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ABSTRACT: The NCI Clinical Proteomic Tumor Analysis
Consortium (CPTAC) employed a pair of reference xenograft
proteomes for initial platform validation and ongoing quality control
of its data collection for The Cancer Genome Atlas (TCGA) tumors.
These two xenografts, representing basal and luminal-B human
breast cancer, were fractionated and analyzed on six mass
spectrometers in a total of 46 replicates divided between iTRAQ
and label-free technologies, spanning a total of 1095 LC−MS/MS
experiments. These data represent a unique opportunity to evaluate
the stability of proteomic differentiation by mass spectrometry over
many months of time for individual instruments or across
instruments running dissimilar workflows. We evaluated iTRAQ reporter ions, label-free spectral counts, and label-free
extracted ion chromatograms as strategies for data interpretation (source code is available from http://homepages.uc.edu/
~wang2x7/Research.htm). From these assessments, we found that differential genes from a single replicate were confirmed by
other replicates on the same instrument from 61 to 93% of the time. When comparing across different instruments and
quantitative technologies, using multiple replicates, differential genes were reproduced by other data sets from 67 to 99% of the
time. Projecting gene differences to biological pathways and networks increased the degree of similarity. These overlaps send an
encouraging message about the maturity of technologies for proteomic differentiation.
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■ INTRODUCTION

The Clinical Proteomic Tumor Analysis Consortium (CPTAC)
was charged with establishing Proteome Characterization
Centers to measure protein differences across large numbers
of tumors from The Cancer Genome Atlas (TCGA).1 To
ensure that the differences they found were reproducible, each
center conducted many replicate analyses for a pair of patient-

derived xenograft tissues as a comparative reference material
(“CompRef”), first as a preliminary validation of their

Special Issue: Large-Scale Computational Mass Spectrometry and
Multi-Omics

Received: September 14, 2015
Published: December 14, 2015

Article

pubs.acs.org/jpr

© 2015 American Chemical Society 691 DOI: 10.1021/acs.jproteome.5b00859
J. Proteome Res. 2016, 15, 691−706

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

http://homepages.uc.edu/~wang2x7/Research.htm
http://homepages.uc.edu/~wang2x7/Research.htm
pubs.acs.org/jpr
http://dx.doi.org/10.1021/acs.jproteome.5b00859
http://pubs.acs.org/page/policy/editorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


workflows and later interspersed among the TCGA samples to
ensure ongoing validation of their workflows. These data,
spanning more than 1000 LC−MS/MS experiments, represent
a unique opportunity to evaluate the variability of protein
differentiation technologies across multiple platforms.
Variability can enter proteomic experiments through sample

handling and proteolysis,2 prefractionation,3,4 liquid chroma-
tography,5 mass spectrometry configuration,6 and bioinfor-
matics.7 At the start of the program in 2011, CPTAC evaluated
ischemia time in the context of global proteomes8 and
phosphotyrosine signaling9 to evaluate potential impacts for
proteomic changes after blood supply to a tissue is lost but
before the sample is frozen. At the same time, CPTAC
conducted platform validation for each Proteome Character-
ization Center by distributing aliquots of the CompRef
xenografts; data from each site could then be used to assess
the variability contributed by analytical methodology. Most
sites opted to modify their platforms in response to these data,
most commonly by switching to bRPLC fractionation10 from
SCX or IEF fractionation4 techniques.
Patient-derived tumor xenografts are a technology by which

tumors can be induced in mice via cells taken from human
tumors, affording better latitude for experimentation.11 When
tissue is harvested from a xenograft, it will contain both human
and mouse proteins since the tumor cells are from a different
species than the host environment. The xenografts employed in
this study were WHIM2 (basal) and WHIM16 (luminal-B),
drawn from a larger breast cancer study at Washington
University in St. Louis.12 Both xenografts produced large
tumors; they were grown in a sufficient number of mice to
generate a pool of protein that was large enough to serve all of
the CPTAC Proteome Characterization Centers. While the
differences between basal and luminal-B tumors have been
studied at length, the proteomic differences between them
cannot be scored against a comprehensive answer key.
These experiments with WHIM2 and WHIM16 represent

the three chief techniques used for differentiating proteins in
discovery proteomics experiments. iTRAQ is one of the most
common isobaric labeling strategies in use at present;13 after
digestion with trypsin, peptides from each sample are labeled
with different chemicals of nearly identical mass on their N-
termini and lysine side chains, and then peptides from different
samples can be mixed together for LC−MS/MS analysis. Ions
of a particular peptide from multiple samples will be isolated
and fragmented together, each producing a characteristic
reporter ion at low m/z in the MS/MS scan. The intensities
of these reporter ions reflect the quantity of that peptide in the
source samples. Spectral counting is a label-free strategy by
which the number of spectra attributed to a particular protein
from an individual sample can be compared to the number of
spectra observed for that protein in another sample of similar
complexity.14 Alternatively, data of this type may be analyzed
by integrating the extracted ion chromatograms for intact
peptide ions drawn from successive MS scans.15 A protein that
matches to intense ions in the first experiment but less intense
ions in a second experiment may be judged to be higher in
quantity for the first. Both analyses of label-free data, however,
rely on the ability to control for higher overall identification
rates in one sample than in another.
Measuring the reproducibility of differential proteomics has a

noteworthy history. In 2004, a team from SurroMed evaluated
the stability of peptide intensities measured from many
replicates of a reference plasma sample in LC−MS on a

Waters Micromass LCT.16 This work was extended to
encompass isotopic labeling strategies with an AB SCIEX
QSTAR XL by Kim et al. in 2007.17 Old et al. found that
spectral counting methods detected differences better and that
peptide intensities estimated enrichment ratios better from
ThermoFinnigan LCQ Deca data using SCX or gel exclusion
fractionation in 2005.18 A similar 2005 investigation by
Zybailov et al. found that spectral counting methods and
isotope enrichment methods produced highly correlated
results, but spectral counting was more reproducible across
their replicates.19 In 2006 and 2007, the Phillip C. Wright
laboratory published two investigations into the reproducibility
of iTRAQ quantitation, producing a coefficient of variation of
0.09 and probing sources of variations in iTRAQ reporter ion
intensities and documenting the value of replicates in these
studies.20,21 Patel et al. applied iTRAQ labeling and label-free
mass spectrometry-based proteomics approaches to the
proteome of the bacterium Methylocella silvestris, and the
results showed good agreement between the iTRAQ experi-
ment and the label-free approach for relative quantification.22 In
2012, Wang et al. reported a comparative study of iTRAQ and
label-free LC-based quantitative proteomics approaches using
two Chlamydomonas reinhardtii strains.23 The comparison
indicated that the label-free method provided better quantita-
tion accuracy for high fold change ratios and identified 40%
more proteins, but the iTRAQ method showed better
quantitation accuracy and reproducibility. In a 2013 study of
human adenovirus infections by Trinh et al.,24 a label-free
method showed higher levels of protein up- or downregulation
in comparison to iTRAQ-labeled samples, and data suggested
that the label-free method was more accurate than the iTRAQ
method. Megger et al. compared label-free and label-based
strategies for proteome analysis of hepatoma cell lines,25

showing that the label-free approach outperformed TMT
methods regarding proteome coverage, but the label-free
method was found to be less accurate than TMT approaches.
In addition to these comparative studies, the literature is also
rich with papers on the advantages and disadvantages of
different strategies of quantitative mass spectrometry in
proteomics.26−28

In general, these technology assessments have been limited
in the number of replicates and instruments they include, and
the time frame from first to last replicate has been relatively
short. The CPTAC CompRef experiments, on the other hand,
span six different instruments and range up to 10 months in
duration. Because the same pair of pooled samples is
represented in each experiment, the data are informative for
technical replicate variation rather than biological replicate
variation.29 The data supporting this study were generally
drawn from interstitial experiments; the WHIM2 and WHIM16
samples were run as periodic quality controls in a longer series
of TCGA samples. This study evaluates these data to answer
the following key questions:

• Are differential proteomics experiments repeatable for a
particular workflow?

• Are difference lists reproducible in comparing two
different workflows?

• Do the various differential proteomics technologies see
the same biology?
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■ EXPERIMENTAL PROCEDURES

Data Generation

Tissue Source. Patient-derived xenograft tumors from
established basal (WHIM2) and luminal-B (WHIM16) breast
cancer intrinsic subtypes30,31 were raised subcutaneously in 8
week old NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice (Jackson
Laboratories, Bar Harbor, ME) as previously described.12,32

These tumors have significantly different gene expression and
proteomic signatures12 that are related to their intrinsic biology
and endocrine signaling. Tumors from each animal were
harvested by surgical excision at approximately 1.5 cm3 with
minimal ischemia time by immediate immersion in a liquid
nitrogen bath. The tumor tissues were then placed in precooled
tubes on dry ice and stored at −80 °C. A tissue pool of
cryopulverized tumors was prepared in order to generate
sufficient material that could be reliably shared and analyzed
among multiple laboratories.
Briefly, tumor pieces were transferred into precooled Covaris

Tissue-Tube 1 Extra (TT01xt) bags (Covaris no. 520007) and
processed in a Covaris cryoPREP CP02 device using different
impact settings according to the total tumor tissue weight: <250
mg = 3; 250−350 mg = 4; 350−440 mg = 5; and 440−550 mg

= 6. Tissue powder was transferred to an aluminum weighing
dish (VWR no. 1131-436) on dry ice, and the tissue was
thoroughly mixed with a metal spatula precooled in liquid
nitrogen. The tissue powder was then partitioned (∼100 mg
aliquots) into precooled cryovials (Corning no. 430487). (Note
that cryopulverized tissue will melt if it is transferred to a plastic
weighing boat.) All procedures were carried out on dry ice to
maintain tissue in a powdered, frozen state. Each site processed
the tissue powder by independent protocols; protein
denaturation and digestion were not controlled by a CPTAC-
wide Standard Operating Procedure.

Analytical Chemistry. Six instruments generated a total of
1095 LC−MS/MS experiments from the WHIM2 and
WHIM16 samples; Thermo Fisher LTQ Orbitrap Velos,
Orbitrap Elite, and Q-Exactive models were included. Three
instruments (OVelos@10, OVelos@45, and QExac@56, where
the number represents an anonymized CPTAC institution)
produced iTRAQ 4plex experiments.13 In each 4plex, two
channels represented each of the two samples. Three other
instruments (OVelos@65, OElite@65, and QExac@98)
produced label-free experiments in which WHIM2 and
WHIM16 were analyzed separately. All sites except site 65
employed HCD for data-dependent MS/MS production, with

Figure 1. High-level view of the bioinformatics pipeline employed in this study. Six instruments analyzed the same xenograft pair. Label-free sets
were processed once by a spectral counts method and once by extracted ion chromatograms. While instrument-specific assemblies of PSMs were
used for repeatability analysis, an all-instrument assembly was analyzed for reproducibility and biological pathway and network enrichment.
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Orbitrap measurement of fragment ions. Both OVelos@65 and
OElite@65 employed CID instead, measuring fragments in the
quadrupole ion trap. All raw data files are available from
https://cptac-data-portal.georgetown.edu/cptacPublic/ under
the name CompRef. All files were subjected to quality
assessment through the QuaMeter IDFree mode.33 The
resulting tables are available as a Microsoft Excel spreadsheet
in the Supporting Information. Instrument-specific details are
provided in Supporting Information Method A.

Bioinformatics and Biostatistics

Proteomic Identification. To maximize information yield
from these data, three different search engines were applied to
each LC−MS/MS experiment (Figure 1). MyriMatch
2.1.138,34 MS-GF+ versions 9630 and 9979,35 and Comet
version 2014.0136 searched a FASTA sequence database
containing NCBI RefSeq human (32 799 sequences, down-
loaded Sept 7, 2011), NCBI RefSeq Mouse (29 617 sequences,
downloaded March 4, 2011), and the porcine trypsin sequence.
Each sequence was reversed in silico by the search engines for
target-decoy estimation of error rates; the decoy sequences
from all three search engines were denoted by an XXX prefix.
Fully tryptic and semitryptic peptides were allowable matches.
In all cases, a precursor mass tolerance of 20 ppm was applied,
allowing for an error of one neutron in monoisotope selection.
Site 65 data were measured in the ion trap, so fragment ions
were allowed to vary by up to 0.5 m/z in MyriMatch or within a
one m/z bin by Comet and MS-GF+. For all other sites,
fragments were required to fall within 20 ppm of expected m/z
by MyriMatch, within a 0.01 m/z bin by Comet, or within the
HCD model of MS-GF+. Post-translational modifications
expected a mass shift of 57.021464 Da on all Cys, and all
algorithms allowed Met to gain 15.994915 Da through
oxidation as a dynamic modification. MS-GF+ also allowed
for acetylation of N-termini (+42.010565 Da). Up to two
missed cleavages were permitted, and up to three dynamic
PTMs were allowed per peptide−spectrum match (PSM). In
searches of iTRAQ data sets, a mass shift of 144.102063 Da was
assumed to be found at both N-termini and Lys residues (and
the iTRAQ protocol was applied in MS-GF+). Comet and
MyriMatch results were exported to pepXML files,37 whereas
MS-GF+ results were written to mzIdentML format.38

Identification scores were translated to q-values39 in IDPicker
3.1, build 599.40 Data from each instrument were drawn into
separate assemblies, at first. The PSM FDR (false discovery
rate) was limited to 0.5%, with the FDR being estimated by
doubling the number of decoy hits and dividing by the total
passing a threshold. The number of spectra required per
protein was then increased from two until the empirical protein
FDR had fallen below 5%. For each site, the number of spectra
required per protein was as follows: OVelos@10 = 7, OVelos@
45 = 3, QExac@56 = 19, OVelos@65 = 4, OElite@65 = 2, and
QExac@98 = 4. IDPicker assembled protein groups using
parsimony rules that eliminated subset and subsumable
proteins from the list and grouped indiscernible proteins.41

IDPicker matched each protein name from RefSeq to an
HGNC (HUGO Gene Nomenclature Committee) gene
symbol for human or to a MGI (Mouse Gene Informatics)
gene symbol for mouse. If neither was available for a protein
name, then the software used the name of the protein preceded
by Unmatched. The software allows for graphical or script-
driven extraction of quantities in the form of spectral counts
(SPC) or intensities, organized for this study by gene rather

than protein groups. If spectra could be attributed to multiple
transcripts of a particular gene, then reporting by gene would
consolidate all of the PSMs to the single gene source, thus
reducing the number of hypotheses to be tested in finding
expression differences. Two kinds of intensities can be used:
iTRAQ reporter ion values can be summed across all PSMs for
each channel for each gene or extracted precursor ion
chromatograms (XIC) in label-free experiments can be
integrated and summed across all PSMs for each gene.15,42 In
iTRAQ, IDPicker computes sums rather than ratios, though
users can subsequently compute ratios from the summed
intensity for each gene. This places a greater weight on genes
with intense PSMs than on those with weak signals. When
inferring XIC intensities, the software was not directed to
integrate precursor intensity in the absence of a confident PSM
through retention time mapping due to the large numbers of
LC−MS/MS experiments in this study. The software exported
these quantitative tables by the command line idpQuery tool
from the IDPicker SQLite databases.
For cross-site and biological pathway and network analysis, a

conjoint assembly of data from all sites was created. Since three
different identification sets were considered for each of 1095
LC−MS/MS experiments, the conjoint assembly spanned 3285
pepXML/mzIdentML files. As in the individual instrument
assemblies, a PSM FDR of 0.5% was applied. Requiring 20
spectra per gene pushed the empirical protein FDR below 5%.

Statistical Differentiation. The raw abundance data, either
spectral counts or iTRAQ and XIC intensities data, need to be
normalized before any statistical analysis. Variation in sampling
handling and sample loading across experiments can lead to
variation in the gene abundance and thus introduce systematic
biases into the differentiation study. To correct for the overall
experiment-wise difference, the spectral counts were normal-
ized by the overall abundance of each experiment using the
total spectral counts in an experiment.43 iTRAQ and XIC
intensities data were normalized by the median intensities in an
experiment.
A Bayesian hierarchical model was used to detect differential

genes. The hierarchical construction allowed both single
replicate and multireplicate comparisons. Though the QSpec
method43 was originally employed in label-free proteomics
data, the modeling framework can be similarly applied to model
the reporter ion intensities from iTRAQ data. To compare the
log ratios between WHIM2 and WHIM16, a linear mixed effect
regression model was constructed for XIC and iTRAQ
intensities and a generalized linear mixed effect model for
spectral counts. A detailed description of the method is
presented in Supporting Information Method B. Fortran source
code for this differentiation is available at http://homepages.uc.
edu/~wang2x7/Research.htm.
The estimation of gene variance was a key factor differ-

entiating the per-instrument and cross-instrument analyses
(Figure 1). In one-versus-one replicate comparison, the normal
distribution was assumed for log XIC and iTRAQ intensities.
All of the nondifferential genes were assumed to have the same
variance, and the constant variance was inferred from the pool
of nondifferential genes detected by the model. This was a
strong assumption that the variances are the same for all
intensity levels, but a check on the fitted model confirmed that
the equal variance assumption is approximately satisfied (see
Supporting Information Figure S1). For spectral count data, the
Poisson distribution was assumed, and thus the variance was set
to equal the mean. A check on the data showed that
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overdispersion may have affected the data, leading to an
underestimate of variance. A negative binomial model was
fitted, and its results were very similar to those under a Poisson
assumption. By contrast, in the multiple replicates comparison
used for the cross-instrument reproducibility evaluation, gene
variances were estimated individually for both the XIC/iTRAQ
intensities and the spectral count cases.
For all genes observed from the xenograft samples, only

genes for which the GeneID contained at least one human gene
name were considered. Results on low-abundance genes were
particularly unstable. To avoid random discovery, we set up a
requirement of minimum evidence for a gene to be included in
statistical differentiation analysis. Following Bing Zhang’s
minimal spectral count requirement,1 we required a minimum
of 1.4 spectra, on average, for multiple replicate comparison.
For example, in OVelos@65 (A−J), 28 spectra were needed
before a gene was evaluated for differentiation (1.4 × 10
replicates × 2 samples). In one-versus-one comparison, we set
the threshold as 2 spectra per replicate.
Additionally, handling zero values for spectral counts, XICs,

or iTRAQ intensities deserves special consideration as a zero
may be interpreted as either a missing value (NAs) or a
measured zero. Genes that had only zero spectral counts in
either WHIM2 or WHIM16 were excluded (this may eliminate
some number of genuinely infinite differences, though most will
be low-information genes). These spectral count requirements
were applied prior to iTRAQ or XIC differentiation as well. For

genes with a mixture of zero and positive values in abundance,
the handling of spectra counts data differs from that of iTRAQ
or XIC data. In modeling of spectral counts, zeros are all
treated as true zero counts in the Poisson distribution.43−45 For
the continuous iTRAQ and XIC intensity data, we noticed that
zeroes mostly likely came from sources other than biological
reasons, such as intensities below the detection limit or failure
in peak detection. Treating zeros the same as positive values in
the modeling may severely violate the log-normal distribution
assumptions on the continuous data. We thus treated zeroes in
iTRAQ and XIC as missing values; they were not used in
differentiation analysis. The difference in modeling zero values
may lead to contradictory differentiation results from using
spectral count data as noted in the Results and Discussions; one
potential solution is to model both zero and positive parts in
differentiation analysis using zero-inflated models.46

Biological Pathway and Network Evaluation. Deter-
mining the intersection of differential genes in the context of
biology emphasized a subset of the overall data. The analysis
included these data sets: OVelos@10 (iTRAQ, 6 replicates),
OVelos@45 (iTRAQ, 5 replicates), QExac@56 (iTRAQ, 5
replicates), OVelos@65 (SPC, first 10 replicates), OVelos@65
(XIC, first 10 replicates), QExac@98 (SPC, first 4 replicates),
and QExac@98 (XIC first 4 replicates). The OElite@65 data
were excluded because the instrument was known to be in
deficient operating order at the time the 4 replicates were
collected. The last 6 replicates of OVelos@65 were excluded

Figure 2. Number of identified distinct peptides per sample/replicate. When data from each instrument were assembled separately with 0.5% PSM
FDR and <5% empirical protein FDR, identification sensitivity varied considerably by site. Ailing instrument OElite@65 yielded the lowest
sensitivity by far, whereas QExac@56 produced a remarkable number of identifications. Label-free instruments ran WHIM2 and WHIM16
separately, whereas iTRAQ instruments combined these samples into a single 4plex.
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because they were interstitial with a different type of sample
than the first 10 replicates. The final 6 replicates of QExac@98
were excluded because ion transmission through the quadru-
pole was considerably lower during data collection.
To perform pathway enrichment, we eliminated genes that

were mapped only to the mouse genome. When both human
and mouse gene names were associated with spectra, only the
human name was retained. In cases where expression could be
attributed to multiple isoforms, we chose to keep the first
isoform listed, and when a natural read-through event was
indicated (two gene symbols separated by a hyphen), only the
first symbol was retained. Though these heuristic filters could
conceivably introduce biases, we note that these rules were
applied only to 20 multiple isoform proteins and 6 read-
through proteins of the 8126 genes considered (0.25%).
We calculated enrichment in pathway sets using KEGG

pathways.47 Fisher’s exact test48 was used to examine the
statistical enrichment of those genes called as more highly
expressed in WHIM2 or in WHIM16 for each of the 188
pathways relative to all those genes not in the specified
pathway. The genes upregulated for each of the two xenografts
were handled separately to avoid losing statistical power.49

Resulting p values were corrected using the Benjamini−
Hochberg procedure,50 and we considered multiple-test-
corrected p values below 0.05 to be significant.
We also interpreted the genes expressed significantly highly

in WHIM2 or in WHIM16 against the context of a global
protein−protein interaction network using NetGestalt.51 The
network used in this article was downloaded from iRef.52 We
first identified the hierarchical modules from the iRef network
based on the NetSAM algorithm.51 Then, based on Fisher’s
exact test, we calculated the p values of enrichment for all
modules in each differentially expressed gene set identified by
the seven data sets. The p values were corrected by the
Benjamini−Hochberg procedure. Applying an FDR limit of 5%,
we finally identified WHIM2- or WHIM16-specific enriched
modules for each of seven data sets. All of the above procedures
were implemented in the NetGestalt web tool (http://www.
netgestalt.org). We also used NetGestalt to covisualize the
enriched modules of seven data sets for identification of the
functional consistency.

■ RESULTS AND DISCUSSION

Identification Sensitivity and Differential Genes

The six instruments included in this study varied considerably
in labeling and fractionation strategy, LC gradients and mass
spectrometry instruments, and replicate schedule and data
replacement policy. Correspondingly, large differences ap-
peared in rates of MS/MS collection. The two Q-Exactive
instruments in the study produced high maximum sustained
rates of MS/MS collection: 9.10 Hz for QExac@56 and 9.28
Hz for QExac@98, exceeding the best rate of acquisition in
Orbitraps for MS/MS scans (4.35 Hz for CID in OVelos@65
or 3.89 Hz for HCD in OVelos@45).
Translating these spectra to identified PSMs produced a less

clear distinction based on instrument type (Figure 2). While
OVelos@65 produced relatively low sensitivity in terms of
distinct peptides, averaging 58 028 identified spectra (26 250
distinct peptide sequences) from its 15 fractions per sample, it
showed an encouraging degree of consistency across 10 months
of continuous operation. QExac@98 used essentially the same
amount of time per sample, though split to only five fractions,

and its first four experiments for the two samples identified an
average of 99 916 spectra (53 045 distinct peptide sequences);
unfortunately, this rate tapered off considerably, and by the
time replicates six through ten were collected, identification
rates were much lower. The instrument operator reported that
the ion transmission through the quadrupole worsened
significantly in later runs. Viewing these results instead in
terms of discernible protein groups flattened the differences
among instruments. The cumulative counts of distinct proteins
at <5% empirical protein FDR were OVelos@10 = 11 428,
OVelos@45 = 11 603, QExac@56 = 15 655, OVelos@65 =
8640, OElite@65 = 4199, and QExac@98 = 10 435. Note that
these counts included both mouse and human proteins since a
xenograft incorporates proteins from both species.
Rather than emphasize distinguishable protein groups, we

projected PSMs to the genes from which those peptides
derived. This projection ensured that spectra associated with
peptides shared among multiple isoforms transcribed from the
same gene would be counted only once.53 In addition,
reporting spectra per gene makes it simple to relate proteomics
data to biological pathways and networks that are described by
the use of HGNC identifiers. When multiple genes represented
exactly the same sets of peptides, they were reported as an
indiscernible gene group.
Repeatability of identification scaled with the numbers of

spectra identified for each gene group.6 The 16 replicates for
OVelos@65 were evaluated for identification repeatability.
First, the genes were separated into exponentially sized bins:
4−7, 8−15, 16-31, 32−63, 64−127, 128−255, 256−511, and
512−1023 spectra across all replicates of both WHIM2 and
WHIM16. This excluded 585 proteins with disproportionately
high spectral counts, such as the maximum for mouse albumin:
63 734. An average of 998 genes fell into each bin, with the
highest spectral count bin including 610 genes. For each bin, we
computed the average number of replicates in which the genes
produced any identifiable spectra (out of 16 replicates). For
WHIM2, the averages were 2.57, 4.96, 8.29, 11.71, 13.98, 15.18,
15.58, and 15.83. WHIM16 produced very similar averages:
2.12, 3.96, 7.00, 10.37, 13.23, 15.12, 15.72, and 15.93. Of the
8566 genes OVelos@65 identified, 3616 were identified
universally in WHIM2 and 3306 were identified universally in
WHIM16. A total of 2730 genes were identified universally
across both WHIM2 and WHIM16. When a similar analysis
was performed for the iTRAQ experiments of OVelos@10, the
bins began at 7 spectra because that was the minimum number
required to control the protein FDR. Even in the set of genes
with only 7−13 spectra in evidence, the identification
repeatability rate was quite high: 5.12 of 6 replicates. Once
genes had produced 28 or more spectra in aggregate, the
average identification repeatability was close to 6.00. Of the
11 284 genes that OVelos@10 identified, 9822 were identified
in all six replicates.
Reports from IDPicker were used to find two sets of

differential genes from each label-free replicate, one based on
spectral counts (SPC) and another based on extracted ion
chromatograms (XICs) and to find one set of differential genes
from each iTRAQ replicate (see Experimental Procedures:
Statistical Differentiation). This part of the study sought to
determine the reproducibility of differentiation for individual
experiments rather than across multiple replicates. For label-
free experiments, this would mean comparing the spectral
counts or precursor intensities from a set of fractions
representing one analysis of WHIM2 to the comparable data
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from a set of fractions representing one analysis of WHIM16
(analyses comparing multiple replicates are performed below).
In these iTRAQ experiments, each experiment inherently
produced duplicate information for WHIM2 and for WHIM16;
this analysis, however, compares data from a single channel of
WHIM2 to a single channel of WHIM16.
To determine differences, we chose strategies that have been

evaluated in the peer-reviewed literature. We opted to employ a
pooled variance model for the single-replicate comparisons;
similar strategies have been implemented as local-pooled-
error,54 empirical Bayes,55 and other tests for microarray
experiments. The approach embodied in IDPicker for
extracting precursor ion intensity has been published
separately,42 including an evaluation of the rate of false
attribution of intensity to a peptide. Because the volume of
data was so extensive, we opted not to take advantage of the
ability to align retention time for fractions across replicates. As
a result, a peptide that was present in both replicates
contributed a spectrum count or precursor intensity when it
was identified in a replicate but contributed no count or
intensity when it was not identified in a replicate. In all analyses,
evidence is summed at the level of the gene that gave rise to
proteoforms56 to which counts or intensity were identified.
Working with ratios is certainly more common in iTRAQ
analysis, but IDPicker 3.1 was capable of intensity output only,
not ratios, summing the precursor intensities for all PSMs
supporting the gene identification. Submitted work by Jian-Ying

Zhou demonstrated that this method is equivalently resistant to
false positives while producing high data set correlations. This
determination was corroborated by Carrillo et al.,57 who
concluded that “Our results demonstrate that the sum of
intensities and total least squares algorithms provided the most
accurate estimates of protein abundance for a wide range of
simulated and experimental conditions. The commonly used
average of ratios algorithm consistently provided estimates with
the highest errors.”
The fraction of observed genes found to be differential at a

5% FDR varied strongly by instrument. The iTRAQ instru-
ments yielded low average differential gene fractions: OVelos@
10 = 1.6%, OVelos@45 = 3.4%, and QExac@56 = 2.5%; our
investigation showed that the Bayesian model expected a high
degree of variance in each gene’s reporter ion intensities when
no biological difference was present (the model assumed that at
least half of genes would not differ between the two
xenografts). Label-free data sets were analyzed twice: once
solely on the basis of spectral counts (SPC) and once solely on
the basis of extracted ion current (XIC) from precursor ions in
MS scans. XIC analysis found somewhat higher fractions of
genes to be differential: OVelos@65 = 5.0%, OElite@65 =
3.5%, and QExac@98 = 7.7%. QExac@98 produced a wide
range of differential gene fractions, reflecting the drop in
identification sensitivity (Figure 2); the first four replicates
averaged 12.9% differential genes, whereas the last six averaged
4.3%. Shifting to SPC analysis instead (which shifts to a Poisson

Figure 3. How many of the differential genes from each experiment are confirmed by at least one other replicate experiment? Blue differential genes
are found in common by another experiment in this instrument, whereas orange ones are unique to a single replicate. For iTRAQ, the confirmation
must come from a different set of LC−MS/MS data altogether. Note that instruments that produced more replicates were likely to have a higher
proportion of common differential genes by random chance.
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expectation of variance in the statistical model) altered the
differential gene fractions: OVelos@65 = 9.8%, OElite@65 =
3.5%, and QExac@98 = 5.3% (8.2% for the first four replicates,
and 3.4% for the last six). We note that the fraction of genes
found to be differential in the OVelos@65 set was larger under
SPC analysis, whereas the fraction was higher in QExac@98
under XIC analysis; this may reflect the optimizations in
methodology applied at each site.

Per-Instrument Repeatability

Two different strategies were applied to determine the
repeatability of differential gene detection among experiments
from a given instrument. The first simply asked which
differences are consistent with those from at least one other
replicate experiment on the same instrument; these overlaps

were also evaluated through Cohen’s kappa statistic. The
second compared the rankings of genes on an axis from highly
upregulated in WHIM2 to unchanging to highly upregulated in
WHIM16. Both analyses compared data from a single iTRAQ
channel to those from another single iTRAQ channel, despite
the collection of duplicate data in iTRAQ 4plexes. This decision
was intended to reflect the realities of large-scale iTRAQ
experiments, where duplicate data collection is rare. Certainly,
including biological replicates within experiments is preferred.
Figure 3 visualizes the set of differential genes from each

replicate on each instrument. Differential genes were called
common and colored blue if they were also found as differences
in other experiments from the same instrument. They were
labeled unique and colored orange if they were found in only

Figure 4. Rank correlations compare the ordering of genes by signed posterior probabilities. OVelos@10 illustrates the extent to which differential
probabilities within an iTRAQ 4plex are more similar than those across multiple 4plexes. The QExac@56 shows an exception to this behavior in
replicate B. Spectral count-based differentiation produces similar overall correlations to iTRAQ, though without the benefit of being able to compare
within LC−MS/MS experiments. Replicate G from OVelos@65 correlated more poorly. The declining sensitivity of identification in QExac@98
gave low correlation values other than the one between the first two replicates.
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one replicate from this instrument. All four possible
comparisons were generated from the duplicate iTRAQ
experiments; both the low and high m/z channels for
WHIM2 were compared to both the low and high m/z
channels for WHIM16. Agreement in iTRAQ experiments was
defined somewhat more stringently than in label-free experi-
ments to reflect the use of this technology in experiments
spanning many 4plexes. Consider the case where WHIM2 was
presented in duplicate on channels 114 and 115, while
WHIM16 was reported on the 116 and 117 channels. A
comparison between channels 114 and 116 has mutual
information with a comparison between channels 114 and
117. Even a comparison of 114/116 versus 115/117, however,
will have shared information because they would be based on
the same set of PSMs. As a result, common differential genes
from iTRAQ experiments were required to be confirmed by
altogether separate LC−MS/MS experiments from the same
instrument.
The extent to which Figure 3 is dominated by common

differential genes is an encouraging development for this field;
the average percentage of differences in common for each
instrument was as follows: OVelos@10 = 88%, OVelos@45 =
81%, QExac@56 = 87%, OVelos@65-XIC = 78%, OElite@65-
XIC = 61%, QExac@98-XIC = 63%, OVelos@65-SPC = 93%,
OElite@65-SPC = 88%, and QExac@98-SPC = 91%. The ailing
OElite@65 generated a large proportion of unique differences,
but the overall numbers of differential genes were quite low,
and only three other replicates could confirm any particular
difference. QExac@98 also presented a fairly large number of
unique differential genes, but it seems clear that the falloff in
sensitivity for the final six replicates was costly. The high degree
of agreement seen in the latter replicates for this instrument
(E−J) was reassuring in that while reduced sensitivity led to
shorter lists of differences it did not compromise reproduci-
bility.
A more restrictive analysis, based on Cohen’s kappa,

compared the genes declared to be differential in pairs of
experiments drawn from each instrument. Essentially, this is
built around a contingency table; how many genes are
differential in A and differential in B, how many genes are
differential in neither A nor B, and how many genes are found
to be differential in one but not the other. In computing this
metric, we included only those genes that appeared in both
experiments. A value of 1.0 implies perfect agreement. The
distribution of these kappa values appears in Supporting
Information Figure S2. The iTRAQ instruments produced
median kappas in the range of 0.49 to 0.57, with maximum
values universally higher than 0.88 resulting from comparisons
with a channel in common. For all three label-free instruments,
the kappa values were substantially higher for SPC analysis than
for XIC analysis (a difference of 0.18 to 0.34), with median
kappas of 0.50 for QExac@98-SPC, 0.58 for OVelos@65-SPC,
and 0.74 for OElite@65-SPC.
Signed log posterior probabilities were produced for each

gene in each replicate, with the magnitude of the negative log
posterior probabilities indicating the significance with which a
gene may be called differential and the sign marking the
orientation of that potential difference. The ranks of genes on
these lists can then be compared in a Spearman rank
correlation. Figure 4 shows four example plots of correlation
coefficients for signed log posterior probabilities from each
replicate against the values from each other replicate. The
average number of genes included in each instrument for

differentiation was as follows: OVelos@10 = 6571, OVelos@45
= 5877, QExac@56 = 8880, OVelos@65-SPC = 2381, OElite@
65-SPC = 1344, and QExac@98-SPC = 2643 (XIC counts were
only slightly different).
Data from OVelos@10 differentiate the correlation values

within a 4plex from those between different 4plex replicates.
Within a 4plex, the correlation coefficient did not fall below 0.8.
Correlation coefficients between 4plexes, however, never rose
as high as 0.8 but rarely fell below 0.7. This disparity may result
in large part from the fact that intensities within a 4plex are
drawn from exactly the same set of PSMs for a given gene,
rendering them more comparable than a case where intensities
are drawn from entirely different PSMs (and likely distinct sets
of peptide sequences) as disparate sets of LC−MS/MS
experiments are compared. QExac@56 generally follows the
same pattern of behavior, with an even greater difference
between internal-to-4plex and external comparisons. The
behavior for replicate B, however, bears closer attention. The
data from channels 114 and 115 were considerably different,
and the external correlations for channel 114 were lower against
all other replicates. The result is a reminder that a great many
different factors must all go well for reproducible proteomic
differentiation experiments. (Note, however, that the internal
data analysis pipeline by site 56 did not show a reduced
correlation for this channel. The internal pipeline used a
different search engine, a peptide ratio-based assessment, and a
Pearson correlation on log fold change.)
Label-free experiments may be simpler to conduct at the

bench, but they are also subject to variation. The 16 replicates
from OVelos@65 in Figure 4 reveal a general decrease in
correlation for replicate G. Looking back to Figure 3 reveals an
increased proportion of unique differential genes for this
replicate; replicate G also produced the lowest kappa metric for
this instrument in both SPC and XIC analysis. The
experimental origin of this variation is unknown. QExac@98
was subject to considerable variation in identification sensitivity
(Figure 2), and its correlation values were consistently lower
than those for other instruments. Correlation within the earliest
replicates is stronger than for later replicates. All of the
correlation plots can be found in Supporting Information
Figure S3.

Cross-Instrument Reproducibility across Instruments and
Technologies

Comparing across instruments made it possible to take
advantage of the replicates produced for each instrument.
Instead of building differential gene lists from individual
instrument assemblies, the cross-instrument evaluation was
developed from an assembly that spanned all of the data
(Figure 1 and Experimental Procedures: Bioinformatics and
Biostatistics: Protein Identification). At an empirical protein
FDR of 4.58%, the assembly included 12 741 protein groups
supported by a total of 6 980 499 PSMs. The Bayesian model
was able to estimate variance per gene through the use of
replicates, improving its discrimination power.
The iTRAQ instruments benefited most substantially from

the inclusion of replicates. The number of gene groups tested
for differentiation in each instrument was as follows: OVelos@
10 = 6570, OVelos@45 = 5744, and QExac@56 = 8081. Single-
replicate analysis had shown a maximum of 3.4% differential
genes for these three instruments, but those percentages rose
significantly when the software was able to estimate variance
using replicate measurements for each gene: OVelos@10 =
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31.7%, OVelos@45 = 9.4%, and QExac@56 = 39.3%. When the
first three and last three replicates for OVelos@10 were
considered separately, the number of differential genes
plummeted to 13.3 and 14.2% for the early and late sets,
respectively; doubling from three to six replicates greatly
improved the statistical power for detecting differential genes.
OVelos@45, by contrast, identified the fewest overall genes and
yielded the least differentiation among the iTRAQ instruments.
Examining the underlying data revealed higher typical variance
per gene than that for other sites, and the operators of this
instrument noted that each replicate was a full process replicate
(repeating digestion, labeling, and mixing) rather than a
technical replicate that simply repeated LC−MS/MS on the
same vials of peptides. An internal analysis by this site showed
good consistency in the genes found to be differential for each
replicate (see Supporting Information Figure S4).
The label-free data from OVelos@65 and QExac@98

provided enough replicates to allow for subset comparisons,
whereas OElite@65 lagged enough in performance that it was
not examined in detail. The first 10 and last 6 replicates from
OVelos@65 were split to two sets, reflecting that the former
were interstitial with TCGA samples and the latter were
interstitial with normal tissue. Similarly, the data from QExac@
98 for the first 4 replicates were separated from the last 6
replicates to reflect the different schedules for collecting these
two sets. The number of genes observed in each set was as
follows: OVelos@65A−J = 3248, OVelos@65K−P = 3219,
OElite@65 = 1896, QExac@98A−D = 4893, and QExac@
98E−J = 2758. The counts for label-free instruments were
taken from the SPC analysis; the number of genes compared by
XIC was slightly lower since some precursor ions were not
matched. The differential gene fractions by SPC analysis were

64.2 and 48.7% for the early and late sets for OVelos@65,
whereas the QExac@98 percentages were 34.1 and 37.0%
(note, though, that the later set from this instrument included
substantially fewer genes). Analyzing the same data by XIC,
though, yielded 51.9 and 59.6% differential genes for OVelos@
65, demonstrating that having more replicates is not a
guarantee for a higher fraction of differential genes. The XIC
analysis for QExac@98 produced 32.3% differential genes in the
high-sensitivity early set but 39.8% in the later, less sensitive
runs for this instrument.
Since SPC and XIC analyses are generated from the same

underlying PSMs, one might expect that their lists of differences
are highly similar. However, the sum of precursor ion intensity
observed for a given gene may be stable while spectral counts
vary between two cohorts, or vice versa. Difference lists from
three data sets were interrogated for this purpose: OVelos@
65A−J, OVelos@65K−P, and QExac@98A−D. Venn analysis
by the Venny 2.02 web tool (J.C. Oliveros) compared the lists
of up-in-WHIM16 and up-in-WHIM2 genes for both XIC and
SPC analysis (see Supporting Information Figure S5). Of all
genes named as up-in-WHIM2 in these three sets, from 47 to
64% were named in both analyses. Of all genes named as up-in-
WHIM16 in the three sets, from 53 to 75% were named in both
analyses. The two techniques contradicted each other in only
one category: genes named as up-in-WHIM2 by SPC but up-in-
WHIM16 by XIC. The first 10 replicates of OVelos@65
produced two genes in this conflict, while the last 6 replicates
produced another 9. QExac@98 conflicted in six genes.
Examining underlying data from these conflicts yielded
examples of three phenomena. In the first case, the numbers
of identified spectra and the sums of precursor intensity simply
point in opposite directions. In the second case, zero counts

Figure 5. To what extent are the differential genes found for each data set confirmed by other data sets? Those represented by blue were found to be
differential in common with another data set in that graph panel, as well. Orange genes, on the other hand, were unique to a particular data set. High
identification sensitivity for QExac@56 led to many instrument-specific differences.
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were treated as observations in SPC analysis but as missing data
in XIC analysis, placing greater weight on replicates that
reported nonzero intensities. In the third case, sorting genes by
log2 ratios for FDR determination introduced noise that could
be avoided by sorting on regression coefficients instead. Given
that the number of differential genes in a list ranged from 928
to 1328, these conflicts never rose above 1%, which we judged
to be tolerable in this study.
Venn analysis of differential genes from the three iTRAQ

instruments shows that almost every difference found by
OVelos@45 was also found by the other two instruments (see
Supporting Information Figure S6 for these cross-instrument
images). Among the 1403 up-in-WHIM2 genes, only 5% were
observed by all three sites. The bulk of the gene differences was
found by QExac@56 only (58%), by OVelos@10 only (18%),
or by both instruments (18%). A similar pattern appears in the
2269 up-in-WHIM16 genes, with 33% found by QExac@56
only, 9% by OVelos@10 only, 38% found by both these
instruments, and 19% found by all three instruments. The data
for label-free instruments showed great consistency between
early and late sets of OVelos@65 data along with a substantial
number of differences found only by QExac@98 (presumably
due to its high sensitivity). Whereas more SPC differences were

observed by OVelos@65A−J, the XIC analysis favored the later
OVelos@65K−P set instead.
Figure 5 visualizes the extent of agreement for differential

genes found in one set of replicates versus those found in
others. Whether analyzing the data by SPC or by XIC, many of
the differences found in the first four replicates of QExac@98
were not reproduced by other label-free sets (perhaps because
of the increased sensitivity achieved in these experiments). A
similar phenomenon arose from QExac@56; this instrument
produced by far the highest PSM sensitivity of the study, and
the many additional differential genes inferred from its data
could not be confirmed by other data sets. The low number of
overall differences found in the OVelos@45 set reflects a
relatively low overall gene sensitivity and a low degree of
differential discrimination; by contrast, the differences found by
this instrument were almost entirely consistent with the
differences produced by others.

Reproducibility of Biological Appraisal

The fraction of differential genes confirmed by another
instrument in the fourth panel of Figure 5 ranged from 67%
for OVelos@65A−J by SPC to 99% for OVelos@45. However,
biological insight is often derived by projecting data at the level
of the functional pathway or subnetwork. To examine the

Table 1. Consistency of Enriched Pathways in Genes Expressed More Highly in WHIM16a

pathway
QExac@

56
OVelos@

10
OVelos@

45 XICs: OVelos@65 (A−J) SPC: OVelos@65 (A−J) XICs: QExac@98 (A−D) SPC: QExac@98 (A−D)

glycolysis/
gluconeogenesis

× × × × × + ×

arginine and proline
metabolism

+ + × × × × ×

valine, leucine, and
isoleucine degradation

× + × × × ×

ECM receptor interaction × × × × ×
focal adhesion × × × × ×
endocytosis × × × × +

antigen processing and
presentation

+ + × + + × ×

glutathione metabolism + + × + + × +

amino sugar and
nucleotide sugar
metabolism

+ × × + + +

fructose and mannose
metabolism

+ + + + × ×

propanoate metabolism + + + + × ×
cell adhesion molecules + × × + +

hematopoietic cell lineage + × × + +

regulation of actin
cytoskeleton

+ + + × ×

starch and sucrose
metabolism

+ + × × +

butanoate metabolism + + × ×
citrate cycle/TCA_cycle + + × ×
complement and
coagulation cascades

× + + ×

fatty acid metabolism + × ×
graft versus host disease + + × + + +

allograft rejection + × + + +

tryptophan metabolism + + + + ×
lysosome + + × +

pentose and glucuronate
interconversions

+ + + ×

glycosaminoglycan
degradation

× + +

a× indicates that the pathway was in the top 10 most significant pathways for that data set. + indicates that the pathway was significant (corrected p
value < 0.05) in that data set.
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stability of biological insight that could be derived from data
generated on each platform, we calculated the statistical
enrichment of genes identified as more highly expressed in
WHIM2 or in WHIM16 in each KEGG pathway and each
network module generated from the iRef protein−protein
interaction network (see Experimental Procedures) using
Fisher’s exact test with Benjamini−Hochberg multiple hypoth-
esis correction.
Overall, many more proteins were identified as more highly

expressed in WHIM16 than were identified as more highly
expressed in WHIM2. Four KEGG pathways (antigen
processing and presentation, arginine/proline metabolism,
glutathione metabolism, and glycolysis/gluconeogenesis) were
enriched in up-in-WHIM16 lists from all platforms. The top 10
most significant pathways from each platform showed
consistency, though these sets varied (Table 1). Focal adhesion
was ranked as first or second most significant by the three
iTRAQ data sets, and it was in the top 10 most significant
pathways for both partitions of the OVelos@65 data under
both SPC and XIC methods, but it was not determined to be
significant by QExac@98 by either analysis. Similarly, five
network modules were identified as the top 10 most significant
modules enriched with up-in-WHIM16 lists from at least four
platforms (Table 2 and Figure 6). Only two modules were
enriched for the QExac@98 data under the SPC method, and
no module was enriched for the QExac@98 data under the XIC
method (Figure 6). Specially, modules Level_2_Module_3
(response to wounding) and Level_2_Module_11 (immune
system processes) were ranked as first or second most
significant modules by four platforms. The up-in-WHIM2
genes were less consistent in both pathway and network
analyses, but this was largely due to the fact that far fewer genes
were observed to be significantly differential in WHIM2 by any
platform, and pathway enrichment overall was much lower.
We also evaluated the possibility of permutation-based FDR

estimation for pathway enrichment at a 10% threshold. Under
these circumstances, QExac@98 resembled the other instru-
ments to a greater degree, with significant hits occurring in an
additional 10 pathways appearing in Table 1 by SPC analysis.
The permutation analysis also found 5 additional pathways to
be significant in Table 1 by XIC analysis. At this time,
NetGestalt has not yet gained the ability to perform
permutation-based FDR correction.

■ CONCLUSIONS
Differential proteomic technologies are complex, and that
complexity opens the door to many potential sources of
variability. Just as proteomic inventory experiments sample
from a large potential pool of peptides, differential proteomics
experiments sample from a large potential pool of differential
proteins/genes. Given that the underlying inventories from
these six instruments ranged more than an order of magnitude
in the number of distinct peptides they identified (Figure 2),
the degree of conformity in the differential gene lists across
instruments was rather surprising (Figure 5). Projecting into
KEGG pathways or iREF biological networks further reinforced
this agreement among instruments.
Quality control methods and standard operating procedures

are a necessary part of clinical proteomics, and sharing results
for common samples between laboratories can be a powerful
means to evaluate performance in both proteomic inventories
and differentiation. The Association of Biomolecular Resource
Facilities has been particularly influential in such cross- T
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laboratory studies. When QC methods highlight an LC−MS/
MS experiment from a fractionated set as deficient, however,
the ideal response is to rerun the entire fractionated set rather
than replacing a subset of the fractions. To replace only the
problematic fractions can increase the variability of the set by
adding in the drift of the instrument as a function of time.
Figure 4 illustrates an important principle for isobaric

labeling studies: intensity values within an iTRAQ 4plex
replicate were more comparable than values between different
sets of replicates because they are drawn from the same set of
PSMs. The speed and capacity of these methods clearly exceed
those of label-free approaches as a result of multiplexing.
Current isobaric reagents can support analysis of the greater
than 100 sample comparisons carried out by the CPTAC data
production centers through the use of a common pooled
sample included in each 4plex or through a randomized block
design. The degree of multiplexing possible through use of
current isobaric labeling reagents is at 10plex through use of the
tandem mass tag (TMT, Thermo) reagents, and further
increases in the degree of multiplexing are anticipated as new
chemistries and encoding strategies58 are developed.
To return to the questions that motivated this study, it

appears clear that repeatable performance in differential
proteomics is feasible, whether isobaric labels or label-free
methods are employed. The repeatability of OVelos@65 over
10 months of nearly continuous data acquisition was quite high,
though the sixth of 16 replicates was somewhat questionable in
the correlation analysis of Figure 4. The diminished perform-
ance in the final six replicates of QExac@98 is a clear reminder
that instrument performance needs to be comparable for
differentiation to be repeatable. The large increase in
differential genes for the cross-instrument reproducibility
analysis reminds us of the value of multiple replicates for
differential proteomics. While this study did not take advantage
of full biological replicates for its two samples, these are
certainly valuable in most experiments. Using the information
from technical replicates for this study greatly increased the
number of differential genes by enabling per-gene variability
estimates. Technical variation remains a fact of life for all
proteomics laboratories; this study, like many others in the

field, might have benefited from the use of randomization and
blocking designs in addition to its use of replication.59

If laboratories deploy different methodologies to analyze the
differences between the same two complex samples, then they
will assuredly see differences in the gene or protein lists
produced by the two technologies. The degree of conformity
observed in this study, however, was encouraging. When label-
free data were analyzed by spectral counting rather than
precursor intensity, the differences yielded a high degree of
overlap. When iTRAQ rather than label-free methods are
deployed, the differential genes were again quite similar. These
overlaps suggest a degree of maturity in proteomic methods
that has grown through years of development along multiple
tracks.
At base, biologists need to know that differential proteomics

technologies can produce meaningful results. Our assessment
showed that biological pathway and network analysis is highly
consistent across instruments. Which subset of genes is
observed to be differentially regulated may be sampled from
a larger set associated with a pathway or network. The pattern
of these differences yields a stronger signal in combination.
With these questions addressed, we hope to see wider
deployment of differential proteomics in support of clinical
and biological studies.
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