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A Mathematical model

A.1 Model equations

We describe the signalling module of our model by a published model for Wnt signalling in the
liver (1). This model is given by the following system of ordinary differential equations (ODEs)

d[β-catenin]

dt
= v1 − v2 − v3 − v4 − v5 (1)

d[APC]

dt
= −v4 (2)

d[TCF]

dt
= −v5 + v6 − v7 (3)

d[β-catenin/TCF]

dt
= v5 (4)

d[Dsha]

dt
= v8 − v9 (5)
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Supplement: Modelling Dkk in wild-type and mutant hepatocytes

along with the conservation relations for total APC and total Dsh concentrations

[β-catenin/APC] + [APC] = APCtotal (6)

[Dsha] + [Dshi] = Dshtotal (7)

and the rate equations (indexation corresponds to the reaction schemes in Fig. 2 B in the main
text)

v1 = c1 (8)

v2 = k2 · [β-catenin] (9)

v3 = k3 ·
[APC] · [β-catenin]

K + [Dsha]
(10)

v4 = k4 · [APC] · [β-catenin]− k−4 · [β-catenin/APC] (11)

v5 = k5 · [TCF] · [β-catenin]− k−5 · [β-catenin/TCF] (12)

v6 = c6 (13)

v7 = k7 · [TCF] (14)

v8 = k8 · [Wnt/Frz/LRP] · [Dshi] (15)

v9 = k9 · [Dsha]. (16)

To describe the receptor module, we adapt a published two-receptor model (2):

d[Frz]

dt
= −v14 (17)

d[Wnt/Frz/LRP]

dt
= v15 (18)

d[Dkk/LRP]

dt
= v16 (19)

with the conservation relations of total LFP, total Frz, and total Wnt concentration

[LRP] + [Dkk/LRP] + [Wnt/Frz/LRP] = LRPtotal (20)

[Frz] + [Wnt/Frz] + [Wnt/Frz/LRP] = Frztotal (21)

[Wnt] + [Wnt/Frz] + [Wnt/Frz/LRP] = Wnttotal (22)

and the rate equations

v14 = k14 · [Wnt] · [Frz]− k−14 · [Wnt/Frz] (23)

v15 = k15 · [Wnt/Frz] · [LRP]− k−15 · [Wnt/Frz/LRP] (24)

v16 = k16 · [Dkk] · [LRP]− k−16 · [Dkk/LRP]. (25)

A downstream gene expression module is added for Dkk mRNA and a generic target gene mRNA:

d[Dkk mRNA]

dt
= v10 − v11 (26)

d[target gene mRNA]

dt
= v17 − v18 (27)

with the rate equations

v10 = k10 · [β-catenin/TCF] (28)

v11 = k11 · [Dkk mRNA] (29)

v17 = k17 · [β-catenin/TCF] (30)

v18 = k18 · [target gene mRNA]. (31)

2



Supplement: Modelling Dkk in wild-type and mutant hepatocytes

We suppose that extracellular Dkk is produced at a rate

v12 = k12 ·
VHep

VDisse
· [Dkk mRNA] (32)

where k12 is the translation rate constant and
VHep

VDisse
the ratio of intra- to extracellular volumes, i.e.

the volume of one hepatocyte (VHep) and the volume of space of Disse belonging to one hepatocyte
(VDisse). The ratio accounts for the difference in Dkk concentrations inside hepatocytes and in the
space of Disse. We also assume that Dkk is cleared from extracellular space at a rate

v13 = k13 · [Dkk]. (33)

Furthermore, Dkk is supposed to diffuse at a rate D, yielding the following reaction-diffusion
equation

∂t[Dkk] = D · ∂2
x[Dkk] + v12 − v13 − v16, (34)

where the porto-central axis is represented as the interval [0, 1]. The equation is discretised in
space to contain 21 cells along the porto-central axis (hence, the discretisation step is ∆x = 0.05),
yielding an ODE for each cell i:

d[Dkk]i

dt
=

D

∆x2
·
(
[Dkk]i−1 − 2 · [Dkk]i + [Dkk]i+1

)
+ v12 − v13 − v16. (35)

A Neumann boundary condition is assumed, meaning that there is no Dkk transfer out of and
into the gradient through the ends of the porto-central axis.

A.2 Parametrisation

The reference parameter set is provided in Table S1. Unless explicitly stated otherwise, an ex-
ponential gradient of total APC increasing from 20 nM PC to 100 nM PP and a constant total
Wnt concentration of 1 nM were assumed. The assumption of this particular shape of gradient af-
fects results stated in absolute terms, but relative or qualitative assertions are robust to moderate
changes in gradients.

For the theoretical considerations in this supplement, it is more convenient to consider the
parameters D∗ = D

∆x2 instead of D and k∗12 = k12 · VHep

VDisse
instead of k12.
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Table S1: Parameters of the spatial Wnt model with Dkk diffusion and feedback. *: Since param-
eters related to the reactions of the target gene module (reactions 10-13 and 17-18) are not known
precisely, they were set according to reported ranges in (3). **: derived from the assumption
diameter of space of Disse ≈ 2% diameter of hepatocyte from (4). †: Dkk diffusion coefficient
was presumed to lie in the range of diffusion of an average protein in cytoplasm. ‡: total Frz
concentrations were chosen in the range of the other species, and such that Dkk feedback had a
visible effect. The values chosen for LRP and Frz are compatible with the assertion stated in (2)
that cells express less Frz receptors than LRP receptors.

Parameter name Value Unit Source
c1 0.423 nM · min−1 (1)
k2 2.57 · 10−4 min−1 (1)
k3 3.08 · 10−3 min−1 (1)
K 18 nM (1)
k4 105 nM−1 · min−1 (1)
k−4 1.2 · 108 min−1 (1)
k5 3.33 · 10−2 nM−1 · min−1 (1)
k−5 1 min−1 (1)
c6 0.686 nM · min−1 (1)
k7 8.4 · 10−2 min−1 (1)
k8 8 · 10−3 nM−1 · min−1 (1)
k9 6.7 · 10−4 min−1 (1)
k10 3 · 10−3 min−1 *
k11 10−2 min−1 *
k12 0.02 min−1 *
VHep 7000 µm3 (5)
VDisse 140 µm3 (4)**
k13 0.1 min−1 *
D 10 µm2·s−1 (6) †
k14 0.0047 nM−1 · min−1 (2)
k−14 0.0282 min−1 (2)
k15 1.68 nM−1 · min−1 (2)
k−15 6 min−1 (2)
k16 0.0618 nM−1 · min−1 (2)
k−16 0.0303 min−1 (2)
k17 3 · 10−3 min−1 *
k18 1 min−1 *

LRPtotal 30 nM close to (7)

Frztotal 5 nM ‡
Dshtotal 100 nM (1)
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B Steady-state analysis

We shall find several occasions to use the following functions:

• the receptor binding function R, mapping the Dkk gradient onto a gradient in receptor-bound
Wnt (i.e. Wnt/Frz/LRP),

• the signalling function S mapping gradient in receptor-bound Wnt onto a gradient in Dkk mRNA,

• and the feedback function F mapping a gradient in Dkk mRNA to Dkk.

A steady-state is a fixed point of the concatenation of these three mappings. The interaction
between cells is contained within the function F . Therefore, the functions R and S are vectors of
scalar functions r and s representing receptor binding and signalling of each individual cell. For a
fixed set of cellular parameters, r is decreasing in Dkk (i.e., Dkk is an inhibitor of Wnt receptor
binding) and increasing in Wnttotal (i.e., higher levels of Wnttotal promote Wnt receptor binding).
Furthermore, s is increasing in Wnt/Frz/LRP (i.e., receptor-bound Wnt is a pathway activator)
and decreasing in APCtotal (i.e., APC is a pathway inhibitor).

B.1 Uniqueness of steady-state

To show that steady-state is unique, we take two arbitrary steady-states St1 and St2 (denoted
by subscripts, e.g. [Dkk]i1 is the Dkk concentration of cell i in steady-state St1) and show that
they are the same. Due to the monotonicity of r and s, [Dkk]i1 > [Dkk]i2 yields [Dkk mRNA]i1 <
[Dkk mRNA]i2, which can be represented by(

[Dkk]i1 − [Dkk]i2
)
·
(
[Dkk mRNA]i1 − [Dkk mRNA]i2

)
6 0 for each cell i ∈ {1, ..., N}. (36)

To simplify notations, we will use the abbreviation Dkk
i

= [Dkk]i1− [Dkk]i2 (idem for Dkk mRNA).
In steady-state, (19) entails v16 = 0, and therefore the steady-state diffusion equations are given
by

k∗12 · [Dkk mRNA]i = D∗ ·
(
− [Dkk]i+1 + 2[Dkk]i − [Dkk]i−1

)
+ k13 · [Dkk]i. (37)

Now the difference of the two steady-state equations is multiplied by Dkk
i
:

k∗12 ·Dkk
i ·Dkk mRNA

i
= k13 ·

(
Dkk

i)2
+D∗ ·

(
−Dkk

i−1
+ 2 ·Dkk

i −Dkk
i+1
)
·Dkk

i
. (38)

Summing over all cells and accounting for the Neumann boundary condition, we obtain

N∑
i=1

k∗12 ·Dkk
i ·Dkk mRNA

i︸ ︷︷ ︸
≤0 according to (36)

= k13

N∑
i=1

(
Dkk

i)2
+D∗

N∑
i=2

((
Dkk

i−1)2 − 2 ·Dkk
i−1 ·Dkk

i
+
(
Dkk

i)2)︸ ︷︷ ︸
≥0 (binomial formula)

.

(39)
Since the left-hand side of (39) is non-positive and the second right-hand term is non-negative, the

first right-hand term k13

∑N
i=1

(
Dkk

i)2
must be non-positive as well, which means that Dkk

i
= 0

for all i.
The monotonicity of s and r also implies that if St1 6= St2, then Dkki

1 6= Dkki
2 for at least one

i. Therefore, the steady-state is unique.

B.2 Monotonicity of gradients

Here we consider the following scenario. Total Wnt is supposed to be non-increasing and total
APC is supposed to be (strictly) increasing from PC to PP. We will show that under these as-
sumptions, Dkk concentrations allways decrease from PC to PP.
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Let us first consider the case D∗ = 0 (no diffusion). In this case, the cells do not interact and
we can pick two arbitrary cells with Wnttotal1 > Wnttotal2 and APCtotal

1 < APCtotal
2 . Let us assume

[Dkk]1 6 [Dkk]2. The monotonicity of the receptor binding function r implies [Wnt/Frz/LRP]1 >
[Wnt/Frz/LRP]2. Therefore, cell 1 has both a higher pathway activation rate and a lower APC-
dependent pathway inhibition than cell 2, which yields [Dkk mRNA]1 > [Dkk mRNA]2 (mono-
tonicity of s). As no diffusion is assumed, Dkk is proportional to Dkk mRNA, a contradiction.
We conclude that [Dkk]1 > [Dkk]2.

Now let us suppose D∗ > 0. We show by contradiction that Dkk is decreasing from PC to
PP. Let us therefore assume that Dkk profile was not decreasing from PC to PP. Note that it has
just been shown that for the same model parameters except for D∗ = 0 the Dkk profile decrease
from PC to PP. Since Dkk steady-state concentrations depend continuously on D∗, there has to
be a minimal diffusion coefficient D∗

0 ∈ (0, D∗] such that Dkk is not strictly decreasing from PC
to PP. Since D∗

0 is the minimal value with such a property, the Dkk gradient is monotonous (same
direction as for D∗ = 0), but not strictly: there necessarily are at least two adjacent cells i, i+ 1
with equal Dkk concentrations (anything else would contradict the minimality of D∗

0).
We now look at the steady-state equation (37) of Dkk diffusion at cell i:

0 = D∗ · ([Dkk]i+1 − 2[Dkk]i + [Dkk]i−1)− k13 · [Dkk]i + k∗12 · [Dkk mRNA]i. (40)

As [Dkk]i−1 > [Dkk]i = [Dkk]i+1 > [Dkk]i+2, this yields k13 · [Dkk]i > k∗12 · [Dkk mRNA]i and
k13 · [Dkk]i+1 6 k∗12 · [Dkk mRNA]i+1 and thus, [Dkk mRNA]i 6 [Dkk mRNA]i+1. However,
the Dkk concentrations at the receptor level are the same, and therefore [Wnt/Frz/LRP]1 >
[Wnt/Frz/LRP]2. Using that [APC]i < [APC]i+1, monotonicity of the signalling function s yields
[Dkk mRNA]i > [Dkk mRNA]i+1, a contradiction. Thus, there cannot be any diffusion coefficient
such that the Dkk monotonicity is lost.

C Mathematical estimation of paracrine effect

The amount of additional Dkk at a wild-type cell originating from a mutant (denoted by DkkAdd

here and by Dkk* in the main text) depends on Dkk translation and degradation rates, is modu-
lated by diffusion and regulated through the Dkk feedback. The aim of this section is to analyse
this complex interplay mathematically.

We suggest estimating DkkAdd in an ansatz that retains the mutant cell’s impact on wild-
type cells, while being simple enough for analytical tractability. This approach is based on two
assumptions.

First, we assume that the mutant cell completely loses its capacity of APC-dependent β-catenin
degradation (k3 = 0). This assumption results in a strong impact of the mutant cell on target
gene mRNA expression of the wild-type cells (main text Fig. 6B). It furthermore interrupts the
mutant cell’s Dkk feedback regulation by eliminating the regulatory influence of receptor processes
on β-catenin concentration in the mutant cell.

Second, we describe the mutant scenario as a combination of the wild-type scenario and a
hypothetical scenario. In the hypothetical scenario Dkk is only produced by the mutant cell
(cell 11); all wild-type cells do not produce Dkk. Such a hypothetical scenario is useful to describe
the additional Dkk, which originates from the APC mutation in addition to the Dkk produced
under wild-type condition, and how this additional Dkk is distributed among all cells. That is, the
Dkk of the hypothetical scenario (DkkHyp) approximates the additional Dkk (DkkAdd). DkkHyp

is calculated by solving

0 = D∗([Dkk]Hyp
i−1 − 2 · [Dkk]Hyp

i + [Dkk]Hyp
i+1

)
+ k∗12 · [Dkk mRNA]Hyp

i − k13 · [Dkk]Hyp
i , (41)

with

[Dkk mRNA]Hyp
i =

{ (
[Dkk mRNA]Mut

11 − [Dkk mRNA]WT
11

)
if i = 11,

0 otherwise.
(42)
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The DkkHyp concentration is larger than DkkAdd concentration for all cells since the regulation
via negative Dkk feedback in wild-type cells is neglected in the hypothetical scenario.

The advantage of bounding DkkAdd by DkkHyp is that the latter quantity is mathematically
traceable, as shown in the following.

Solving the equation system (41)-(42) for DkkHyp yields

DkkHyp = kp ·
k∗12

k13
·
(
[Dkk mRNA]Mut

11 − [Dkk mRNA]WT
11

)
(43)

with
kp = A−1

D∗
k13

E11, (44)

where

As =



s+ 1 −s 0 . . . 0

−s 2s+ 1 −s 0
...

0
. . .

. . .
. . . 0

... 0 −s 2s+ 1 −s
0 . . . 0 −s s+ 1


(45)

and E11(x) = δx,11 is the 11th unitary vector. The proportion factor kp is a vector (i.e. it
can be computed for any wild-type cell); due to the symmetry of the porto-central axis in the
hypothetical scenario, kp only depends on the distance between that cell and the mutant cell.

As can be seen from Eq. (44), the proportion factor only depends on the diffusion-to-degradation
ratio. For each distance from the mutant, a parameter-independent upper bound has been deter-
mined by maximising the proportion factor numerically over the D∗

k13
ratio. This upper bound is

listed in Table 1 of the main text.
In this way, DkkAdd can be estimated from the parameter-independent upper bound for kp,

the Dkk translation-to-degradation ratio, and the excess Dkk mRNA in the mutant.

D Supplemental figures
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Figure S1: Impact of Dkk on target gene mRNA expression. Target gene mRNA expression of the
readout cell (cell 12) is calculated for Dkk concentrations at the readout cell ranging from 102 to
105nM.
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Figure S2: Effect of the number of adjoined mutant cells on target gene mRNA expression of the
readout cell (cell 12). The number of adjoined mutant cells is increased from one to five and the
impact on target gene mRNA expression of the readout cell is calculated. We observe a stronger
impact on the target gene mRNA expression with increasing number of adjoined mutant cells.
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Figure S3: Effect of Dkk translation rate on target gene mRNA expression. The Dkk translation
rate of the mutant cell is increased; the Dkk translation rate of all wild-type cells remains un-
changed. A: The impact on target gene mRNA expression of the readout cell is calculated. B: The
impact on all cells along the porto-central axis is calculated for a large value of Dkk translation rate
of the mutant cell (k12 =20 min−1). This value is sufficiently large to yield the maximal possible
impact. The analysis demonstrates that a larger value of the Dkk translation rate of the mutant
cell can augment the impact on target gene mRNA expression.
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