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Figure S1. Overview of the experimental design and outcome of temporal phosphoproteomic profiling of 
TLR4-stimulated DCs, Related to Figure 1.
(A) Diagram highlighting the general steps of our integrative approach that includes the identification of temporal changes in 
phosphorylation (1), functional testing using genetic perturbations (2), connecting kinases and substrates (3), and inferring 
biochemical paths linking signaling to transcription events (4). All these steps rely on data capturing physical and functional 
interactions in mouse primary DCs stimulated with LPS. 
(B) Schematic depiction of the experimental workflow for phosphoproteomics. From left: Protein lysates from unstimulated 
(t = 0) and LPS-treated cells (t = 1 and 2) grown in   
“light”, “medium” or “heavy” SILAC media were mixed (1:1:1) and digested into peptides with trypsin before phospho-serine, 
-threonine, and -tyrosine (pS/T/Y) peptide enrichment using  immobilized metal affinity chromatography (IMAC), and 
LC-MS/MS analysis (see Experimental Procedures).
(C) Schematic summary of the temporal phosphoproteomic profiling. Six experiments were conducted (from top to bottom) 
to cover control and stimulated cells (top, 8 time points post-LPS stimulation) with SILAC label switching as indicated with 
the colored-dishes matching the nomenclature from B. Total counts of phosphosites and phosphoproteins detected across 
all time points are indicated on the right.
(D-E) Distributions of phosphosites and phosphoproteins detected across multiple (cumulative counts; D) and individual 
time points (E).
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Figure S2. Dynamic phosphoproteomic profiles reveal phosphosites regulated on known TLR components and 
differential pathway enrichment over time, Related to Figure 2.
(A-B) Distributions of phosphosites and phosphoproteins (A; Y axis), and known TLR pathway proteins (B; Y axis) detected 
across the 10 k-means clusters from Figure 1A (X axis). Numbers on top of each bar indicate the percent of known TLR 
proteins within each cluster (B).
(C) Phosphorylation profiles of known TLR pathway proteins. Log2 fold changes between LPS-treated and untreated cells 
for 92 phosphosites on known TLR proteins (rows) detected in at least 6 out of 8 time points (columns). Phosphosites are 
partitioned into 10 clusters using k-means (legend, top; color bars, right). Right, gene names and phosphosites localization 
(S, serine; T, threonine; Y, tyrosine). White indicates missing values.
(D) Gene enrichment analysis of LPS-dependent phosphoproteins. Enrichment p-values (modified Fisher's exact test, 
showing values < 10-5; grey boxes indicate values above this cutoff) for Gene Ontology (GO) and KEGG pathway terms 
(rows; term name indicated on the right) across all 10 k-means clusters (columns).
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Figure S3. Genetic perturbation profiles of the 131 phosphoproteins selected from phosphoproteomic profiles, 
Related to Figure 3.
(A-B) Candidate filtering and associated gene enrichment analysis of LPS-dependent phosphoproteins selected for func-
tional analysis. Enrichment p-values (modified Fisher's exact test, showing values < 10-5; grey boxes indicate values above 
this cutoff) for Gene Ontology (GO) and KEGG pathway terms (rows; term name indicated on the right) across all 3 filters 
for candidate gene selection (columns).
(C) Perturbation profiles of 131 phosphoproteins. Shown are the perturbed candidates and control genes (columns) and the 
log2 fold changes between gene-specific and control shRNAs (rows) of 263 target genes (including control targets used as 
“housekeeping”, unchanged genes for normalization). The right-most column categorizes target genes into controls (dark 
green), and antiviral (light green) and inflammatory (light orange) programs. Top, bar plot indicating knockdown efficiency 
for each perturbed gene (top left, percentage of remaining mRNA transcripts for indicated genes upon knockdown).
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Figure S4. A method for affinity-purification followed by MS (AP-MS) in BMDCs, and analysis of Samhd1-/- mouse 
BMDCs, Related to Figure 4.
(A) Diagram depicting our experimental approach for AP-MS in mouse BMDCs.
(B) BMDCs overexpressing V5-tagged proteins through lentiviral infection respond normally to LPS. Micrographs of 
GFP-expressing DCs before and after LPS stimulation.
(C) Immunoblot analysis of input and immunoprecipitated (IP) samples from DCs expressing V5-GFP or V5-AP1AR.
(D) Expression levels (relative to Gapdh; qPCR) of indicated inflammatory (light orange) and antiviral (light green) cytokines 
in Samhd1+/+ and Samhd1-/- BMDCs stimulated with LPS for 2 and 4 h or left untreated as control (duplicate wells are 
shown). 
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Figure S5. Measuring overlaps between knockdown profiles and TF binding sites, 
Related to Figure 5.
Diagram depicting overlaps between genes affected by knockdown and genes whose 
promoters are bound by a given transcription factor (TF), as a schematic example of the 
analysis performed in Figure 5B.
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Figure S6. Physical and functional proteomics assays pinpoint how phosphorylation of known TLR pathway 
regulators is modulated by KO, Related to Figure 6.
(A) Immunoblot analysis of input and immunoprecipitated (IP) samples from DCs expressing V5-GFP or V5-MYD88.
(B) Phosphoproteomics in KO cells. Left, shown is a heatmap for SILAC ratios of phosphosites (rows) in 4 KO models 
(columns) at 30 min after LPS stimulation compared to control wild-type cells, as indicated (grey, missing values). Middle, 
shown in light brown are phosphosites with significant up- or down-regulation in KO vs WT. Right, shown are the 46 phos-
phosites mapping to known TLR signaling regulators (Letters on the right indicated the phosphorylated residue: S, serine; T, 
threonine; Y, tyrosine. Numbers indicated the amino-acid position in the protein).
(C) In vitro kinase (IVK) assay followed by phosphoproteomics. Shown are dot plots of SILAC ratios of phosphosites 
identified using purified IRAK2. Light grey, all data points; dark grey, phosphosites with FDR < 0.1 in IVK; red, phosphosites 
with FDR < 0.1 in both IVK and in cells stimulated with LPS, which highlights the overlap between IVK and phosphopro-
teome measurements on stimulated cells (denoted as IVK + cells). Gene names at the bottom right of the plot indicates 
known TLR components with the number of phosphosites in parenthesis.



Figure S7

A

B C

D E

N
um

be
r o

f c
on

ne
ct

ed
 T

Fs
pe

r a
nc

ho
r 

0 0.002 0.004 0.006 0.008 0.010

0

0.05

0.10

0.15

False rate

Tr
ue

 ra
te

weighted network
background network
phosphorylation only
random

Seeds (26)
Intermediates (60)
Transcriptional regulators (95)

Sox9

Bach1

Klf4

Dmd

Hif3a

Ticam1

Rabep1

Zfp687

Ncoa3

Smarcc2

Foxo3

Foxo1

Bcl6

Tab2

Ncoa2

Nr3c1

Jun

Fos

Gtf2i

Notch1Herc1

Arid2

Gps1

Nr2c1
Gatad2b

Zfhx3
Map3k1

Pbrm1

Zbtb16

Nfkb2
Cops5

Stat6

Rfx1

Ahctf1
Fosl1 Ezh2

Nr2c2
Dnaja2

Pex14

Vhl

Rbck1
Ap1ar

Nfatc2
Rangap1

Stat2

Coro1a

Trafd1

Ssrp1 Irf3
Sirt1

Tbk1
Nfatc3

Ikbke

Smarca5Map2k4
Mllt4

Rps6ka3

Raf1
Mybbp1a

Brd8 Traf2
Cic

Samhd1

Setdb1

Fth1

Kdm5b
Akt2

Tsc1
Rel

Nfkbie
Cux1

Ddit3
Jund

Srebf1

Stk3

Smad2

Elk1

Creb3l2

Traf1Ahnak

Atf3

Vim Pms1

Bmp2k

Pdlim7 Atf5

Arfgap3

Ripk3

Sp1

Baz2a

Dnmt1

Myd88

Ncor1

Nr4a3

Zeb2

Smad1

Rnf2
Tbc1d17

Plcg2
Picalm

Xiap

Vcp

Tirap

Tank

Atf2

Zhx1

Nfatc1Srebf2
Myc Csnk1e

Optn

Sp100

Stat3
Axin1

Hspe1
Zfp655

Srf

Creb3l1
Ubxn6 Junb
Ccnd1

Mef2a

Pin1

Elf4

Tsc2

Tcf3

Lmna

Pml

Tnfaip3

Id2
Nfkb1

Bag3

Erg

Trp53

Chd3 Stat1

Smarca4Aspscr1 Sp110

Runx2Creb1
Esr1

Ret
Ncor2

Terf2

Rxra

Foxk2 Relb

Ptpn7

Ascc3
Arhgef11

Uba1Mavs

Zbtb1

Arid1a
Tnip1

Cdk2

Mapk8

Irak2

Cdk1

Akt1
Mitf

Mapk14

Phf3

Mta2Irak4
Ranbp2

Mapk9
Mapk3

Ube2i

Abl1

Ikbkb

Gsk3b
Mapkapk2

Spag9

Public database interactions

Local interaction data:
  (i) APMS
  (ii) IVK 

Map2k4 Phf3

Smarca4

Ahnak

Tbk1 Brd8
Mybbp1aCdk1

Vim

Relb

Foxk2

Sp110
Ptpn7

Raf1

Arid1a
Gsk3b

Mapkapk2

Bmp2k
Fth1

Smarca5

Samhd1

Plcg2Ap1ar

Picalm
Dnaja2

Hspe1

Pbrm1

Nr3c1Ikbke

Ncoa2

Rps6ka3

Ssrp1
Tank

Irak4

Cux1
Tnip1

Irak2Myd88

Mllt4

Tirap Coro1a

Spag9

0

30

60

Tb
k1

M
ap

k9
R

an
ga

p1
Tr

af
d1

N
fk

bi
e

C
or

o1
a

Ap
1a

r
U

lk
1

R
ip

k3
Tb

c1
d1

7
Ti

ca
m

1
Ts

c2
R

bc
k1

As
cc

3
Pd

lim
7

M
yd

88
Ak

t2
Pe

x1
4

Ar
fg

ap
3

As
ps

cr
1

Pi
ca

lm
Sa

m
hd

1
Ira

k2
U

ba
1

Ti
ra

p
St

k3
Ar

hg
ef

11
R

ab
3i

l1
D

m
xl

2

Phosphorylation

shRNA / Signature transcripts

Large-scale IVK

AP-MS

KO / Phosphoproteome

Protein-DNA interactions

Protein-protein interactions

Phosphoproteomics

Phosphoproteomics

Phosphoproteomics

TF ChIP-seq

Physical
interactions

Functional
interactions

Multiplex mRNA counting

Datasets Measurements

Figure 3B and S3C

Figure 6D

Figure 1C

Figure 6F, 6G, and S6C

Figure 4D, 6A, and 6B

Figure 5B

Matching figures

Summary of data collected in BMDCs on physical and functional interactions

ROC curve analysis

weighted network
background network 



Figure S7. An integrative analysis reveals signaling-to-transcription paths in the TLR4 system, Related to Figure 7.
(A) List summarizing the physical and functional interaction data sets collected in the cellular context of BMDCs stimulated 
with LPS.
(B) Receiver operator characteristic (ROC) analysis demonstrates the ability of our integrative algorithm to retrieve known 
seed-target node relationships between canonical TLR pathway components. 
(C) Total number of transcription regulators (TRs) for which significant relationships were found with the 29 ‘seed’ nodes 
using ‘weighted network’ (dark grey) and ‘background network’ (light grey) methods.
(D) An interaction network connects 27 seeds (blue) to 95 transcriptional regulators (red) through the top 60 intermediate 
(yellow) nodes. Shown is a close-up view of the network from Figure 7E depicting protein names on nodes and edge types 
(database, AP-MS, and/or IVK).
(E) Sub-network extracted from panel D showing interactions from local data sets as dark edges (AP-MS, undirected; IVK, 
directed).



	

SUPPLEMENTAL EXPERIMENTAL PROCEDURES 
 
 

Cells 

Bone marrow-derived dendritic cells (BMDCs) were generated from 6-8 week old female 

C57BL/6J (Jackson Laboratories), Ap1ar-/- (Maritzen et al., 2012), Samhd1-/- (Rehwinkel et al., 

2013), Myd88-/-, Myd88-/-/Ticam-/-, Irak2-/-, Irak4-/- mice. Bone marrow cells were collected from 

femora and tibiae and plated at 106 cells/mL on non-tissue culture treated petri dishes or 96-well 

plates in RPMI-1640 medium (Gibco), supplemented with 10% FBS, L-glutamine, 

penicillin/streptomycin, MEM non-essential amino acids, HEPES, sodium pyruvate, b-

mercaptoethanol, and murine GM-CSF (15 ng/mL; Peprotech). GM-CSF-derived BMDCs were 

used directly for all RNAi experiments. For all other experiments, floating cells from GM-CSF 

cultures were sorted at day 5 by MACS using the CD11c (N418) MicroBeads kit (Miltenyi Biotec), 

or used directly at day 8. Sorted CD11c+ or floating cells were used as GM-CSF-derived BMDCs, 

and plated at 106 cells/mL and stimulated at 16 h post sorting or collection. Human fibroblasts 

used in this study were AGS128 SI (c.445C>T p.Gln149* hom, referred to as M1), AGS495 SA 

(c.1609-1G>C hom, referred to as M2), and F10Y, F8Y, and PBX2 are controls (referred to as H1-

3), and were maintained in DMEM supplemented with 10% FBS. All cell stimulations were 

performed using ultra-pure E. coli K12 LPS (lipopolysaccharide) from Invivogen at 100 ng/mL 

for indicated times. 

 

mRNA isolation 

Total RNA was extracted with QIAzol reagent following the miRNeasy kit’s procedure (Qiagen), 

and reverse transcribed with the High Capacity cDNA Reverse Transcription kit (Applied 



	

Biosystems). For experiments with more than 12 samples, we harvested PolyA+ RNA in 96- or 

384-well plates with the Turbocapture mRNA kit (Qiagen) and reverse transcribed with the 

Sensiscript RT kit (Qiagen). 

 

qPCR measurements 

Real time quantitative PCR reactions were performed on the LightCycler 480 system (Roche) with 

FastStart Universal SYBR Green Master Mix (Roche). Every reaction was run in triplicate and 

GAPDH levels were used as an endogenous control for normalization. 

 

shRNA knockdowns 

High titer lentiviruses encoding shRNAs targeting genes of interest were obtained from The RNAi 

Consortium (TRC; Broad Institute, Cambridge, MA, USA). Bone marrow cells were infected with 

lentiviruses as described (Chevrier et al., 2011). For each gene of interest, we tested five shRNAs 

for knockdown efficiency using qPCR of the target gene and selected shRNAs with best 

knockdown efficacy (typically >75%). 

 

mRNA counting and data analysis 

5×104 bone marrow-derived DCs were lysed in RLT buffer (Qiagen) with 1% b-ME. 10% of the 

lysate was used for mRNA counting using the nCounter Digital Analyzer (NanoString) and a 

custom CodeSet constructed to detect a total of 267 genes (including 16 control genes whose 

expression remain unaffected by TLR stimulation). We normalize data by dividing the nCounter 

mRNA count values for each gene by the sum of counts obtained for the 16 control genes present 

in our custom CodeSet. To determine significantly affected signature genes, a fold-change ratio is 



	

computed for each pairwise comparison of a knockdown sample versus a set of control samples 

(i.e., non-targeting shRNA; at least 10 per experimental batch). As a threshold, we require a 

substantial fold-change (above a threshold value t) in the same direction (up- or down-regulation) 

in more than half of the pairwise comparisons sample vs. control shRNA. The threshold value t is 

determined as max (q, d), d being the mean + 1.645 times the standard deviation in the fold change 

shown by the control genes (corresponding top = 0.05, under the assumption of normality). The 

threshold q is similar for all comparisons and is based on the noise level estimated from the control 

shRNA samples. Specifically, we compute gene expression fold changes in all possible pairs of 

control shRNA samples (which are supposed to be consistent). We set the threshold q such that 

95% of the comparisons exhibit lower fold change than q. The resulting value of q is 1.961. 

Notably, we ignore all pairwise comparisons in which both control and knockdown samples had 

low counts before normalization (<50). All heatmaps and distance matrix analyses were generated 

using the software Gene-E (https://software.broadinstitute.org/GENE-E/index.html). 

 

Metabolic labeling of cells 

For stable isotope labeling of amino acids in cell culture (SILAC) experiments, GM-CSF-derived 

BMDCs were grown for seven days in media containing either normal L-arginine (Arg-0) and L-

lysine (Lys-0) (Sigma), L-arginine 13C6 (Arg-6) and L-lysine D4 (Lys-4), or L-arginine 13C6-

15N4 (Arg-10) and L-lysine 13C6-15N2 (Lys-8) (Sigma Isotec). Concentrations for L-arginine 

and L-lysine were 42 mg/L and 73 mg/L, respectively. To prevent metabolic conversion of L-

arginine to L-proline we added 200 mg/L L-proline to the cell culture medium. The cell culture 

media, Roswell Park Memorial Institute-1640 (RPMI) deficient in L-arginine and L-lysine, was a 

custom media preparation from Caisson Laboratories (North Logan, UT) and dialyzed serum was 



	

obtained from SAFC-Sigma. We followed all standard SILAC media preparation and labeling 

steps as previously described (Chevrier et al., 2011). 

 

Global serine, threonine, and tyrosine phosphorylation analysis for LPS time course 

experiments 

BMDCs grown in SILAC media were stimulated with LPS, and lysed and processed for 

enrichment of phosphopeptides as described previously (Chevrier et al., 2011; Mertins et al., 2013). 

Briefly, after LPS stimulation, cells grown in non-TC treated Petri dishes were placed on ice and 

scraped. Cell suspensions were washed in ice-cold PBS and sedimented by centrifugation at 4°C 

and 1,000 g for 5 minutes. The supernatant was removed and cell pellets were immediately frozen 

in liquid nitrogen. Cell pellets were lysed for 20 minutes in ice-cold lysis buffer containing 8 M 

Urea, 75 mM NaCl, 50 mM Tris pH 8.0, 1 mM EDTA, 2 µg/ml Aprotinin (Sigma, A6103), 10 

µg/ml Leupeptin (Roche, #11017101001), 1 mM PMSF, 10 mM NaF, 2 mM Na3VO4, 50 ng/ml 

Calyculin A (Calbiochem, #208851), Phosphatase inhibitor cocktail 1 (1/100, Sigma, P2850) and 

Phosphatase inhibitor cocktail 2 (1/100, Sigma, P5726). Lysates were pre-cleared by 

centrifugation at 16,500 g for 10 min and protein concentrations were determined by BCA assay 

(Pierce). We obtained on average 1 mg of total protein per label out of 10 million cells. Cell lysates 

were mixed in equal protein amounts per label and proteins were reduced with 5 mM dithiothreitol 

and alkylated with 10 mM iodoacetamide. Samples were diluted 1:4 with HPLC water (Baker) and 

sequencing-grade modified trypsin (Promega, V5113) was added in an enzyme to substrate ratio 

of 1:150. After 16 h digest, samples were acidified with 0.5% trifluoroacetic acid (final 

concentration). Tryptic peptides were desalted on reverse phase tC18 SepPak columns (Waters, 

500 mg, WAT036790) and dried in a vacuum concentrator centrifuge. Before phosphopeptide 



	

enrichment peptides were separated using strong cation exchange (SCX) chromatography. 

Peptides were reconstituted in 500 µl strong cation exchange buffer A (7 mM KH2PO4, pH 2.65, 

30% MeCN) and separated on a Polysulfoethyl A column from PolyLC (250 x 9.4 mm, 5 µm 

particle size, 200 A pore size) using an Akta Purifier 10 system (GE Healthcare). We used an 80-

min gradient with a 20-min equilibration phase with buffer A, a linear increase to 30% buffer B (7 

mM KH2PO4, pH 2.65, 350 mM KCL, 30% MeCN) within 33 min, 100% B for 7 min and a final 

equilibration with Buffer A for 20 min. The flow rate was 3 ml/min and the sample was injected 

after the initial 20 min equilibration phase. Upon injection, 3 ml fractions were collected with a 

P950 fraction collector throughout the run. 60 fractions were collected of which 3-4 adjacent 

fractions were combined to obtain 12 samples. The 12 fractions were desalted with reverse phase 

tC18 SepPak columns (Waters, 100 mg, WAT036820) and lyophilized to dryness. SCX-separated 

samples were enriched for phosphopeptdies by immobilized metal affinity chromatography 

(IMAC) as described previously (Chevrier et al., 2011). Peptides were reconstituted in 200 µl 

IMAC binding buffer (40% MeCN, 0.1% FA) and incubated for 1 h with 5 µl of packed Phos-

Select beads (Sigma, P9740) in batch mode. After incubation, samples were loaded on C18 

StageTips, washed twice with 50µl IMAC binding buffer and washed once with 50µl 1% formic 

acid. Phosphorylated peptides were eluted from the Phos-Select resin to the C18 material by 

loading 3 times 70 µl of 500 mM K2HPO4 (pH 7.0). StageTips were washed with 50 µl of 1% 

formic acid to remove phosphate salts and eluted with 80 µl of 50% MeCN / 0.1 % formic acid. 

Samples were dried down by vacuum centrifugation and reconstituted in 8 µl 3% MeCN / 0.1 % 

formic acid. Peptide samples were separated on an online nanoflow HPLC system (Agilent 1200) 

and analyzed on a LTQ Orbitrap and a LTQ Orbitrap Velos instrument, as described (Chevrier et 

al., 2011). Briefly, 50% of the enriched phosphopeptide samples were loaded onto a 14-cm reverse 



	

phase fused-silica capillary column (New Objective, PicoFrit PF360-75-10-N-5 with 10 µm tip 

opening and 75 µm inner diameter) packed in-house with 3 µm ReproSil-Pur C18-AQ media (Dr. 

Maisch GmbH). The HPLC setup was connected via a custom-made electrospray ion source to the 

mass spectrometer. After sample injection, peptides were separated at an analytical flowrate of 

200 nL/min with a 70-min linear gradient (~ 0.29 %B/min) from 10% solvent A (0.1% formic acid 

in water) to 30% solvent B (0.1% formic acid/90% acetonitrile). The run time was 130 min for a 

single sample, including sample loading and column reconditioning. Data-dependent acquisition 

was performed using the Xcalibur 2.1 software in positive ion mode. Survey spectra were acquired 

in the orbitrap with a resolution of 60,000 and a mass range from 350 to 1750 m/z. In parallel, up 

to 16 of the most intense ions per cycle were isolated, fragmented and analyzed in the LTQ part of 

the instrument. Ions selected for MS/MS were dynamically excluded for 20 s after fragmentation. 

 

Analysis of relative total protein expression 

BMDCs grown in SILAC media were left untreated or stimulated with LPS for 2 and 6 h. SILAC 

samples were lysed, digested and desalted as described for the global phosphoproteome analysis. 

To reduce sample complexity, 100 µg of total peptides were separated using an Agilent 3100 

Offgel fractionator (Agilent, G3100A) as described in the manual. For separation into 12 fractions, 

we used Immobiline DryStrips, 13cm, pH 3-10 (GE Healtcare, 17-6001-14) that were rehydrated 

in a 1:50 dilution of IPG buffer, pH 3-10 (GE Healthcare, 17-6000-87) containing 5% glycerol. 

Peptides were reconstituted in IPG buffer (1:50 dilution) containing 5% glycerol and focused for 

20kV*h with a maximum current of 50 µA and power of 200 mW. After separation, fractions were 

acidified by adding 1% formic acid and desalted using StageTips. For global proteome analysis 1 

µg of peptide sample was separated on an online nanoflow HPLC system (Agilent 1200) and 



	

analyzed on a LTQ Orbitrap and a LTQ Orbitrap Velos instrument, as described for the global 

phosphoproteome analysis of LPS timecourse samples. 

 

Affinity purification followed by mass spectrometry (APMS) for V5-tagged MYD88, IRAK2 

and AP1AR 

Analysis of interaction partners of V5-tagged proteins was performed using a fast and low-

stringency single-step purification procedure (to retain weak binders and potentially transient 

interactions) as previously decribed (Hubner and Mann, 2011), with several modifications to fit 

our experimental system. 2 x 106 bone marrow cells were plated in SILAC complete medium 

supplemented with 15 ng/mL GM-CSF in 10-cm Petri dishes, and infected two days later with 

lentiviruses (MOI ~10-20) containing V5-tagged ORFs (Yang et al., 2011) in 10-cm Petri dishes. 

2-4 h after infection, cells were fed with GM-CSF-containing complete medium. Two days after 

infection, GM-CSF-containing complete medium supplemented with blasticidin (10 µg/mL) was 

added to cells, which were further incubated for 3 days. ORF expression and size was validated 

using standard Western blotting with anti-V5 antibody (Invitrogen). For immunoprecipitation (IP) 

of protein complexes, BMDCs expressing a V5-tagged ORF encoding human MYD88 (81.8% 

amino acid (AA) identity to mouse counterpart), IRAK2 (69.4% AA identity to mouse), or AP1AR 

(89.8% AA identity to mouse) were stimulated with LPS for 30 min, scraped on ice and washed 

in ice-cold PBS. Cell pellets were lysed for 30 min on ice in a lysis buffer containing 150 mM 

NaCl, 50 mM Tris pH 7.5, 5% Glycerol, 1% IGPAL-CA-630 (Sigma, #I8896), and freshly added 

protease and phosphatase inhibitors (Roche). After centrifugation at 4°C for 10 min at 14,000 g, 

protein concentration in supernatants was measured by BCA (Pierce), and equal amounts (~2.5-3 

mg) of lysates from each SILAC sample were used for subsequent IP. Cell lysates were incubated 



	

for ~16 h at 4°C on a roller with anti-V5 tag antibody covalently bound to magnetic beads (MBL). 

APMS experiments for MYD88 and IRAK2 were performed as on-bead digests with single-shot 

mass spectrometry runs, and the AP1AR interaction partners were analyzed by 8 slice in-gel 

digests with 8 LC-MS/MS runs. For MYD88 and IRAK2, beads were washed after anti-V5 

immunoprecipitation twice with wash buffer (150 mM NaCl, 50 mM Tris pH 7.5, 5% Glycerol) 

containing 1% IGEPAL-CA-630, and twice with wash buffer alone. Beads from each SILAC state 

were combined after the first wash. Purified protein complexes were then eluted by direct on-bead 

digestion with trypsin using a buffer containing 2 M urea, 50 mM Tris pH 7.5, 1 mM DTT, and 5 

µg/mL Trypsin. After elution, samples were reduced (4 mM DTT) and alkylated (10 mM 

iodoacetamide) following standard procedures, and further digested with trypsin overnight. 

Digestion were stopped by adding 1% TFA, and peptides were desalted purified on C18 StageTips 

before LC-MS/MS analysis. For AP1AR, anti-V5 enriched samples were washed three times with 

wash buffer and eluted from beads by heating to 100°C in SDS sample buffer (Life Technologies) 

for 5 min. Samples were separated on a 4-12% gradient gel (NuPAGE; Life Technologies) and cut 

into 8 slices that were subjected to in-gel trypsin digest and desalting on C18 StageTips as 

described previously (Lee et al., 2013). Desalted peptide samples for MYD88, IRAK2 and AP1AR 

APMS experiments were separated on an online nanoflow UHPLC system (Proxeon EASY-nLC 

1000) and analyzed on a Q Exactive (Thermo Fisher Scientific) mass spectrometer. We used a 13-

cm reversed phase fused-silica capillary column (New Objective, PicoFrit PF360-75-10-N-5 with 

10 µm tip opening and 75 µm inner diameter) packed in-house with 3 µm ReproSil-Pur C18-AQ 

media (Dr. Maisch GmbH) and separated peptides at a flow rate of 200 nL/min in a 82 min linear 

gradient from 6 to 30% composition of solvent A (3% acetonitrile /0.1% formic acid) and solvent 

B (90% acetonitrile /0.1% formic acid). The Q Exactive was operated at a spray voltage of 2 kV, 



	

a capillary temperature of 250 C and a S-lens RF level of 50. Data was acquired in positive ion 

mode, with MS1 scans at a resolution of 70,000 at m/z=200, a mass range of 300-1800, AGC target 

of 1e6 and 5 ms maximum ion time. Up to 12 of the most intense ions per duty cycle were isolated 

using an isolation window of 2.5 m/z and fragmented by HCD at a NCE of 25 with an underfill 

ratio set at 5%. For data-dependent MS2 scans we used a resolution of 17,500, an AGC target of 

5e4 and a maximum ion time of 120ms. All ions selected for MS2 scans were dynamically 

excluded for 20 s after fragmentation. 

 

Massively parallel in vitro kinase (IVK) assay 

In vitro kinase reactions were performed with recombinant kinases on SILAC-labeled native cell 

lysates, as follows: 10 million cells were lysed in 1 ml of IVK lysis buffer (0.5% CHAPS, 50 mM 

Tris pH 7.5, 150 mM NaCl, 5 mM MgCl2, 5 mM MnCl2, 2 µg/ml Aprotinin (Sigma, A6103), 10 

µg/ml Leupeptin (Roche, 11017101001) and 1 mM PMSF) for 20 minutes on ice to obtain a ~1 

mg/ml protein lysate. Cell debris was removed by centrifugation for 15 minutes at 20,000 g and 

the protein concentration was measured using a Bradford assay. The buffer and low molecular 

weight components of the cell lysate were exchanged by size-exclusion chromatography using 

Zeba Spin Desalting Columns (Thermo Fisher Scientific, 89891, 5 ml column, 7K MWCO) at 4 

C. The storage solution of the column was removed by centrifugation at 1,000 g for 2 minutes. 

The column was washed and equilibrated 4 times with 2.5 ml of ice-cold IVK reaction buffer (50 

mM Tris pH 7.5, 150 mM NaCl, 5 mM MgCl2, 5 mM MnCl2, 0.5 mM DTT, 2 µg/ml Aprotinin 

(Sigma, A6103), 10 µg/ml Leupeptin (Roche, 11017101001) and 1 mM PMSF) by centrifugation 

at 1,000 g for 2 minutes. The column was then placed in a new collection tube, 1 ml of the IVK 

cell lysate was applied and the buffer exchanged by centrifugation at 1,000 g for 2 min. The column 



	

flow-through contained cellular components of >7 kDa molecular weight in IVK reaction buffer. 

Before the in vitro kinase reaction phosphatase inhibitors were added as 1:100 dilutions of PIC2 

(Sigma, P5726) and PIC3 (Sigma, P0044). For each IVK reaction 500 µg of SILAC-labeled total 

cellular proteins in IVK reaction buffer were used. Directly before the reaction, 1 mM of adenosine 

triphosphate (ATP) and 0.5 µg of recombinant kinase were added and the reaction was incubated 

for 1 h at 25 C. IVK reactions were performed for IRAK2 (SignalChem, I10-10BG), IRAK4 (EMD 

Millipore, 14-599), and TBK1 (EMD Millipore, 14-628).  IVK reactions were stopped by adding 

480 mg of urea per 500 µl of reaction buffer, resulting in a final concentration of 8M urea. Different 

SILAC samples for kinase and control (no kinase) reactions were combined, reduced with 5 mM 

DTT for 30 min, alkylated with 10 mM iodoacetamide for 30 min in the dark, diluted 1:4 with 50 

mM Tris/HCl pH 7.5 and proteolytically digested with trypsin at a 1:50 enzyme to substrate ratio 

at 25 C for 16 h. The digests were acidified with 1% formic acid, precipitated urea was removed 

by centrifugation at 1,000 g for 10 min, and the samples were desalted using SepPak columns 

(Waters, 100 mg tC18, WAT036820). For single-shot IVK analysis samples were directly enriched 

for phosphopeptides by IMAC, whereas for deep coverage IVK analysis samples were separated 

into 6 basic reversed-phase (RP) fractions and then enriched by IMAC (see below).  

 

Global phosphoproteome analysis of IVK samples and knock-out samples 

For IVK and KO phosphoproteome analysis desalted peptide samples were separated by basic 

reversed-phase (RP) prior to IMAC enrichment as described previously (Mertins et al., 2013). 

Total peptide amounts were 0.5 mg per SILAC state for IVK and 1.5 to 2 mg per SILAC state for 

wt and KO samples. For basic RP separation, desalted peptides were reconstituted in 900 µL of 20 

mM ammonium formate, pH 10. Basic reversed-phase chromatography was performed on 4.6 mm 



	

× 250 mm Zorbax 300 Å Extend-C18 columns (Agilent, 3.5 µm bead size), using an Agilent 1100 

Series HPLC instrument. Prior to each separation, columns were monitored for efficient separation 

with standard mixtures containing 6 peptides. Solvent A (2% acetonitrile, 5 mM ammonium 

formate, pH 10), and a nonlinear increasing concentration of solvent B (90% acetonitrile, 5 mM 

ammonium formate, pH 10) were used to separate peptides by their hydrophobicity at a high pH. 

The flow rate was 1 ml/min and the percentage of solvent B was increased in a nonlinear gradient 

with 4 different slopes (0% for 9 min; 0% to 6% in 4 min; 6% to 28.5% in 50 min; 28.5% to 34% 

in 5.5 min; 34% to 60% in 13 min; 60% for 8.5 min). Eluted peptides were collected in 96 × 2 mL 

deepwell plates (Whatman, #7701-5200) with 1 min (= 1 ml) fractions. Early eluting peptides were 

collected in fraction “A”, which is a combined sample of all fractions collected before any major 

UV-214 signals were detected. Samples were combined into 6 or 12 subfractions, in a serpentine, 

concatenated pattern, combining every 12th fraction (1,13,25,37,..; 2,14,26,38,...; ...), or every 6th 

fraction (1,7,13,19,25,…; 2,8,14,20,26,…; ...). Subfractions were acidified to a final concentration 

of 1% formic acid and dried in a vacuum concentrator. For IMAC enrichment, iron-chelated IMAC 

beads were prepared from Ni-NTA superflow agarose beads (Qiagen, #1018611) that were 

stripped of nickel with 100 mM EDTA and incubated in an aqueous solution of 10 mM FeCl3 

(Sigma, 451649). Dried phosphopeptide fractions were reconstituted in 50% acetonitrile/0.1% 

trifluoroacetic acid and then diluted 1:1 with 100% acetonitrile/0.1% trifluoroacetic acid to obtain 

a final 80% acetonitrile/0.1% TFA peptide solution at a concentration of 0.5 µg/µl. Peptide 

mixtures were enriched for phosphorylated peptides with 10 µL IMAC beads for each sample for 

30 min. Enriched IMAC beads were loaded on Empore C18 silica-packed Stage tips (3M, 2315). 

Stage tips were equilibrated with 2 × 100 µL washes of methanol, 2 × 50 µL washes of 50% 

acetonitrile/0.1% formic acid, and 2 × 100 µL washes of 1% formic acid. Samples were then loaded 



	

onto stage tips and washed twice with 50 µL of 80% acetonitrile/0.1% trifluoroacetic acid and 100 

µL of 1% formic acid. Phosphorylated peptides were eluted from IMAC beads with 3 × 70 µL 

washes of 500 mM dibasic sodium phosphate, pH 7.0, (Sigma, S9763) and washed twice with 100 

µL of 1% formic acid before being eluted from stage tips with 60 µL 50% acetonitrile/0.1% formic 

acid. All washes were performed on a tabletop centrifuge at a maximum speed of 3,500g. Prior to 

LC-MS/MS analysis IMAC enriched samples were dried in a vacuum concentrator and 

reconstituted in 9 ul of 3% ACN / 0.1% FA. 

IMAC samples were analyzed on an online nanoflow EASY-nLC 1000 UHPLC system (Thermo 

Fisher Scientific) coupled to a benchtop Orbitrap Q Exactive mass spectrometer (Thermo Fisher 

Scientific). Fifty percent of each phosphopeptide sample were injected onto a Picofrit column (10 

µm tip opening / 75 µm diameter, New Objective, PF360-75-10-N-5) packed in-house with 20 cm 

C18 silica material (1.9 µm ReproSil-Pur C18-AQ medium, Dr. Maisch GmbH, r119.aq). The 

UHPLC setup was connected with a custom-fit microadapting tee (360 µm, IDEX Health & 

Science, UH-753), and capillary columns were heated to 50 °C in column heater sleeves (Phoenix-

ST) to reduce backpressure during UHPLC separation. Injected peptides were separated at a flow 

rate of 200 nL/min with a linear 80 min gradient from 100% solvent A (3% acetonitrile, 0.1% 

formic acid) to 30% solvent B (90% acetonitrile, 0.1% formic acid), followed by a linear 6 min 

gradient from 30% solvent B to 90% solvent B. Each sample was run for 150 min, including 

sample loading and column equilibration times. Data-dependent acquisition was obtained using 

Xcalibur 2.2 software in positive ion mode at a spray voltage of 2.00 kV. MS1 Spectra were 

measured with a resolution of 70,000, an AGC target of 3e6 and a mass range from 300 to 1800 

m/z. Up to 12 MS2 spectra per duty cycle were triggered at a resolution of 17,500, an AGC target 



	

of 5e4, an isolation window of 2.5 m/z and a normalized collision energy of 25. Peptides that 

triggered MS2 scans were dynamically excluded from further MS2 scans for 20 s. 

 

Identification and quantification of phosphopeptides and proteins 

Mass spectra were processed within the Spectrum Mill (Agilent Technologies) and the MaxQuant 

(version 1.2.2.5) software packages (Cox and Mann, 2008) using a Uniprot mouse database 

containing 59,348 entries. The mass tolerance for precursor ions and for fragment ions was set to 

20 ppm and 0.7 Da for LTQ-Orbitrap data and 20 ppm and 20 ppm for Q Exactive data, 

respectively. Cysteine carbamidomethylation was searched as a fixed modification, whereas 

variable oxidation on methionine and N-acetylation (Protein) was used for all analyzed datasets 

and phosphorylation on serine, threonine or tyrosine residues were considered as variable 

modifications for all phosphoproteome analyses. The enzyme specificity was set to trypsin and 

cleavage N-terminal of proline was allowed. The maximum of missed cleavages was set to 3. For 

peptide identification the maximum peptide FDR was set to 1%. SILAC ratios for phosphosites 

were obtained from the proteinPeptideComparisonColumnsExport table in Spectrum Mill and the 

Phospho (STY)Sites table in MaxQuant. The median ratios of all non-phosphorylated peptides 

derived from separate unmodified peptide exports in Spectrum Mill and MaxQuant were used to 

normalize the M/L and H/L ratios of all phosphorylated peptides and corresponding phosphosites. 

To allow better phosphosite grouping, Spectrum Mill and MaxQuant phosophosite annotations 

were converted to a unique identifier containing the uniprot accession number, the modified amino 

acid location and the number of phosphorylated residues on a peptide for each phosphosite 

quantification event. Median SILAC ratios of phosphopeptides for each experiment were 

calculated over all versions of the same peptide including different charge states and methionine 



	

oxidation states. The highest scoring versions of each distinct peptide were reported per 

experiment. Data derived from both software packages was combined and Spectrum Mill data was 

reported when the same phosphopeptide was identified and quantified by both programs. Site-

specific phosphosite localization scores were provided for both Spectrum Mill and MaxQuant. 

Lastly, only phosphosites that were observed in at least two independent SILAC experiments are 

reported. 

 

Differential expression (DE) analysis of phosphoproteomic data 

To identify differentially regulated phosphosites in the time series, knockout, and IVK data sets, 

we used sets of 2 replicates of SILAC ratios for each experimental condition and filtered them to 

retain reproducible data. We deemed two ratios as reproducible if found within the 95% agreement 

limits of a Bland-Altman plot (Bland and Altman, 1986; Krönke et al., 2015). Then, we assessed 

statistical significance of differential phosphorylation using a moderated T-test (Smyth, 2004) and 

by correcting for multiple hypothesis testing using false discovery rate (FDR). When 2 replicates 

were not available, we proceeded as follows: (1) for the time series data, we paired 15- and 45-

min samples with the corresponding, most correlated 30-min replicates (Pearson’s correlation of 

0.62 and 0.71 respectively); and (2) for the double knockout Ticam-/-Myd88-/- data, we used an 

absolute log2 fold-change threshold of 0.79 to filter phosphosites that were also asymmetrically 

differentially phosphorylated at 30 and 45 min in the time series data set. Lastly, for single KO 

datasets (i.e., Irak2-/-, Irak4-/-, Myd88-/-), we focused our analyses on differentially regulated 

phosphosites that were also found to be (1) regulated in the time series data, and (2) affected by 

the double knockout Ticam-/-Myd88-/-.  

 



	

Clustering of phosphoproteomic time series and candidate selection 

We performed supervised k-means clustering to partition the differentially expressed 

phosphopeptides from the time series experiment. We focused this analysis on phosphosites that 

were independently measured in 6 out of 8 time points, and showed differential regulation – based 

on the statistical criteria defined above – in at least 2 consecutive time points following LPS 

stimulation. We set the parameter k (number of clusters) as the minimal number of clusters that 

provided a sufficient level of within-cluster similarity. For every cluster, we define the within-

cluster similarity as the average r2 between the members of the cluster and the centroid of the 

cluster. We used the following cutoffs for: the minimum within-cluster similarity (across all 

clusters) to be >0.7, and the average (across all clusters) to be >0.75. Using clustering and DE 

results, we selected 168 candidate phosphoproteins for genetic perturbations (Figure 3), including: 

(i) 121 that were both present in k clusters and differentially regulated in at least 2 consecutive, 

early time points (15 and 30 or 30 and 45 min); and (ii) 47 candidates manually added that were 

regulated in the same consecutive time points, but not measured in enough independent time points 

to pass the filters set prior to k-means clustering. Because several well-known TLR components 

(e.g., TICAM1) were found to be strongly differentially regulated at early time points but were 

absent from the data at later time points, we reasoned that adding back several phosphoproteins 

showing a similar trend would alleviate some of the false negative problem associated with 

phosphoproteomic measurements. 

 

Pathway enrichment analysis 

We measured enriched pathways in our data sets using DAVID (http://david.abcc.ncifcrf.gov), 

focusing on KEGG pathways and GO terms, and heatmaps were generated with Gene-E 



	

(https://software.broadinstitute.org/GENE-E/index.html). Furthermore, to compile a gene set 

capturing most of the well described signaling and transcriptional regulators that have been 

implicated in the TLR pathways, we compiled a list of 141 genes (Table S2) by merging 

information from multiple databases: KEGG, InnateDB, Panther, Reactome, and Uniprot. 

 

Integrative network analysis 

Overview of the computational framework to identify signaling-to-transcription 

relationships. To help uncover signaling-to-transcription relationships in the TLR4 system, we 

developed a computational framework to integrate biochemical datasets from this study and 

publicly available databases. First, we assembled a background interaction network combining 

protein-protein and kinase-substrate interactions (referred to as PPIs and KSIs, respectively) from 

several public repositories and augmented by adding APMS and IVK data from BMDCs. Second, 

we assigned weights to the edges (i.e., PPIs, KSIs) and nodes (i.e., signaling or transcriptional 

regulators) of this network to reflect prior knowledge and the biochemical changes affecting them 

based on our data sets (i.e., differential phosphorylation upon LPS stimulation, kinase KO and 

IVK). Third, we searched for potential paths within the network that linked our 29 phosphoproteins 

(‘seed nodes’) to selected transcriptional regulators (‘target nodes’) and determined their 

significance using network randomization whereby weights were shuffled iteratively to compute 

statistical significance. We describe each step below. 

 Step 1: Assembling the background interaction network. We assembled an input set of 

interactions: 92,610 PPIs and 5,533 KSIs from public databases and AP-MS and IVK data sets 

from this study (Table S7). We collected the union of interactions found in mouse and/or human 

model systems in the following databases: (i) BioGRID (Stark et al., 2006), by keeping interactions 



	

supported by at least one of the following experiments: Affinity Capture-Luminescence, Affinity 

Capture-MS, Affinity Capture-Western, Biochemical Activity, Co-crystal Structure, FRET, Far 

Western, PCA, Proximity Label-MS, Two-hybrid; (ii) PhosphoSitePlus (2014-09-03) (Hornbeck 

et al., 2015); and (iii) the Human Protein Reference Database (HPRD release 9) (Keshava Prasad 

et al., 2009), by focusing on interactions identified from two-hybrid experiments. Next, we filtered 

the resulting network by removing interactions with extracellular proteins (according to Swiss-

Prot annotations) (Bairoch et al., 2004) and ubiquitously interacting protein modifiers (i.e., Ubc, 

Ubd, Sumo1, Sumo2, Sumo3, Nedd8). 

 Step 2: Defining seed-target relationship score. First, we computed ‘relationship scores’ 

for each seed-target pair linked in the interaction network through at least one path (whereby a 

path represents a set of nodes and edges linking a seed to a target). The interaction network can be 

represented as a graph G=(V,E,wn,we), where V is a set of nodes (proteins),  E is a set of edges 

(interactions), and wn and we represent corresponding sets of weights assigned to nodes and edges 

respectively. The weight values were designed to be bigger than or equal to 0 but smaller than 1. 

Given a set of targets T Ì V and a set of candidate seeds A, we compute a ‘relationship score’ 

S(A,T)=R (where R is a set of non-negative, real numbers). To do so, we take each simple path k 

from a Ì A to t Ì T, and assign to it a path score 𝑆" = 𝑤%& ∗ 	 𝑤)**&  where i and j go over all 

nodes and edges in the path. This score reflects the evidence that a interacts with t through the path 

k. Given that every path between a and t is increasing the total evidence that a influences t we 

compute the ‘relationship score’ as 𝑆 𝑎, 𝑡 = 	 𝑆""  where k enumerates all simple paths from a 

to t having at most 2 intermediate nodes. We note that in general, the longer the path, the smaller 

its score 𝑆". 



	

 Step 3: Assigning weights to edges and nodes from the background interaction 

network. First, to assign edge weights, we used two components: one to reflect the experimental 

evidence supporting a given PPI or KSI, and another to capture the local network topology as 

measured by the number of edges arriving to and leaving from a given node. The first component 

we1 depended on the number nexper of different experiment types supporting the interaction 

underlying a given edge (e.g., AP-MS, Y2H, etc.): 

 

𝑤). = 	1 (1 +	𝑒34%56758) 

 

Therefore, the larger the number of experiment types nexper, the higher the interaction weight. The 

second component we2 depended on the local network topology: for an edge originating at node 1 

and ending at node 2, ndout, nuout are the numbers of all directed and undirected edges, respectively, 

originating at node 1, and ndin, nuin the numbers of all edges ending at node 2. Then: 

𝑤)4 =
1

0.5 ∗ 𝑛𝑑?@A 	+ 	𝑛𝑢?@A + 	1 ∗ 0.5 ∗ 𝑛𝑑&% + 	𝑛𝑢&% 	+ 	1	

C

 

 

where the value of c = 0.01, was derived in the optimization step described below. The composite 

edge weight value we was set to 0.9 ∗ 	 𝑤). ∗ 𝑤)4E  for directed edges and 

0.45 ∗ 	 𝑤). ∗ 𝑤)4E  for undirected ones. In addition, when an interaction was supported by AP-

MS and/or IVK data from this study, we set the corresponding values of we to 0.999 and 0.99 for 

directed and undirected edges, respectively. 

 Second, to assign node weights, we first considered the background case, where 

differential phosphorylation information was not used. In this case, all network nodes were given 



	

the same weight of 0.1, which maximized the performance on the following task: take KEGG 

pathway database (Kanehisa et al., 2016) (without ‘Toll-like receptor signaling pathway’), and use 

the transcription regulators as targets. Next, compute the seed-target relationship score for each 

possible seed-target pair. The pairs found to belong to the same KEGG pathway were then 

considered as true, and the pairs crossing the pathways as false (the intermediate nodes in network 

paths joining seed-target pairs were not restricted to KEGG proteins). The ‘relationship score’ 

depended on both the uniform node weight wn0 and the edge weights. Therefore, we concurrently 

searched for the optimal values of wn0 and parameter c (from the edge weight equation above) that 

maximized the area under the ROC curve. The resultant values for wn0 and c were 0.10 and 0.01, 

and they were used to define the ‘background network’ that is the input set of interactions with we 

and wn0. Lastly, we reasoned that network nodes corresponding to differentially phosphorylated 

proteins in our experiments were more likely to transduce the signal from TLR4 to downstream 

gene regulation events. Therefore, for a given node i its weight wni increased with the number of 

experiments that indicated i as differentially phosphorylated: 

Data set wni Number of nodes 

Non-phosphorylated 0.10 8710  

Time series (TS; 15, 30, 45 min) 0.20 1784 

K-means 0.30 223 

TS and double KO (dKO) 0.60 335 

TS, dKO and 1 KO 0.63 302 

TS, dKO and 2 Kos 0.67 217 

TS, dKO and 3 Kos 0.70 31 

 



	

(where TS stands for time series, KO stands for Irak2-/-, Irak4-/-, or Myd88-/-, and dKO for Myd88-

/-/Ticam1-/- experiments). Resulting values wni were normalized such that their average was equal 

to 0.1 (i.e., the same value as the uniform node weights wn0).  

Resulting weights on network nodes defined the ‘weighted network’ that was used for ROC 

analysis (Figure S7B), as follows: (1) we used the set of known TLR components defined above 

(Table S2) and split it into targets (i.e., transcriptional regulators) and seeds (i.e., all other nodes). 

Furthermore, we focused on the 11 out of 14 TLR targets that were found as differentially 

phosphorylated in our time series phosphoproteomic data. (2) Seed-target pairs among the known 

TLR components were set as ‘true’, whereas pairs between TLR ‘targets’ and non-TLR ‘seeds’ 

present in the KEGG database set as ‘false’. (3) Lastly, we ordered seed-target pairs using only the 

sum of seed and target node weights as their relationship scores (i.e., without using network paths 

scores). The corresponding ROC curve (‘phosphorylation only’) served as a reference benchmark 

for methods that used network information (Figure S7B). 

 Step 4: Identify significant seed-target relationships. We used bootstrapping to assign 

statistical significance of the ‘relationship scores’ computed above. To do so, we created 1000 

randomized networks by swapping edges while keeping constant the node degrees (i.e., the number 

of edges linking a given node) to maintain the network topology (Maslov and Sneppen, 2002). We 

randomized directed and undirected edges separately. The phosphorylation dependent node 

weights were randomly permuted among all nodes in the randomized networks. Next, ‘relationship 

scores’ between seeds and targets were computed in each random network. The resulting scores 

were used as a background distribution for empirical p-value computations. Specifically, we used 

marginal distributions, parametrized by the minimal path length. For example, if in the original 

non-randomized interaction network, a given seed was connected to its closest target by a path of 



	

length l, then we used a distribution of relationship scores computed with paths of lengths bigger 

or equal l.  

 

Centrality score analysis. After identifying significant seed-target pairs, we aimed to 

assign and compare the signaling centralities of the intermediate nodes (i.e., excluding seed and 

target nodes) in each module of seeds (Figures 3B and 5A). For each module and each 

intermediate node, we summed scores of paths linking it with the corresponding set of significant 

seed-target pairs. This sum was then divided by the number of seeds in the module to arrive at the 

centrality score of an intermediate node in a module.  

 

Visualization of knockout effects seed-target relationships. We quantified the effects of 

KO (i.e. Myd88-/-, Irak2-/-, Irak4-/-) on the ‘relationship scores’ of the significant (bootstrap p < 5 

x 10-4, Benjamini-Hochberg FDR < 0.05) seed-target pairs that were also affected by Myd88-/-

/Ticam1-/-. For each simple seed-target path, we computed the percentage of the nodes affected by 

each KO. The total KO effect on a given seed-target pair was computed as the weighted average 

percentage from all paths, where weights were proportional to path scores Sk.  The resulting KO 

effects were visualized using t-Distributed Stochastic Neighbor Embedding (t-SNE) (Figure 7G) 

and KOs with the weighted percentage of affected nodes bigger or equal to 50 were colored. 
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