• In Drosophila melanogaster, the majority of known enhancers are within
+/-20 kb of their target genes, while a few have been detected to be around
35kb from their target genes [4]. Therefore, search space of the model is
restricted to include DHSs found in +/-50kb around TSSs of each of the
corresponding genes.

Phase I and phase II for McEnhancer

Genes with restricted expression patterns were grouped into 29 different clus-
ters, with 59% belonging to exactly one expression cluster (unique genes), while
31% share multiple clusters (common genes). Out of these 29 clusters, only 17
clusters were considered since their genes have associated known distal DHSs
valid for initialization. Since genes with multiple expression patterns could be
regulated by different enhancers, and due to the limited number of known la-
beled Distal-DHSs, McEnhancer was run on each of these clusters in two phases.
Phase I predicts Distal-DHSs regulating unique genes only, while phase II pre-
dicts distal regulating DHSs for common genes. In phase II, the model uses
predicted Distal-DHSs from phase I to initialize its parameters. This separation
allowed the model to learn best sequences specific for the gene cluster in consid-
eration, without being distracted by sequences important for other expression
patterns but not the one considered (due to the gene belonging to more than
one cluster).

These two phases were run in pairwise comparisons. Each expression cluster
was modeled against each of the 16 other clusters. Then selected Distal-DHSs
were grouped together, and Distal-DHSs that got selected in at least 10 models
for a given cluster were only considered. Different cutoffs (DHSs had to be
selected in 10 or more different models) were tested, and numbers of DHSs
that were selected at different cutoffs were documented per each cluster, and
their frequencies displayed in Additional file 2. Grouping all clusters together
resulted in a histogram with the shape in Figure 1A. This histogram shows
almost a bimodal distribution with two peaks, at 5 & 10. The first distribution
represents Distal-DHSs that were selected in few comparisons. These Distal-
DHSs might still be necessary for regulating the given expression cluster but
they are not uniquely specific to that expression pattern when compared against
other expression clusters. The second distribution represents DHSs that are
uniquely and significantly specific to this given cluster. Therefore, the value
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Figure 1
Grouped common DHSs frequencies with classification performance
for different overlap cutoffs.
(A) Histograms showing number of Distal-DHSs selected at each cutoff for all
clusters grouped together. (B) Sparse logistic regression classification showing
different overlap cutoffs for selected Distal-DHSs per cluster classified against
ubiquitous.

10 was chosen as a threshold, and Distal-DHSs selected at least 10 times were
considered.

Furthermore, Distal-DHSs selected at different cutoffs, at least 5, 8, 10 and
12 times were classified against known Distal-DHSs regulating ubiquitously ex-
pressed genes. For each cutoff, AuROC for the average classification output per
cluster displayed in Figure 1B. Distal-DHSs selected at least 10 times gave an
average AuROC 86%.

Model parameter selection for McEnhancer

Cross validation (CV) is usually used to avoid overfitting. In order to decide on
the maximum IMM order, CV was applied on the set of DHSs used in initial-
ization. For each cluster, DHSs were divided into four parts to perform 4-fold
cross validation; three parts were used for training and one part for testing. In-
terpolated Markov orders (1, 2, . . . , 6) were tested and the overall log likelihood
values for each order per class are documented in Table 1.

A total of 10 iterations for each 4-fold cross validation were performed, with
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Table 1
Model selection parameter for for interpolated Markov chain order.

MC order 1 2 3 4 5
cluster

5R -51.288 -51.0360 -50.958 -50.956 -50.964
6R -29.197 -29.2840 -29.449 -29.491 -29.492
7R -88.714 -87.9620 -87.567 -87.512 -87.511
10R -51.846 -51.5903 -51.537 -51.542 -51.549
13R -54.618 -54.0810 -53.835 -53.807 -53.819
14R -73.015 -72.485 -72.324 -72.318 -72.319
15R -56.247 -55.948 -55.817 -55.804 -55.815
16R -78.802 -79.521 -80.316 -80.472 -80.382
18R -64.123 -63.765 -63.660 -63.655 -63.648
19R -33.789 -33.772 -33.842 -33.862 -33.849
22R -32.047 -31.983 -32.040 -32.061 -32.055
23R -51.507 -51.365 -51.373 -51.387 -51.395
24R -66.021 -65.862 -65.856 -65.867 -65.868
25R -73.132 -72.870 -72.751 -72.738 -72.751
26R -69.885 -69.668 -69.572 -69.562 -69.574
27R -70.422 -70.099 -69.953 -69.938 -69.951
28R -59.492 -58.875 -58.642 -58.623 -58.624

average -55.992 -55.713 -55.620 -55.567 -55.506

the data shuffled before each iteration. As expected, the number of initial DHSs
affected the likelihood per each. To be able to compare them, log likelihood
was normalized by dividing by the number of DHSs involved. The average log
likelihood probability for each IMM order is shown in Figure 2A. Log likelihood
values reach a plateau at order 3, after which it flattens. Yet, it is interesting to
see the effect of interpolation in avoiding overfitting, by not making the curve
drastically decrease afterwards. Based on that, IMM of order 3 will be used to
build the model. As it was shown in Supplementary Figure 4, for most classes,
the number of DHSs used in initialization is pretty minimal, therefore, reaching
3-order MC without overfitting is encouraging.

Regarding the best mixture weights for each order, again 4-fold CV was ap-
plied on different combinations for (λ3, λ2, λ1, λ0), one for each order/model.
The different combinations and average log likelihood values among all gene
clusters are shown in Table 2 and Figure 2B. Since differences in average log like-
lihood values are not that huge, some combinations were compared and the one
that gave the highest value was chosen, where (λ3, λ2, λ1, λ0) = (0.3, 0.25, 0.25, 0.2).
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Figure 2
Parameters for model selection.
Cross validation output for selecting model parameters: (A) IMM order, (B)
lambda.

Table 2
Model selection parameters for interpolated Markov model weights
(λs).

(λ3, λ2, λ1, λ0) (0.3, 0.1, 0.2, 0.4) (0.25, 0.25, 0.25, 0.25)
avg. log likelihood -54.290 -54.242
(0.2, 0.3, 0.4, 0.1) (0.3, 0.25, 0.25, 0.2) (0.25, 0.25, 0.3, 0.2)

-54.239 -54.235 -54.238
(0.2, 0.3, 0.25, 0.25) (0.35 ,0.3, 0.2, 0.15) (0.4, 0.15, 0.35, 0.1)

-54.2427 -54.238 -54.236
(0.4, 0.2, 0.35, 0.05)

-54.241
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[4] Cléard, F., Moshkin, Y., Karch, F., Maeda, R.K.: Probing long-distance reg-
ulatory interactions in the drosophila melanogaster bithorax complex using
dam identification. Nature genetics 38(8), 931–935 (2006)

7


