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Abstract

Transcriptional enhancers regulate spatio-temporal gene expression. While genomic assays can identify putative
enhancers en masse, assigning target genes is a complex challenge. We devised a machine learning approach,
McEnhancer, which links target genes to putative enhancers via a semi-supervised learning algorithm that predicts
gene expression patterns based on enriched sequence features. Predicted expression patterns were 73–98% accurate,
predicted assignments showed strong Hi-C interaction enrichment, enhancer-associated histone modifications were
evident, and known functional motifs were recovered. Our model provides a general framework to link globally
identified enhancers to targets and contributes to deciphering the regulatory genome.
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Background
In complex metazoan genomes, the space dedicated to
encoding gene expression typically exceeds the space
to encode the actual genes. Identifying and interpreting
these “non-coding” regulatory regions is a crucial step
towards understanding gene regulation. Transcriptional
regulatory regions encompass gene-proximal promoter
regions as well as gene-distal regions such as enhancers
and insulators, which can regulate target genes across long
distances [1–3].
For many years, enhancers were primarily identified by

functional dissection and reporter assays. Recent meth-
ods to identify enhancer candidates on a genomic scale
are mostly based on chromatin features. Assays such
as DNase-seq or ATAC-seq have been used to map
open chromatin regions across hundreds of human cell
lines or diverse model systems [4–6]. Complemented
by histone modification mapping, such methods were
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used as a strong indicator for active enhancers; see, for
example, [7–9].
Enhancer sequences contain short DNA motifs that

work as binding sites for sequence-specific transcrip-
tion factors (TFs), and the combination of recruited (co-)
activators and repressors determines the activity of the
enhancer [10]. Under the assumption that genes with
correlated expression patterns tend to be regulated by
similar TFs, co-expressed genes are more likely to be
controlled by enhancers that contain a similar set of
transcription factor binding sites (TFBSs) [3]. Regula-
tory regions are referred to as cis-regulatory modules
(CRMs); they involve the dynamic interplay between sev-
eral TFs as well as nucleosome and chromatin organizing
proteins within a defined genomic interval. In human,
various TFBSs were shown to be conserved among co-
expressed genes in promoter regions [11]. Moreover,
enhancers that direct similar expression share common
TFBSs. The use of regulatory sequence features in putative
enhancers showed promising results in predicting cell-
type-specific gene expression [8, 12]. In previous work,
we assigned human cell-type-specific DNaseI hypersen-
sitive (DHS) regions to their closest gene, and scores
for TFBSs in the associated DHSs were used as features
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in sparse logistic regression classifiers to discriminate
between different expression patterns [13]. The additional
information gained by incorporating features from dis-
tal enhancers significantly exceeded the use of proximal
promoters only.
While these results were encouraging, performance cer-

tainly suffered from the simplified and often incorrect
assignment of enhancers to the closest gene. However,
linking enhancers to their target genes is not straight-
forward. Figure 1a illustrates our current understanding
of expected enhancer-gene relations: Enhancers can be
located in the vicinity of their target genes but do not
necessarily regulate the closest gene; they can act across
intervening genes to reach their targets; and they can exist
in the introns of their target genes or even those of nearby
genes. Furthermore, genes are often regulated by more
than one enhancer. The even-skipped gene ofDrosophila is
one of the classic examples, where at least nine enhancers
control expression in a spatially and temporally distinct
fashion, but enhancers that independently direct largely
similar expression patterns have also been described

[3, 14, 15]. Finally, the relationship between enhancers and
their target genes is not necessarily limited to one-to-one,
as a single enhancer can target multiple genes [16].
To disentangle the complex relationships between regu-

latory regions and target genes, previous studies employed
a number of different approaches. (1) Genome-wide tech-
niques to capture long-range chromatin interactions, such
as Hi-C [17] or ChIA-PET [18], may identify enhancer-
gene relationships, based on the assumption that active
enhancers direct target gene expression based on loop-
ing to the target promoter. However, the current scale
of available mammalian datasets does not typically allow
for detailed assignments at the needed kilobase resolution
[19]. (2) Instead, several approaches assigned enhancers
to target genes based on the correlation of gene expres-
sion and histone modifications in enhancers and putative
target promoters. In one example, enhancer states were
identified based on combinatorial patterns of chromatin
marks using amultivariate hiddenMarkovmodel (HMM),
and enriched TF motifs in these enhancers were matched
against gene expression profiles [20]. This model was used

Fig. 1 Possible enhancer-gene interaction dynamics and problem definition. a Current understanding of interaction dynamics between enhancers
and their target genes: (i) An enhancer can regulate a faraway gene and not necessarily the closest one. Genes with different expression patterns are
marked using different colors. Enhancers associated with a specific gene (or expression pattern) are marked with the same color of the target gene.
(ii) An enhancer may exist in an intron of its host or a different target gene. (iii) A gene can be regulated by multiple enhancers. b Problem definition:
genes with highly similar expression patterns are grouped into clusters. Enhancers are selected from the list of unlabeled sets and assigned a gene
cluster label. As a final step, a logistic regression classifier is applied to test the ability of the sequence of selected enhancers to predict the genes’
expression patterns
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to identify potential long-range interaction between pairs
of predicted enhancers and genes across multiple cell
lines in human [21]. PreSTIGE (Predicting Specific Tissue
Interactions of Genes and Enhancers) is another approach
that associates H3K4me1 ChIP-seq with RNA-seq expres-
sion levels for genes that are specifically expressed in
different cell types [22]. However, all of these models
depend on enhancer-associated chromatin marks, which
require high-resolution data at multiple conditions (e.g.,
time points and cell types). (3) Alternatively, expression
quantitative trait loci (eQTLs) have also been used to link
enhancers to target genes, via correlating sequence varia-
tion to changes in gene expression levels [23]. An integra-
tive random forest model to predict genes associated with
human eQTLs was introduced by [24]. However, given the
intrinsic challenges that usually come with eQTL analysis,
such as the large number of tests needed to identify asso-
ciations between gene expression and single-nucleotide
polymorphism, such an approach has limited practicality
for genome-wide implementation. (4) Finally, models on
specific expression patterns, for which relevant TFs and
genes are well known, have been utilized to link specific
sets of enhancers to their target genes. For Drosophila
[25], a Bayesian approach used the occupancy profile
of different TFs, spatio-temporal activity for CRMs, and
their genomic distances, along with occupancy peaks
for six insulator binding proteins and H3K4me3 profiles
at promoters. This model suggested that an enhancer
could regulate multiple genes and that enhancers that are
50 kb away from a gene transcription start site (TSS) could
still have influence on that gene. Recently, a linear model
integrating TF motif score, expression domain, and chro-
matin accessibility data across developmental stages has
been shown to predict enhancer activities [26]. Again,
prior knowledge of TFs and their DNA binding motifs is
required.
In this paper, we utilize a different premise to

develop a predictive model linking enhancers to target
genes, assuming that similar spatio-temporal expression
observed in target genes is causally connected to shared
sequence features (e.g., TFBSs) present in their enhancers.
We focus our efforts on fly embryonic enhancers: The fly
genome is compact, such that enhancers are frequently
close to multiple genes (e.g., within a few kilobases), and
one can therefore not assume that the closest promoter is
always the correct one [27, 28]. Furthermore, while intri-
cate expression patterns have been extensively mapped,
chromatin data is not available at matching spatio-
temporal resolution that would allow for the application of
chromatin-state-correlation approaches. Classifying gene
expression patterns based on our assigned enhancers
dramatically improves upon baseline approaches. We
demonstrate the success of our strategy by agree-
ment with Hi-C data, interpret informative sequence

features, and validate a subset of candidates with reporter
constructs.

Approach
Problem definition
Previous approaches that assign enhancers to target genes
largely rely on correlation between gene expression and
chromatin state: They look for cases in which changes
in enhancer histone modifications correlate with changes
in transcription and/or promoter histone modifications,
e.g., over a set of conditions (such as cell lines) for which
both expression and chromatin states have been deter-
mined. While intricate spatio-temporal gene expression
patterns have been measured in whole intact organisms
such as fly embryos, plant roots, or mouse brains, they do
not come with epigenetic information at the same match-
ing resolution. This constitutes a bottleneck that limits
our ability to interpret and decode functional regulatory
regions.
However, existing approaches do not utilize a critical

feature of gene regulation, namely that co-regulated genes
can be assumed to be targeted by the same (subset of )
regulatory factors, and that this is reflected in the co-
occurrence of sequence features in the regions to which
they bind [3]. We are therefore proposing to fill this gap
via predictive sequence models. Starting from a set of
genes with highly similar expression patterns, and a candi-
date list of enhancers in their genomic neighborhood, the
task is to infer a yes/no label for each enhancer indicat-
ing its involvement in regulating the genes (Fig. 1b). We
can then demonstrate the validity of these assignments
via the improved ability to predict the expression pattern
from the sequences of the selected enhancers. This strat-
egy can be thought of as higher-level motif finding. In the
traditional motif finding problem, one is asked to deter-
mine the locations of a common motif that is shared in a
set of regulatory regions. Here, there is similarly a hidden
variable indicating whether an enhancer regulates a spe-
cific target gene, but in place of a motif model, we learn a
model for the set of selected enhancers.

Choice of biological model system and data
In this study, we specify a solution of this general idea for
the model system of the fruit fly. Drosophila melanogaster
has a compact genome, and an immense volume of data
has been accumulated about fly biology generally and
gene regulation specifically. Drosophila shares many sim-
ilar regulatory features and pathways with humans on
the molecular level, but its short life cycle and the avail-
able genetic and transgenic tools allow us to experimen-
tally validate specific candidates. These aspects make
Drosophila a powerful model organism for testing predic-
tive models of gene expression regulation.
Specifically, we were able to use the following resources:
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1. Genome-wide spatio-temporal expression
profiles of Drosophila embryonic development.
Over the past 15 years, gene expression patterns for
thousands of genes have been curated by the Berkeley
Drosophila Genome Project [29]. Images were taken
at multiple time points during development and
manually annotated with a controlled vocabulary
describing the patterns [29]. A subset of these data
(44% of the 13,659 protein-coding genes) has been
used in conjunction with conventional time-course
gene expression data to cluster genes into 39 patterns
based on a combination of micro-array expression
data as well as the vocabulary, ranging from 3 to 365
unique genes per cluster [30]. Out of these clusters,
29 clusters define restricted expression patterns; the
remaining 10 broad clusters are grouped together
and referred to as ubiquitously expressed genes.

2. Genome-wide data on putative enhancers active
duringDrosophila embryogenesis. A curated set
of all possible enhancers during Drosophila
melanogaster embryogenesis is not available, but
active enhancers are known to be depleted of
nucleosomes so as to make the DNA accessible and
“open.” To identify accessible DNA regions in the
genome, DNaseI digestion and high-throughput
sequencing (DNase-seq) are usually used to mark the
locations of open chromatin along the genome [4, 31, 32].
DHSs have proven to be well correlated with diverse
classes of cis-regulatory regions, including
promoters, enhancers, insulators, and other sites of
regulatory factor occupancy [33–35]. It was also
shown that active regulatory regions interacting with
gene promoters are usually enriched for DHSs [36].
By considering the joint set of high-resolution in vivo
DNase-seq assays profiled at different stages of
embryogenesis [37], DHSs could be used to map the
locations of regulatory regions, decreasing the search
space (to 6.4% of the genome) and increasing the
probability of predicting regulatory regions that are
functional. Note that in our approach, chromatin
data is solely used to define a superset of putative
enhancers; it does not represent condition-specific
activity information to link enhancers to targets.

3. Initialization of enhancer models.While motif
finding in general does not require prior knowledge
to initialize models, available resources on gene
regulation in Drosophila allow us to make use of
information on validated enhancers and the
expression patterns they confer. The most detailed,
manually curated available resource for
experimentally verified fly CRMs, along with their
associated genes, is the Regulatory Element Database
for Drosophila (REDfly) [38]. An additional, more
recent set of known enhancer-gene pairs has been

determined via high-throughput enhancer trapping
[39]. In this Vienna Tiles (VT) library, each line
contains a transcriptional reporter construct with an
∼2kb candidate enhancer. These tested fragments
were selected to gain a largely unbiased picture of the
frequency and distribution of regulatory activity in
the non-coding, non-repetitive genome (around
13.5%). In situ images for each transgenic line were
acquired, and the enhancer activity patterns were
manually annotated using a controlled vocabulary.
Enhancers were then assigned to genes by manually
matching their activities with gene expression
patterns. Overlapping these known CRMs from
REDfly or the VT library with open chromatin
regions allows us to assign a small subset of DHSs in
the expression clusters to their target genes, enabling
us to address the problem in a semi-supervised
framework.

The McEnhancer model
In principle, one can define a complete system for
enhancer-gene assignment by including assignments as
hidden variables in a probabilistic sequence-based model
of gene expression. Sampling over putative assign-
ments of enhancers to genes, for all expression pat-
terns simultaneously, should allow for computing pos-
terior probabilities of assignments leading to optimal
classification.
To investigate the practical feasibility and performance

of such a strategy, we here propose a simpler approach
dubbed McEnhancer, which also allows us to utilize the
available information on enhancer-gene assignments. As
a central part of our approach, McEnhancer learns rele-
vant common subsequences from an initial set of known
(labeled) DHS-gene pairs, then predicts assignments for
other unlabeled DHSs with similar subsequences for one
expression pattern at a time. This is implemented using a
third-order interpolated Markov chain model (IMM) in a
semi-supervised learning setup via the expectation maxi-
mization (EM) algorithm. Due to the very limited number
of known DHS-gene pairs to initialize the models, IMMs
should be suitable to avoid overfitting. Figure 2 presents a
schematic overview of the model.
In a second step, to compare the accuracy against

baseline approaches such as assigning enhancers to the
closest genes, sparse k-mer-based logistic regression clas-
sifiers are then trained on McEnhancer-identified sets
of enhancers to predict expression patterns. Coefficients
of these k-mers are then used to highlight enriched
sequence patterns that might correspond to TF bind-
ing motifs. Pseudocode for McEnhancer is presented in
Additional file 1: Figure S1, and details on themodel setup,
parameter selection, and cross validation are provided in
Additional file 2.
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Fig. 2 Schematic representation of McEnhancer. Starting with known DHS-gene pairs assigned to a given cluster, it builds a third-order IMM to
represent sequence features in DHSs for the positive cluster (colored red). It builds another IMM to represent the null model. In iterative rounds, the
model loops on all unlabeled DHSs, calculates log likelihood ratio, and assigns a class label to each unlabeled DHS accordingly. After it finishes
looping on all unlabeled DHSs, it adds the newly assigned positive DHSs to the positive cluster and re-estimates IMM parameters. Log likelihood
ratios for positively labeled DHSs are re-calculated and re-added to the unlabeled set if their likelihood is low. The model iterates until it converges

Results
Mapping enhancer candidates from DNase-seq data
Accessibility to DNA modifying enzymes such as MNase
and DNase is a generally accepted hallmark of active regu-
latory regions [13, 36, 40]. DHSs were previously collected
from Drosophila melanogaster embryos at time intervals
centering on stages 5, 9, 10, 11, and 14, respectively [37].
The collection of DHSs across all stages was shown to
cover 6.4% of the euchromatic genome (7.6 Mb), with
an average of 3.5% at any given stage. Overlapping the
published DHSs with previously annotated CRMs from
REDfly showed an overlap of 4077 DHSs. This over-
lap decreased to 2375 DHSs when overlapping published
DHSs with CRMs from the VT library. Due to the low
signal-to-noise ratio of the processed published DNase
peaks (Fig. 3b), we decided to re-map the raw data and
call peaks using JAMM [41]. The overlap of the newly
called DHSs was 4111 and 2784 DHSs when intersecting
with REDfly or the VT library, respectively. The heatmap
in Fig. 3a shows the improvement of JAMM-identified
DHS peaks against the original mapped data for stage 14
of Fig. 3b (see Methods). These DHSs exhibit marginal
differences according to their genomic regions: DHSs
overlapping TSSs are a bit larger (median size ∼400 bp),

while distal DHSs are smaller (median size ∼330 bp
(Fig. 3c). Distal DHSs showmarginally higher GC content
than TSS-DHSs (Fig. 3d).

Assigning enhancers to their closest genes leads to
relatively poor results
In the absence of complementary data, the most com-
mon technique to assign enhancers to their target genes is
by linking them to the nearest TSS. As a baseline, Distal
DHSs were assigned to their closest genes. Then, a sparse
logistic regression classifier was used to test the accu-
racy of this assignment (Fig. 3e, black dots). Each of the
dots represents the area under receiver operating curve
(AuROC) for classification of one gene cluster (from the
29 clusters with restricted expression) against ubiquitous
genes (10 broad clusters grouped together as the negative
set). The average AuROC of ∼0.57 for this assignment is
close to random. This is markedly worse than previously
indicated in human [13], where the larger intergenic space
may allow for more meaningful assignments based on
distance.
Another alternative is to assume that each gene is

regulated by its single closest DHS. Training classifiers on
this smaller subset of DHSs leads to an average AuROC
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Fig. 3Mapping enhancer candidates from DNase-seq data and baseline classifications. a JAMM-identified peaks for DHSs in stage 14, versus (b)
originally processed DHSs in stage 14. Heatmaps are centered on DHS midpoint, ranked by peak width and show extended read count intensity.
c Size of all DHSs that overlap TSSs and those overlapping other regions along the genome. d Normalized GC content per each group of DHSs. e
Area under receiver operating characteristic curve (AuROC) for classification of various simple baseline methods for distal DHS-gene assignment

for this assignment that is again almost random ∼54%
(Fig. 3e, red dots). Finally, when all distal DHSs in the
region +/- 50 kb around each gene are associated with
a corresponding gene, the classification AuROC against
ubiquitous genes is ∼53% (Fig. 3e, blue dots). This implies
that all of these baseline enhancer-gene assignment meth-
ods are not effective. A smarter model that can link DHSs
to their target genes is needed for an understanding of
gene regulation specificity.

McEnhancer links enhancers to their target genes
Rather than assigning a fixed subset or all candidates in
a region, we would ideally infer whether any given DHS

in a genomic locus would be more likely involved in the
regulation of a target gene at the center of the locus; i.e.,
labels for each distal DHS are hidden variables but may
be inferred. McEnhancer was therefore applied to pre-
dict a yes/no label for each distal DHS, implying whether
that DHS is regulating a given gene. The model is built
across all genes with the same expression pattern (here,
belonging to one of 17 embryonic restricted expression
clusters). Only 17 clusters were used instead of the 29
restricted clusters due to data availability for initialization
(see Methods). Simultaneously, McEnhancer identifies a
subset of enhancers and their relevant sequence features
via multiple iterations in an EM approach.
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Known DHS-gene pairs were used for model initializa-
tion (numbers shown in Additional file 1: Figure S2); then
McEnhancer was run, until convergence, in a pairwise
manner on every possible combination, comparing one
cluster against each of the other clusters. The predicted
DHSs for each cluster from all of its pairwise runs were
tallied up, and those above a certain threshold were con-
sidered to regulate the corresponding expression pattern.
A detailed description of the model is supplied in Addi-
tional file 2, and the final predictions for each cluster are
given in Additional file 3.
In order to allow McEnhancer to learn the best

sequences specific for each gene cluster, we ran McEn-
hancer in two phases. Phase I targets genes with unique
expression patterns (assigned to exactly one cluster).
In this phase, DHSs overlapping REDfly CRMs and
VTs were used for initialization. In the next step,
phase II of the model uses predicted distal DHSs from
phase I to predict matching enhancers regulating non-
unique genes (i.e. genes assigned to multiple expression
classes).
Figure 4a shows the number of unique distal DHSs that

were used in initialization, as well as the total number of
unique distal DHSs that were predicted for each expres-
sion cluster. Figure 4b shows the number of genes with
associated distal DHSs before and after learning for each
of the two groups. The difference between the small num-
ber of genes with known assigned distal DHSs in the initial
start set compared to hundreds of genes with predicted
distal DHSs after running McEnhancer is quite remark-
able. In total, McEnhancer predicted 9180 unique distal
DHSs regulating 1621 unique genes. On average, each
patterned gene is thus regulated by 5–6 different distal
DHSs. Importantly, only 23% of predicted distal DHSs
were assigned to their closest genes, with the rest being
assigned to more distal ones.
The results so far were based on an initialization in

which we combined two datasets of enhancer-gene pairs,
namely REDfly and VT libraries. To assess the robust-
ness of enhancer selection and validate the accuracy
of the selected DHSs, we now initialized with one of
the two datasets only (REDfly), leaving the other one
(VT) for an independent validation of McEnhancer across
all clusters (see Methods). In this setting, McEnhancer,
after phase I, correctly predicted an average of ∼90%
of the enhancers from the VT set that were assigned
to each cluster (Additional file 1: Figure S4-A). Overall,
this quantifies the robustness of McEnhancer to recover
known enhancer-gene assignments on genomic datasets.
This also allowed us to rule out a possible bias for
distal interactions. Additional file 1: Figure S4-B shows
the distribution of enhancer-gene distances in the VT
set, and in the recovered subset when initializing on
REDfly only.

Distances between enhancers and their associated genes
span large ranges
We next investigated the distances between predicted dis-
tal DHSs and their corresponding genes (Fig. 4d). There
is a preference for distal DHSs to regulate genes within
closer distances, represented through the high peak at
shorter distances. However, it flattens out with increas-
ing distance and becomes uniform across the search space
window, +/–50 kb, around the genes’ promoters. A previ-
ous model presented by [25] showed that enhancers that
are 50 kb away from genes’ promoters were predicted to
influence their associated genes.
Setting a hard limit of a 50kb window around genes

promoters may therefore have been a tight constraint.
However, if multiple genes exist in the +/–50-kb region
that belong to the same gene cluster, all of these genes will
be assigned to the same enhancer with the same prob-
ability. Additional file 1: Figure S3 shows that the total
number of such genes falling within 100 kb of each other is
approximately 11% per cluster. (The few distal DHSs with
distances larger than 50 kb result from the initial labeling.)
Increasing this window would also increase the number
of genes belonging to the same cluster that fall within
the same window. In compact genomes, this conundrum
can effectively only be solved by using data for direct
interactions.

Genes with multiple expression patterns are regulated by
distinct sets of enhancers
Apart from the distance, we examined whether genes
belonging to multiple expression clusters would be
predicted to be regulated by different enhancers. We
calculated a uniqueness index (UI) for each gene belong-
ing to multiple expression clusters (see Methods). Fre-
quencies of differential DHS usage are shown (Fig. 4c).
It is interesting to see that almost half of the genes that
belong to more than one expression cluster are regulated
by completely different sets of DHSs (marked by the long
bar at 100%). This indicates that genes belonging to mul-
tiple expression patterns are predicted to be regulated by
different modularly acting enhancers.

Temporal patterns of predicted DHSs match gene
expression time points of assigned clusters
To test whether predicted DHSs match the same devel-
opmental stages as that of the associated expression
pattern, we counted the number of DHSs predicted in
each stage per cluster. Normalized z-scores were then
calculated for each developmental stage (Fig. 5). For
example, DHSs linked to blastoderm gene expression
clusters, clusters 25R, 26R, and 27R, exhibited higher
accessibility than other gene clusters in early accessibil-
ity data (higher z-scores in stage 5). Importantly, genes of
these clusters are highly expressed in the early stages of
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Fig. 4McEnhancer results. a Number of unique distal DHSs used in initialization and after prediction. b Number of unique genes used in
initialization and after prediction. c Differential DHS usage among genes belonging to more than one expression cluster. For each of the common
genes, the unique index (UI) is computed measuring the percentage of uniquely predicted DHSs. A histogram of UIs for all common genes is
displayed. d A histogram showing the frequencies of distances between predicted DHSs and their corresponding genes. Gray bars display distances
between predicted distal DHSs and their corresponding genes, while red bars represent distances for distal DHSs that were still kept in the final
predictions of those used in initialization

development (around stage 5), which is in concordance
with increased accessibility of active enhancers driving the
activity of these genes. Similarly, clusters with nervous
system expression, such as clusters 13R, 14R, and 15R,
have high accessibility z-scores for later (stages 11 and 14).
This complies with expression of their genes, where they
are mainly expressed in stages 11, 12 and 13–16.

Active enhancer-associated histone marks are enriched at
predicted enhancers
To validate thatMcEnhancer selects functional enhancers,
we first analyzed the chromatin structure in the vicin-
ity of the selected regions for hallmarks of enhancer
activity. Ideally, the data on chromatin structure (e.g.,
histone modifications) were to match the cell type in
which the enhancers are active. We therefore utilized

mesoderm-specific histone modification ChIP-seq data
for two enhancer-related histone marks, H3K4me1 and
H3K27ac [8], and visualized peak coverage on selected
DHSs for clusters 18R and 19R (genes expressed in differ-
entiated somatic muscle and differentiated visceral mus-
cle; see Methods).
Figure 6a shows enrichment of H3K27ac, a chromatin

modification indicative of active enhancers, at DHSs
selected for clusters with predicted mesodermal expres-
sion. We compared this pattern to DHSs that were
near these mesodermal genes but were not selected by
McEnhancer, DHSs selected by McEnhancer with non-
mesodermal enhancer activity, and DHSs not selected
to regulate any of the clusters. Similar to H3K27ac, we
also observed higher levels of H3K4me1 on predicted
tissue-specific enhancers in tissue-matched chromatin
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Fig. 5 Stage enrichments in predicted DHSs. Predicted DHSs are enriched for developmental stages corresponding to expression patterns of genes
in corresponding clusters

data; see Fig. 6b. This underscores the predictive power of
McEnhancer and supports the argument that H3K4me1
is elevated at active enhancers compared to non-active
ones [42]. Furthermore, Additional file 1: Figure S5-A
highlights the fact that enrichment of these histone
marks is not simply correlated with DHS accessibility.
Together, these observations support our prediction that
these enhancers are indeed regulatory sequences active in
mesoderm-specific tissues.

Identified Hi-C fragment-promoter interactions validate
the DHS-gene predictions
In addition to histone modification enrichments that
support the condition-specific enhancer function, direct
evidence for enhancer-promoter interactions may be
extracted from chromatin conformation data such as
Hi-C. Given its relatively low resolution and experi-
mental bias, Hi-C data needs to be processed by tai-
lored analysis pipelines aimed at validating enhancer-gene
assignments. Therefore, previously published genome-
wide Hi-C raw data from Drosophila embryonic nuclei
[43] was processed with the High-throughput Identifica-
tion Pipeline for Promoter Interacting Enhancer elements
(HIPPIE), which specifically calls significant Hi-C inter-
actions between promoters and distal locations [44]. In

this way, on average, ∼40% of DHS-gene pair predictions
are confirmed by exact fragment-promoter assignment
(Fig. 6c). To assess the significance of this overlap, we
derived a null distribution from random permutations of
the data, while correcting for the enhancer-gene distance
skewness (Additional file 1: Figure S5-B; see Methods).

McEnhancer learns specific regulatory sequences for each
expression pattern
McEnhancer assigns enhancers to their genes, based on
probabilistic sequence models, in an individual manner.
This does not guarantee that a gene’s expression pattern
can be predicted from enhancers that were assigned to
each gene. To measure the accuracy of McEnhancer in
assigning distal DHSs to restricted expression clusters,
we used sparse logistic regression classifiers trained on
the selected enhancers to quantify the extent to which
prediction of expression patterns improved. For genes
from a specific cluster with restricted expression, the
assigned distal DHSs were classified against the distal
DHSs assigned to all other clusters with restricted expres-
sion. The classification performance for each class is dis-
played in Fig. 7a, with an AuROC average ranging from
80 to 90%. This high classification performance reflects
the ability of McEnhancer in learning distinct sequence
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Fig. 6McEnhancer predictions are validated through enrichment of histone marks and overlap with Hi-C data. Enrichment of histone modification
marks: a H3K27ac and b H3K4me1 for clusters with predicted mesodermal expression (red), compared to DHSs near these mesodermal genes but
were not selected by McEnhancer (green), DHSs selected by McEnahncer but with no mesodermal activity (blue), and DHSs that were not slected to
regulated any of the clusters (purple). c Validation of predicted DHS-gene pairs by overlapping with identified fragment-promoter Hi-C interactions.
For each gene cluster, number of DHS-gene pairs which overlap with Hi-C fragments and for which these fragments were linked to the same genes
was counted (blue bars). Percentages represented by this overlap with respect to filtered predicted DHS-gene pairs are shown by the orange line.
Random refers to null expectation derived from data shuffling, see Methods

a b

Fig. 7McEnhancer learns specific patterns for each expression pattern. a Sparse logistic regression classifier for each restricted expression cluster
against distal DHSs assigned to all other clusters. For better visualization, clusters are grouped by their general biological function annotation, as
defined by [30]. Classification of clusters with less-defined functional annotation also gave similar results, results not shown. b Sparse classification
for each cluster against ubiquitous genes for promoter features alone and with addition of promoter to distal features as separate vector
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features for each gene’s expression pattern, and quanti-
fies how much better the prediction of gene expression
patterns is, across all genes and all enhancers selected,
compared to the baseline models above.

Regulatory sequence information in proximal promoter
DHSs sharpens the specificity of expression pattern
prediction
McEnhancer is only concerned with distal DHSs; pro-
moter DHSs are assumed to regulate their closest genes.
To examine the effect of regulatory features in pro-
moter regions in dictating the specific expression pat-
tern of the cluster, DHSs overlapping gene TSSs in each
expression cluster were classified against those overlap-
ping TSSs of ubiquitous genes. Classification resulted
in an average AuROC ∼68% (Fig. 7b, black dots).
Adding promoter DHSs to distal DHSs, each as a sep-
arate feature vector, resulted in a high AuROC ∼97%
(Fig. 7b, red dots). This implies that information retained
in promoter regions is not enough to encode specific
expression patterns; however, promoters together with
the McEnhancer-assigned distal enhancers allow for an
almost perfect distinction between different expression
patterns.

Functional validation of predicted enhancer activities for
identified DHSs
To assess whether our strategy to identify enhancers by
chromatin accessibility and to assign them to target genes
holds true in vivo, we aimed to test several putative
enhancers in developing embryos. However, because we
assign DHSs to putative target genes via concordance of
their k-mer content with that of verified enhancers linked
to target genes of known expression classes, a first indica-
tion of the quality of predicted enhancer-target linkages is
k-mer content itself — do the DHSs assigned to the spe-
cific expression classes contain sequence motifs for TFs
likely to regulate the respective expression patterns?

DHS classes are enriched for sequencemotifs for TFs known
to regulate the linked expression patterns
We analyzed DHSs assigned to each expression pattern
for statistical enrichment of sequence motifs (5-mers) and
assigned them to TFs based on reported binding pref-
erences using the Analysis of Motif Enrichment (AME)
algorithm [45]. AME computes the statistical enrichment
of known motifs in a set of sequences versus other con-
trol sequences based on threshold-free linear regression
(seeMethods). TF assignment is often ambiguous because
TFs can bind to a range of sequences, TF complexes
(e.g., dimerization partners) may alter sequence prefer-
ence, and several TFs may be assigned to the same motif.
Furthermore, as we use sparse classifiers, they will only
use a subset of possibly informative k-mers, and well-

known factors may be absent. Despite these caveats,
we could assign many TFs that explain much of the
expression behavior of the respective clusters (Addi-
tional file 1: Figure S6, summarized in Additional
file 4).
For example, cluster 18R genes are expressed primar-

ily in the somatic mesoderm (SM), and associated DHSs
were enriched in motifs assigned to the Myocyte Enhanc-
ing Factor 2 (Mef2), which plays a key role in SM dif-
ferentiation (see, e.g., [12]). Similarly, another enriched
motif maps to sine oculis (so), which is a homeodomain
TF related to Six4. so is unlikely to play a role in SM
development, but Six4 has a very similar binding motif
[46], is expressed in the mesoderm at the appropri-
ate stage, and has been shown to be a key patterning
agent of the ventral mesoderm, from which the SM
derives [47].
Cluster 19R genes are primarily expressed in the vis-

ceral mesoderm (VM). The enriched motifs include 5-
mers matching the TF tramtrack (ttk), which has recently
been found to play an important role in cell fate speci-
fication in the developing mesoderm and especially the
VM [48], as well as motifs matching nautilus, which
is involved in myogenesis. Interestingly, a motif for the
well-known repressor snail [49, 50] is also enriched in
19R. Snail is expressed in the presumptive mesoderm
early, but exclusively in neurogenic tissues starting at
stage 10. This implies a temporal mechanism to achieve
tissue-specific expression — Snail may keep genes off
first in the presumptive mesoderm and later in the neu-
rogenic tissues, while allowing their expression in the
VM. Similarly, the Zn-finger TF abrupt is a putative
new negative VM regulator; abrupt is not expressed
in the mesoderm but may serve to repress VM genes
in other tissues. Another enriched motif corresponds
to ETS binding motifs. ETS transcriptional activators
like pnt require ERK signaling, which is activated in
the VM [51] — it is feasible that ETS sites act like a
bimodal switch, where ETS TFBSs allow enhancer activ-
ity in the VM via activated Pnt, but deny activity of
the same enhancers via the ubiquitous ETS repressor
Aop elsewhere.
Similarly, motifs matching known neurogenic TFs are

found in nervous system clusters 15R and 16R, and vari-
ous early patterning determinants are found in blastoderm
clusters 23R–27R. However, it should be noted that the
expression classes are not homogeneous. Rather, they are
complex aggregates relying on diverse and distinct regu-
latory logics [30]. While speculative to a certain extent,
the fact that functional motifs can nonetheless be dis-
tilled is encouraging. More finely grained expression data
would certainly enhance motif identification, TF assign-
ment, and target gene prediction, especially as tissues
become more complex.
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In vivo activity of DHSs indicates them to be enhancers of the
predicted reporter genes
To assess enhancer activity of identified DHSs and to
validate their target gene predictions, we co-visualized
DHS-directed reporter and predicted target gene expres-
sion in transgenic embryos. A previous study identified
thousands of putative mesodermal Drosophila enhancers
based on TF binding assays [12], but it focused on
enhancer activity and made no attempt to predict target
genes. We randomly chose 5 of the reported enhancer
lines that overlapped with DHSs and examined gene
expression.

• The transgenic line CRM2893 was reported as a
visceral mesoderm (VM) and somatic mesoderm
(SM) enhancer at developmental stages 12–16.
Temporal DHS accessibility matches reported
enhancer activity (Fig. 8a), and the DHS was
predicted to target the gene how. Importantly, we
find near-perfect overlap between how and
CRM2893-directed reporter gene expression in the
VM and pharyngeal muscle (Fig. 8a’), as well as
significant overlap in the SM (not shown). We
conclude that this DHS constitutes a developmental
enhancer and was correctly mapped to its target gene.

• The DHS covering a second mesodermal enhancer,
CRM6053, also appears to be a functional and
correctly assigned enhancer and drives much of the
expression pattern of its target gene noc from stages
8–11 (Additional file 1: Figure S7-A).

• A third DHS matching CRM5481 is accessible at
stages 11–14 (Additional file 1: Figure S7-B) and was
predicted to target tkv and Bsg25D. The DHS directs
expression in the dorsal mesoderm (stage 11/12), SM
(stage 13), and anterior VM patches (stage 15)
(Additional file 1: Figure S7-B). tkv expression nicely
co-localizes with reporter gene expression in all three
mesodermal tissues (Additional file 1: Figure S7-B),
whereas Bsg25D is co-expressed only in the SM [52].
Why these two genes may be targeted
tissue-specifically by the enhancer DHS is unclear,
but note that while the DHS is intronic to tkv, it needs
to act over 25 kb to target the Bsg25D promoter.
Nonetheless, it seems that this DHS enhancer has
been correctly mapped to both target genes.

• The fourth mesodermal enhancer DHS, CRM3775,
drives expression in the mesoderm primordium at
stage 5 and in the SM at later stages, which is in
agreement with accessibility data (Additional file 1:
Figure S7-C). One of the two predicted target genes,
CG2162, does not significantly overlap with reporter
expression, but target CG32486 shows expression
very similar to that of the reporter gene in areas
surrounding hindgut and foregut invagination at stage

8, as well as in the SM after stage 13 (Additional file 1:
Figure S7-C). Therefore, the DHS seems to have been
correctly matched to one of its two predicted targets.

• The fifth DHS we tested matched CRM4515, is
accessible continuously, and was predicted to target
three genes: HGTX, bbg, and CG9238. None of the
target genes is expressed in domains overlapping
CRM4515 activity (Additional file 1: Figure S7-D [52, 53]),
but it should be noted that reporter and
predicted target gene expression are extremely
complementary (e.g., HGTX, see Additional file 1:
Figure S7-D), which in this case suggests that the
regulatory information contained within the DHS
serves to activate transcription of the reporter gene
in the transgenic context but to mediate repression
in the endogenous context, possibly due to CRM
truncation.

Additionally, we investigated several enhancer predic-
tions linked to the neurogenic expression cluster. Two
of these candidates (4 and 5) are located within 1 kb
of each other and may be part of the same larger reg-
ulatory region. While candidate 4 directs no detectable
reporter gene expression on its own (not shown), can-
didate 5 directs expression in the ventral nervous sys-
tem primordium (Fig. 8b). The overlap of reporter gene
activity with expression of the predicted target gene
scrt indicates correct target assignment for candidate 5
(Fig. 8b).
Candidate 1 was predicted to target soxN at a dis-

tance of more than 20 kb, but showed no detectable
regulatory activity. Candidate 3 is primarily accessible
at stage 5, which is when it directs ventral expres-
sion in a stripe-modulated pattern and ectodermal
patches later. The predicted target genes are nuf and
Dichaete, but while no reporter overlap with nuf expres-
sion was detected, some limited expression overlap was
observed for Dichaete anteriorly at stage 5, as well
as in the ectodermal patches later (Additional file 1:
Figure S7-E).
Though candidate 3 may well regulate aspects of

Dichaete expression, the limited overlap of reporter gene
and target gene expression sometimes observed (e.g.,
Dichaete, noc) highlights that many genes are likely to be
regulated by the interplay of several modular enhancers.
While we have observed cases of extremely close corre-
spondence between enhancer activity encoded in a DHS
and the expression of the predicted target gene (e.g., how,
noc, tkv, scrt) — underscoring McEnhancer accuracy —
some cases stand out where the prediction was seemingly
inaccurate. In cases such as nuf and CG2162, this is likely
due to insufficient resolution in expression classes — both
genes aremarked as blastoderm expressed, and while both
DHSs drive blastoderm expression, the specific patterns



Hafez et al. Genome Biology  (2017) 18:199 Page 13 of 21

a

a’

b

b’

Fig. 8 DHSs tested in vivo direct gene activity similar to predicted target genes. Shown are the genomic environments for the tested putative
enhancers a CRM2893 and b candidate 5. Gene models, Vienna Tiles and DHSs are shown (blue), predicted target genes are red, tested regions are
green. DNA accessibility at 5 developmental stages is shown across 10kb regions below. a’ and b’ show reporter gene activity directed by the
enhancer candidate (green) and the expression pattern of the predicted target gene (red). Shown is a medial cross section, ventral view (a) and a
ventrolateral view (b), anterior left; stippled boxes outline the zoomed-in regions on the right
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are distinct. Better expression class resolution would likely
remedy even these cases.
Taken together, our results show that DHSs not only

serve as a valuable tool for the identification of likely reg-
ulatory elements, but that given an appropriate training
set (i.e., linked enhancers and reliable gene expression
classification), their enhancer activities can be predicted
globally, and they can be assigned to putative target genes
with considerable accuracy.

Verification of long-range interactions
Finally, we evaluated the accuracy of McEnhancer-target
gene associations with respect to some challenging
enhancer-target assignments, specifically cases where the
experimentally determined target gene is not the clos-
est gene. The REDfly database [38] contains 62 such
instances, of which 26 uniquely overlap with our DHSs,
14 assigned to genes with unique expression pattern,
and 12 assigned to genes with multiple expression pat-
terns; the latter 12 cases were not used in initialization
(see Additional file 2) and thus constitute an independent
test set. Out of those, the McEnhancer-target predictions
directly agree in 9 cases (75%). Upon taking a closer look
at the reported enhancer activity compared to that of the
McEnhancer assigned gene, we determined that the accu-
racy of assignment is possibly as high as 11 or 12/12
(92–100%). Two of the three questionable cases seem to be
in fact correctly assigned by McEnhancer (see Additional
file 5): in one case, the CRM’s activity clearly overlaps
with the expression of the assigned gene, in the other it
appears that not only do enhancer activity and target gene
expression match, but the target gene assigned by McEn-
hancer is indicated by the original publication [53] as a
likely target and was simply incompletely annotated in
the REDfly database. The final case is inconclusive: the
enhancer activity of another DHS (accessible at >stage 9)
likely matches the reported weak expression of the pre-
dicted target gene (CG3838) in the ventral nerve cord [52];
although no images of the CRM’s activity are available, its
activity is described as “st. 9-16 lateral epidermis (weak),
CNS (weak)” [54]. Note that in the 26 cases (Additional
file 5), the simple closest-gene assignment would have
failed.

Discussion
We have approached the general problem of predict-
ing gene expression from sequence, by linking enhancers
to putative target genes by means of identifying a sub-
set of enhancers with similar sequence composition/k-
mer counts around co-regulated genes. With 62,453
DHSs, rich in putative enhancers, 13,659 protein-coding
genes, and only a few known DHS-gene pairs, predict-
ing enhancer-gene pairing globally becomes a complex
machine learning and data analysis challenge. DHSs were

used to represent potential candidates of transcriptional
enhancers. Since enhancers are believed to be relatively
“open” when regulating their target gene(s), McEnhancer
only searches in DHSs as proxy for putative enhancers
instead of the whole genome. Since we combined DHSs
across several embryonic stages, this certainly implies that
many of these DHSs are irrelevant for establishing the
considered temporally resolved expression patterns, but
the process decreased the search space to 6.4% of the
euchromatic D. melanogaster genome.
Together with clusters of genes expressed in similar

patterns in embryonic development, a semi-supervised
machine learning model was built to predict linkage
between DHSs and their associated target genes. For
a given gene cluster, McEnhancer first builds a third-
order interpolated Markov model on small starting sets
of known target gene assigned regulatory regions doc-
umented in REDfly and the VT library. Through appli-
cation of the EM algorithm within a pairwise semi-
supervised learning framework, it then scores each of the
unlabeledDHSs in a +/– 50kbwindow around genes in the
cluster. Labeled and unlabeled sets are updated accord-
ingly, and the whole model parameters are re-estimated
based on the newly updated sets. In this work, using inter-
polated Markov chains is crucial to avoid overfitting. The
algorithm iterates until convergence, and DHSs predicted
to harbor regulatory information associated with specific
expression clusters are identified.
Predicting gene expression from enhancer candidates

has previously worked to a certain degree even when
assuming that enhancers regulate their closest target
[13, 39]. We could show that the prediction of expression
patterns increased dramatically after selection of a subset
of enhancer candidates via McEnhancer. The high perfor-
mance of logistic regression classification between pre-
dicted DHSs for each specific cluster against other clus-
ters, as well as against ubiquitous enhancers, supported
the notion that we selected a subset of enhancers relevant
for the expression of the target genes. This observation
was also corroborated by thematch between developmen-
tal stages of selected DHSs and expression time points
of their associated genes. While our approach provides a
two-step solution to first select enhancers and then build
classifiers, it is conceivable to phrase the problem within
an integrated probabilistic model that explicitly treats the
enhancer-gene assignments as missing/hidden variables.
Assigning enhancers to the gene with the closest TSS

appeared to be a comparatively poor assumption for
the compact genome of Drosophila melanogaster, where
genes are close to each other, yet enhancers have been
shown to influence regulation over large genomic dis-
tances. Our analysis shows that only 23% of predicted
DHSs are assigned to their closest genes. This number
may be somewhat low, as there may be cases where the
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closest gene regulated by an enhancer was not part of
the pre-defined expression clusters, or where an enhancer
regulates its closest target gene, but in a different expres-
sion context not considered here. However, other recent
studies have also reported that enhancers regulate sur-
prisingly few of their closest genes. For example, a study
analyzing 5C data in human showed that only 27% of distal
elements have an interaction with their nearest TSSs [27].
Similar results were also obtained from another study ana-
lyzing ChIP-seq data in mouse [28]. Reconstruction of
gene regulatory networks suggests that sometimes more
distal regulatory elements control gene expression over
those that are positioned closer to the gene [24]. Thus,
when predicting enhancer-gene interactions, choosing the
nearest gene may be globally informative, but insufficient
and misleading in specific cases. Furthermore, as with
all approaches that do not use evidence of direct inter-
action data, we cannot resolve cases in which multi-
ple co-expressed genes are located in the same genomic
neighborhood (here, several genes from the same cluster
within a +/– 50kb region). Using topologically associat-
ing domains (TADs) instead of fixed-sized windows may
resolve some of such cases, and it is in fact a matter
of current debate whether co-expressed genes within a
TAD are generally differentially or jointly regulated by
shared enhancers.
The presence of enhancer-related histone modifications

in the vicinity of enhancers is generally used to validate
predicted enhancers. Enrichment of H3K27ac in pre-
dicted enhancers revealed active regulatory function in
both Drosophila and human embryonic cells [7, 20, 55].
The existence of H3K4me1 marks at predicted enhancers
adds an extra layer of validation, as H3K4me1 has been
described as a chromatin mark associated with enhancers
irrespective of activity [56].
Analyzing genome-wide Hi-C Drosophila embryonic

data [43] using HIPPIE [44] showed a considerable overlap
of identified fragment-promoter interactions with pre-
dicted DHS-gene pairs. Here, the available read depth and
the compactness of the fly genome allowed for a mean-
ingful analysis at single gene loci, which is not yet feasible
for most if not all available mammalian datasets; yet, it
is important to note that due to read coverage bias and
the current resolution of Hi-C data, the lack of interaction
between two fragments in Hi-C data analysis does not rule
out the existence of the interaction.
Investigating the k-mer sequences that contributed

most to the expression pattern classifiers provided deeper
insights into specific gene regulation. k-mers to which
non-zero weights were assigned by the sparse logistic
regression were mapped to TF binding preferences to
identify candidate regulators. Examples of meaningful
matches derived in this way included motifs known to
be able to recruit crucial regulators directing expression

in and shaping the developmental trajectories of the
respective expression domains.
Such analyses are necessarily incomplete and require

careful interpretation as discussed, but are nevertheless
useful in highlighting enriched motifs that offer potential
TF candidates for regulating a specific system for further
validation. Finally, we were able to test and verify the regu-
latory activities of several identified DHSs. Of nine tested
DHSs, seven were found to act as enhancers and were
able to direct reporter gene expression in vivo. Of these,
six exhibited partial overlap with the expression of pre-
dicted target genes; the seventh was driving expression in
a pattern curiously complementary to that of all three pre-
dicted target genes. In some cases, the DHS captured the
regulatory activity explaining a target gene’s developmen-
tal expression pattern almost entirely. This indicates that
not only are we able to predict enhancers based on DHSs,
but that McEnhancer is also able to assign target genes,
and even multiple target genes for a single enhancer, with
considerable accuracy, which will further improve with
more accurate expression classification, both temporally
and spatially.

Conclusions
This study provides a new approach to the problem of
assigning enhancers to the genes they regulate. Via semi-
supervised machine learning, we can start from a handful
of positive samples and add further unclassified samples
around co-expressed genes, which look most similar in
terms of their sequence composition. We also posited that
successfully predicting specific expression patterns from
the assigned enhancers is a highly effective approach in
evaluating the success of enhancer-gene assignments. In
summary, this approach provides a framework for mak-
ing sense of large in vivo regulatory datasets that do not
completely align with one another and do not have cell-
type-specific resolution. It is an example of how machine
learning provides an effective means to provide deep
insights into the biology of gene regulation, and pro-
vides a starting point for improved computational and
experimental strategies.

Methods
DNaseI data processing and peak calling
In order to identify regions of enriched accessibility in
DNaseI, referred to as DNaseI hypersensitive sites (DHSs),
peaks were called on raw data. DNaseI raw data for two
replicates of Drosophila melanogaster embryos at 3, 4,
5, 6, and 11 hours, corresponding to stages 5, 9, 10, 11,
and 14 in embryogenic development was downloaded,
SRP002474 [37]. Bowtie2 was used to map raw data to
the Drosophila melanogaster genome (dm3) [57]. After
this, peaks were called on each replicate separately using
JAMM [41] and the irreproducible discovery rate (IDR)
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between the two replicates was calculated. Peaks with only
IDR � 0.02 (2% threshold) were considered. This resulted
in a total of 62,453 DHS peaks for all stages combined.
Heatmaps showing JAMM-identified DHS peaks in

stage 14 are represented in Fig. 3a. These heatmaps are
centered on peak center (DHS midpoint) and ranked by
peak width. Corresponding peak edges are shown by gray
lines. When compared against the original processed sig-
nal, which uses a scan-statistic algorithm to identify DHSs
(Fig. 3b), the JAMM peaks are better identified and their
signal-to-noise ratio is higher.

Assembling known DHS-gene pairs (labeled data)
The gold standard for testing enhancers and their asso-
ciated genes is through designed reporter assays. In
these experiments, a candidate DNA sequence is placed
upstream of a minimal promoter and a reporter gene. The
activity of the enhancer is then measured by the abun-
dance and localization of the reporter transcript, or the
reporter gene is detected by enzymatic activities, fluo-
rescence, or specific antibodies [10]. These experiments
are very low throughput; they are designed to test exactly
one specific enhancer against one gene. The broadest and
most comprehensive available resource for curated exper-
imentally verified fly CRMs along with their associated
genes is the Regulatory Element Database for Drosophila
(REDfly) [38].
Distal DHSs were overlapped with known CRMs from

REDfly (v3.0) and split into expression clusters accord-
ing to their associated genes. The number of known
DHS-gene pairs overlapping REDfly CRMs per each gene
expression cluster is shown in Additional file 1: Figure S2
(red bars). It is clear that the number of known DHS-gene
pairs is fairly small in most gene expression clusters, with
some clusters having not even a single known pair.
Another set of known enhancer-gene pairs is in vivo val-

idated through a high throughput enhancer trapping in
situ protocol using transgenic fly lines VT and systemat-
ically assigned to their targets [39]. In the VT fly library,
each line contains a transcriptional reporter construct
with a ∼2 kb candidate enhancer, minimal promoter, and
GAL4 reporter gene integrated into an identical position
in the fly genome. In situ images for each transgenic
line were acquired, and the enhancer activity patterns
were manually annotated using a controlled vocabu-
lary. Out of 7705 tested candidate enhancers, 46% were
active, with most of them showing specific spatial patterns
during development. To associate a target gene for each
of these enhancers, the expression patterns of the five
upstream and downstream neighboring genes were man-
ually inspected and compared to that of the enhancer in
consideration. A gene was assigned to a given enhancer if
the gene expression pattern matched that of the enhancer.
This manual enhancer-gene pattern association analysis

was successful in the linking of only 482 enhancers to
their target genes. In the case when a VT contains more
than one enhancer, all of these enhancers are equally used
in initialization. However, in our semi-supervised frame-
work, enhancers are “allowed” to leave the set in each
iteration; if an enhancer used in initialization will not be
matching the model during learning, it will no longer be
included in the positive set.
Distal DHSs were overlapped with the 482 manually

associated enhancer-gene pairs, based on their annotated
expression patterns from in situ images. The numbers of
DHS-gene pairs per each cluster are shown in Additional
file 1: Figure S2 (green bars). Since the number of known
DHS-gene pairs per each cluster was still small, a combi-
nation of known pairs from REDfly and VT was collec-
tively considered. Some of these pairs are exactly the same,
while others are different, Additional file 1: Figure S2
(purple bars). Using both sets provided us with suffi-
cient known DHS-gene pairs that were used for model
initialization. Gene expression clusters with no known
DHS-gene pairs or with � 3 pairs are discarded from
the analysis. A total of 17 clusters were then used for
prediction.

Calculating distances between enhancers and their
associated genes
Distances are measured between gene TSSs and centers
of distal DHSs. If a gene has more than one transcript,
the shortest distance is used. Gray bars in Fig. 4d display
distances between predicted distal DHSs and their cor-
responding genes, while red bars represent distances for
distal DHSs that were still kept in the final predictions out
of those used in initialization.

Calculating uniqueness index for common genes
To further investigate if genes belonging to multiple
expression clusters are regulated by different enhancers,
we calculated a uniqueness index (UI). First, genes used
by McEnhancer which belonged to more than one cluster
were marked, and 303 genes were referred to as common
genes. Then the symmetric difference of the clusters for
which a given gene belongs to was calculated for each
of these common genes, and referred to as UI. A UI is
defined as the percentage of uniquely selected DHSs out
of all predicted DHSs for a given gene. Using set theory,
UI for a common gene x that belongs to two clustersA and
B is defined as:

UIx = (DHSA − DHSB) ∪ (DHSB − DHSA)

DHSA ∪ DHSB
(1)

Enhancer-associated histonemarks
A common technique to validate predicted enhancers is
to analyze chromatin structure in the vicinity of pre-
dicted regions. To this end, mesoderm-specific histone
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modification (H3K4me1 and H3K27ac) and histone H3
density ChIP-seq data were obtained from [58]. Raw data
was mapped to Drosophila melanogaster genome build
dm3 using Bowtie2 with default parameters. Only reads
that aligned uniquely to a single location were retained.
PCR duplicates were removed using Picard (http://
broadinstitute.github.io/picard). Peaks for the two modi-
fications were called with JAMM [41], setting parameters
-e auto, -d y and -r region, using histone H3 density as
control data.
Enrichments of the JAMM signal for each of the

two histone marks, specifically H3K4me1 and H3K27ac,
were compared across four different groups of DHSs.
The first group is composed of DHSs that were pre-
dicted by McEnhancer to regulate genes with meso-
dermal expression pattern (clusters 18R and 19R). The
second group consists of DHSs that are near meso-
dermal genes, but were not selected by McEnhancer.
The third group represents other predicted DHSs that
were selected for other clusters, other than muscle-
related ones. And finally the last group included all
other DHSs that were not selected to regulate any of
the clusters.
To perform this analysis, a normalized read coverage

for each merged BAM file, with no duplicate reads, was
obtained for each of the three histone marks. Reads were
grouped in 10-bp bins along the genome with extended
fragment length. Fragment length was computed as the
average of the three fragment lengths after mapping each
of the different time points separately. Then, for each
group of DHSs, the number of reads that overlapped the
corresponding regions were summarized, and the mean
score for each bin (10 bp) in the interval of +/–2 kb around
the center of the DHS was used to indicate the enrich-
ment score. A local version of deepTools was used in this
analysis [59].
Nucleosomes in the vicinity of active enhancers typically

contain histone characteristics with post-translational
modifications. Figure 6a shows enrichment of the
H3K27ac chromatin mark at the four defined sets of
DHSs. Predicted enhancers show high levels of H3K27ac,
even when compared against those DHSs that were
not selected. This indicates that predicted enhancers
are indeed active regulatory sequences, since H3K27ac
is a critical mark that separates active from poised
enhancers [55]. Predicted enhancers also show high lev-
els of H3K4me1, see Fig. 6b, which marks the location of
enhancers.

Initialization with one exclusive dataset
To computationally validate the selection of DHSs for
each cluster, McEnhancer was initialized with DHSs from
REDfly only and then tested regarding how many DHSs
from VT were correctly assigned. Clusters with less than

4 DHSs for initialization were excluded from this anal-
ysis. In addition, two other clusters did not have any
assigned DHSs from VT and were also excluded. This
left us with 11 clusters to validate. McEnhancer was run
in pairwise settings, comparing a given cluster with the
other 10 clusters, for stage 1 of the algorithm where
only genes that are uniquely assigned to a single clus-
ter were considered. DHSs selected more than five times
for a given cluster across all 10 pairwise comparisons
were considered to predict the expression pattern of that
cluster. Percentages of overlapping matches were calcu-
lated based on the full initial set of DHSs that were
assigned to each cluster by VT, as well as the sub-
set kept by McEnhancer when training on both REDfly
and VT.

Enhancer-promoter interactions from embryonic Hi-C data
Currently, the most comprehensive pipeline that tack-
les many of the shortcomings of Hi-C biases is HIPPIE
[44, 60]. In this pipeline, raw data is first mapped to
the genome without the use of Hi-C pairing informa-
tion. Because the resolution of Hi-C is constrained by the
length distribution of the fragments produced by the cho-
sen restriction enzyme, the reads are aggregated to each
restriction fragment that represents potential DNA-DNA
interacting sites (average length 413.0 bp). The extended
restriction fragments with Hi-C reads are then filtered to
include pairs with at least 2 reads supporting the inter-
actions, for which one of the interacting pairs is a pro-
moter (200 bp upstream from the TSS) and for which
the non-promoter-interaction fragment overlaps with
DNase-seq and known enhancer marks H3K4me1 and
H3K27ac.
Given the high data biases associated with Hi-C assay,

such as its relatively low resolution and experimental bias
[61], this data could still be used with a tailored analysis
pipeline to validate enhancer-gene predictions. There-
fore, genome-wide Hi-C raw data applied to Drosophila
embryonic nuclei, generated by [43], was downloaded and
HIPPIE pipeline was applied.
HIPPIE outputs a Browser Extensible Data (BED) file for

the interactions between gene promoters and Hi-C frag-
ments, along with their corresponding p-values. These
p-values represent the significance of read counts for each
fragment-gene pair, calculated using the negative bino-
mial distribution for the expected read counts for every
fragment pair. HIPPIE reports a total of 1,924,222 interac-
tions between 149,328 unique fragments and 9256 unique
genes. When considering near-significant interactions
only (p-value � 0.1), the number of interactions drops
to 239,933 between 98,376 unique fragments and 9240
unique genes. On average, a gene is assigned to 16 dif-
ferent fragments (10 when considering near-significant
ones).

http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard
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In order to calculate the overlap between our DHS-
gene pairs and those reported by HIPPIE, its output was
first filtered to contain only Hi-C fragments that over-
lap with all DHSs that do not overlap gene TSSs. A
Hi-C fragment was considered to overlap a DHS only if
at least 80% of the DHS is covered by the Hi-C frag-
ment. Fragments interacting with gene promoters for
only those genes that are in clusters used in this analysis
were solely considered. After this, for each gene cluster,
the number of DHS-gene pairs which overlap with Hi-
C fragments and for which these fragments were linked
to those same genes was counted, and represented by
blue bars in Fig. 6c. On average, ∼40% of DHS-gene pairs
predictions are confirmed by Hi-C data, as shown by
the blue line in Fig. 6c. The BEDtools package Genom-
icRanges was used to find the overlap between BED
coordinates [62].
To assess the significance of calculated overlap, ran-

dom DHS-gene pairs were generated. For each gene in
the analysis, six random DHSs, from DHSs within +/–
50 kb around the gene TSS, were selected. The choice of
six came from analyzing model prediction output where
each gene is, on average, linked to six different DHSs.
In addition, given that the predicted enhancer-gene pairs
have skewed distribution towards shorter interactions,
shown in Fig. 4d, random DHS-gene pairs were sam-
pled with controlled distance distributions, mimicking
that of the predicted pairs. The same steps for calcu-
lating the overlap between predicted DHS-gene pairs
and identified Hi-C fragment-gene pairs were applied on
the random permuted data. This permutation was run
1000 times and the average overlap with Hi-C pairs was
15%, shown as the last blue bar in Fig. 6c. This implies
the significance of predictions for every gene cluster
(p-value < 0.0001).
Similar procedures were then repeated, but consid-

ering only Hi-C fragment-gene pairs with significant P
values (p-value � 0.1). The average percentage overlap
was ∼22%, with an average random overlap close to
4% (Additional file 1: Figure S5B).

TF enrichment analysis in predicted regulatory regions
For further validation of predicted DHSs, we tested
whether known motifs are enriched in the enhancer
set selected for each cluster. We calculated enrichment
scores for known position weight matrix (PWM) motifs
in predicted DHSs for one cluster against DHSs pre-
dicted to regulate all other clusters, using AME [45].
We combined two highly curated motif datasets and
used them as a database from which the AME algo-
rithm selected enriched motifs. The first set represented
binding specificities of 242 Drosophila TFs generated
by applying the HT-SELEX protocol [46]. The other
set included motifs from the OnTheFly database. Since

the Mef2 motif, which is known to regulate muscle-
related genes that we investigate in more detail, did not
exist in any of the two databases, we added its PWM
from [12].
To further narrow this down, we overlapped these

results with important k-mers that significantly sepa-
rated each cluster from others. After running the logistic
regression classifier, important features that helped in
classification were identified. We first calculated their z-
scores based on the linear regression coefficient, then
we ranked them accordingly. The first 20 features were
used as input to TomTom [63] to search for motif
matches against a set of databases. This resulted in dif-
ferent sets of known motifs, each representing DHSs
predicted for specific clusters. Identified PWMs were
analyzed and shown to match expression patterns of
their associated clusters (the full table is shown in
Additional file 4).

Transgenic reporter assays
To validate enhancer-target predictions in vivo, two
sets of candidates were chosen. The first set comprises
published enhancers identified based on TF binding,
but for which target genes were neither predicted nor
investigated [12]. The second validation set comprises
DHS regions likely to act as enhancers based on over-
lap with VT constructs [39]. The set 2 regions were
PCR amplified from wild-type (yw) D. melanogaster
using the primers listed below. The PCR products were
EcoRI digested and non-directionally cloned into the
P-element reporter vector pH-Stinger [64] and verified by
diagnostic digest and Sanger sequencing. All constructs
were integrated via P-element transgenesis according to
standard protocols [65]. Between two and five indepen-
dent transgenic lines were obtained and evaluated for
each construct to control for position effects. Embryos of
mixed developmental stages were collected from trans-
genic lines, formaldehyde cross-linked, and tested by
whole-mount in situ hybridization (ISH) using antisense
RNA probes against the reporter genes (lacZ for set 1, or
GFP for set 2) and predicted target genes. RNA probes
labeled with digoxigenin-, biotin-, or fluorescein-uridine
triphosphates (UTPs) for co-visualization according to
standard protocols, similar to [66], were generated.
Visualization was performed fluorescently via tyramide
signal amplification (TSA kit, Perkin Elmer) after label-
ing of the individual haptens with primary antibod-
ies (Anti-Fluorescein-POD, Anti-Digoxigenin-POD, or
Anti-Biotin-POD, Roche) as appropriate. Co-visualization
allows for the direct in situ comparison of the spatio-
temporal expression patterns driven by the DHS candi-
dates identified in relation to the expression domain of
predicted target genes. Images were acquired in Z-stacks
on either a Leica DMi8 wide field or a Zeiss LSM 700
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confocal scanning system; wide field images were software
deconvolved.
Primers for amplification of set 2:

• candidate 1

– DHS chr2L_8851915_stage_9 ; location =
[668bp=2L:8851915-8852583] cloned:
chr2L:8851854-8852589

– Fwd = #544 :
nnngaattcCCAATCAAAATAAATGGCTAC

– Rev = #545 :
nnnngaattcGCGATGTCAAAGGTCTTAAC

• candidate 2

– DHS chr3L_14146268_stage_9 ; location =
[238bp=3L:14146268-14146506] cloned
chr3L:14146267-14146516

– Fwd = #546 :
nnnngaattcTGTCTAACTGTGCATCCCTG

– Rev = #547 :
nnnngaattcACAATCCCGGATACAAAAGG

Note that candidate 2 has not been tested, because it
failed to be identified as a candidate after the
prediction model was refined

• candidate 3

– DHS chr3L_14146763_stage_5 ; location =
[398bp=3L:14146763-14147161] cloned:
chr3L:14146754-14147167

– Fwd = #548 :
nnnngaattcGCTAATCGTTCGCCTTCTCG

– Rev = #549 :
nnnngaattcCCTTGCAGGTCAGATGTCC

• candidate 4

– DHS chr3L_3976412_stage_9 ; location =
[691bp=3L:3976412-3977103] cloned
chr3L:3976411-3977103

– Fwd = #550 :
nnnngaattcCTACGTGGATGAGCTCC

– Rev = #551 : nnnngaattcAGCTAAGAGGAT-
GTCATGAAC

• candidate 5

– DHS chr3L_3978213_stage_9 ; location =
[392bp=3L:3978213-3978605] cloned
chr3L:3978207-3978615

– Fwd = #552 :
nnnngaattcGAGTGCATCGCTTTTACC

– Rev = #553 :
nnnngaattcCGAATCGTGTGTTGAGATAG
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Additional file 2: Materials and methods supplement. This text explains
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48. Ciglar L, Girardot C, Wilczyński B, Braun M, Furlong EE. Coordinated
repression and activation of two transcriptional programs stabilizes cell
fate during myogenesis. Development. 2014;141(13):2633–43.

49. Zinzen RP, Senger K, Levine M, Papatsenko D. Computational models for
neurogenic gene expression in the Drosophila embryo. Curr Biol.
2006;16(13):1358–65.

50. Rembold M, Ciglar L, Yáñez-Cuna JO, Zinzen RP, Girardot C, Jain A,
Welte MA, Stark A, Leptin M, Furlong EE. A conserved role for Snail as a
potentiator of active transcription. Genes Dev. 2014;28(2):167–81.

51. Gabay L, Seger R, Shilo BZ. Map kinase in situ activation atlas during
Drosophila embryogenesis. Development. 1997;124(18):3535–41.

52. Tomancak P, Beaton A, Weiszmann R, Kwan E, Shu S, Lewis SE, Richards S,
Ashburner M, Hartenstein V, Celniker SE, et al. Systematic determination
of patterns of gene expression during Drosophila embryogenesis.
Genome Biol. 2002;3(12):0081–8.

53. Ochoa-Espinosa A, Yucel G, Kaplan L, Pare A, Pura N, Oberstein A,
Papatsenko D, Small S. The role of binding site cluster strength in
Bicoid-dependent patterning in Drosophila. Proc Natl Acad Sci U S A.
2005;102(14):4960–5.

54. Jones BW, Abeysekera M, Galinska J, Jolicoeur EM. Transcriptional
control of glial and blood cell development in Drosophila: cis-regulatory
elements of glial cells missing. Dev Biol. 2004;266(2):374–87.

55. Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ,
Hanna J, Lodato MA, Frampton GM, Sharp PA, et al. Histone H3K27ac
separates active from poised enhancers and predicts developmental
state. Proc Natl Acad Sci. 2010;107(50):21931–6.

56. Heinz S, Romanoski CE, Benner C, Glass CK. The selection and function
of cell type-specific enhancers. Nat Rev Mol Cell Biol. 2015;16(3):144.

57. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2.
Nat Methods. 2012;9(4):357–9.

58. Bonn S, Zinzen RP, Perez-Gonzalez A, Riddell A, Gavin AC, Furlong EE.
Cell type-specific chromatin immunoprecipitation from multicellular
complex samples using BiTS-ChIP. Nat Protoc. 2012;7(5):978–94.

59. Ramírez F, Dündar F, Diehl S, Grüning BA, Manke T. deepTools: a flexible
platform for exploring deep-sequencing data. Nucleic Acids Res.
2014;42(W1):187–91.

60. Hwang YC, Zheng Q, Gregory BD, Wang LS. High-throughput
identification of long-range regulatory elements and their target
promoters in the human genome. Nucleic Acids Res. 2013;41(9):4835–46.

61. Yaffe E, Tanay A. Probabilistic modeling of Hi-C contact maps eliminates
systematic biases to characterize global chromosomal architecture. Nat
Genet. 2011;43(11):1059–65.

62. Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M, Gentleman R,
Morgan MT, Carey VJ. Software for computing and annotating genomic
ranges. PLoS Comput Biol. 2013;9(8):1003118.

63. Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS. Quantifying
similarity between motifs. Genome Biol. 2007;8(2):24.

64. Construction V. New Drosophila transgenic reporters: insulated P-element
vectors expressing fast-maturing RFP. Biotechniques. 2004;36(3):436–42.

65. Rubin GM, Spradling AC. Genetic transformation of Drosophila with
transposable element vectors. Science. 1982;218(4570):348–53.

66. Kosman D, Mizutani CM, Lemons D, Cox WG, McGinnis W, Bier E.
Multiplex detection of RNA expression in Drosophila embryos. Science.
2004;305(5685):846–6.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:


	Abstract
	Keywords

	Background
	Approach
	Problem definition
	Choice of biological model system and data
	The McEnhancer model

	Results
	Mapping enhancer candidates from DNase-seq data
	Assigning enhancers to their closest genes leads to relatively poor results
	McEnhancer links enhancers to their target genes
	Distances between enhancers and their associated genes span large ranges
	Genes with multiple expression patterns are regulated by distinct sets of enhancers
	Temporal patterns of predicted DHSs match gene expression time points of assigned clusters
	Active enhancer-associated histone marks are enriched at predicted enhancers
	Identified Hi-C fragment-promoter interactions validate the DHS-gene predictions
	McEnhancer learns specific regulatory sequences for each expression pattern
	Regulatory sequence information in proximal promoter DHSs sharpens the specificity of expression pattern prediction
	Functional validation of predicted enhancer activities for identified DHSs
	DHS classes are enriched for sequence motifs for TFs known to regulate the linked expression patterns
	In vivo activity of DHSs indicates them to be enhancers of the predicted reporter genes

	Verification of long-range interactions

	Discussion
	Conclusions
	Methods
	DNaseI data processing and peak calling
	Assembling known DHS-gene pairs (labeled data)
	Calculating distances between enhancers and their associated genes
	Calculating uniqueness index for common genes
	Enhancer-associated histone marks
	Initialization with one exclusive dataset
	Enhancer-promoter interactions from embryonic Hi-C data
	TF enrichment analysis in predicted regulatory regions
	Transgenic reporter assays

	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher's Note
	Author details
	References

