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SUMMARY

Building an integrated view of cellular responses to
environmental cues remains a fundamental chal-
lenge due to the complexity of intracellular networks
in mammalian cells. Here, we introduce an integra-
tive biochemical and genetic framework to dissect
signal transduction events using multiple data types
and, in particular, to unify signaling and transcrip-
tional networks. Using the Toll-like receptor (TLR)
system as a model cellular response, we generate
multifaceted datasets on physical, enzymatic, and
functional interactions and integrate these data to
reveal biochemical paths that connect TLR4
signaling to transcription. We define the roles of
proximal TLR4 kinases, identify and functionally
test two dozen candidate regulators, and demon-
strate a role for Ap1ar (encoding the Gadkin protein)
and its binding partner, Picalm, potentially linking
vesicle transport with pro-inflammatory responses.
Our study thus demonstrates how deciphering dy-
namic cellular responses by integrating datasets on
various regulatory layers defines key components
and higher-order logic underlying signaling-to-tran-
scription pathways.

INTRODUCTION

Signaling networks must coordinate multiple layers of regulation

throughout the cell to respond to environmental changes. For
Cell
This is an open access article under the CC BY-N
example, mammalian immune cells detect microbial molecules

thanks to pathogen-sensing pathways such as Toll-like recep-

tors (TLRs) (Takeuchi and Akira, 2010). Upon activation by their

cognate ligands, TLRs follow general principles of signal trans-

duction by recruiting cytosolic adaptors and downstream en-

zymes such as kinases, which triggers cascades of biochemical

changes leading to cellular outputs such as gene expression

changes (Figures 1A and 1B). A fundamental question in cellular

response systems, such as TLRs, is how to generate and

combine knowledge about signaling and transcription regulatory

networks to build an integrated view of the flow of information in

a cell. Answering this question will help close gaps in our knowl-

edge of intracellular wiring and inform therapeutic targeting of

cellular components that are central to disease.

Despite recent advances in measuring cellular processes

and associated biochemical changes frommany different angles

(e.g., post-translational modifications, gene expression, and

transcription factor binding), building integrated models of

signaling pathways that take into account multiple regulatory

layers remains an elusive task due to several challenges. First,

using prior knowledge from databases alone, it is hard to

compare and connect signaling nodes and processes that

have been studied in disparate systems and with different read-

outs. Furthermore, existing databases are largely incomplete, as

demonstrated by the fact that the vast majority of known phos-

phorylation sites remain orphans with respect to their matching

kinases. Second, acquiring data within a single cellular context

and across regulatory processes ranging from post-translational

modifications (PTMs) to protein complexes to kinase substrates

is difficult due to the various technical requirements of each

assay, making them hard to adapt within a unique and relevant

cellular context. Third, individual large-scale measurements are
Reports 19, 2853–2866, June 27, 2017 ª 2017 The Author(s). 2853
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Figure 1. TLR4 Stimulation with LPS Leads to Global and Dynamic Changes in the Phosphoproteome of DCs

(A and B) Diagram highlighting general principles of cellular signaling-to-transcription events (A) and their transposition to the TLR4 pathway (B).

(C) Temporal changes in the phosphoproteome of LPS-stimulated DCs. Shown are the distributions of log2 fold changes of phosphosites (x axis) between LPS-

treated and untreated cells at indicated times after LPS stimulation, as density (top of each panel) and dot plots (bottom of each panel, withMS2 spectra count in y

axis and showing phosphosites measured in all eight time points).

(D) Comparison between the phosphoproteome and total proteome of LPS-stimulated DCs. Shown are distributions of log2 fold changes of phosphosites (x axis)

and proteins (y axis) between LPS-treated and untreated cells at 120 (top) and 360 (bottom) min post-stimulation.

See also Figure S1 and Table S1.
inherently limited by their variability in sensitivity and specificity

and are often used to capture static snapshots rather than the

dynamic events of cellular responses. It is thus critical to address

these challenges to help to dissect the connections that form the

basis of multi-layered cellular responses (Bensimon et al., 2012;

Santra et al., 2014; Yugi et al., 2016).

Here, we hypothesized that integrating measurements

spanning, in the context of a single cellular response model,

both signaling and transcriptional regulatory layers will help to

reveal key network-wide properties that would otherwise not
2854 Cell Reports 19, 2853–2866, June 27, 2017
be observable. To test this, building upon prior work (Chevrier

et al., 2011), we developed an experimental and computational

framework to measure and integrate the information underlying

signaling-to-transcription events in the TLR system, from the

membrane to gene regulation. We measure dynamic changes

in two types of interactions: physical (i.e., phosphorylation, ki-

nase-substrate relationships, protein-protein and DNA-protein

interactions) and functional (i.e., effects of genetic perturbations

on gene expression or phosphorylation events) (Figure S1A). Us-

ing these datasets, we identify regulators of TLR4 responses in



dendritic cells (DCs), including AP1AR and its binding partner,

PICALM, and introduce a network-based computational

approach that takes advantage of these diverse measurements

to decipher the higher-order logic governing TLR signaling-to-

transcription events.

RESULTS

The Dynamic Phosphoproteome of LPS-Stimulated
Dendritic Cells
We reasoned that large-scale, dynamic measurements of the

changes in protein phosphorylation in lipopolysaccharide

(LPS)-treated DCs would help to reconstruct signaling-to-tran-

scription pathways, because TLR signaling functions through

phosphorylation of its own constituents, from kinases such as

mitogen-activated protein kinases (MAPKs), IRAKs, IKKs, or

TBK1 to transcription factors such as nuclear factor kB

(NF-kB) or IRFs (Figure 1B) (Takeuchi and Akira, 2010). Further-

more, work by others (Sharma et al., 2010; Sjoelund et al., 2014;

Weintz et al., 2010) and us (Chevrier et al., 2011) showed that

phosphoproteomics can identify regulators of the TLR system.

We used stable isotope labeling with amino acids in cell culture

(SILAC)-based phosphoproteomics to compare the levels of

phospho-serine, phospho-threonine, and phospho-tyrosine

sites between DCs left untreated as control or stimulated with

LPS at eight time points (15, 30, 45, 60, 120, 180, 240, and

360 min) (Figures S1B and S1C). We identified and quantified a

total of 20,975 phosphosites derived from 5,789 distinct proteins

in at least two LPS-stimulated samples (false discovery rate

[FDR] < 1%; Figure 1C; Table S1), of which 20.5% were present

in all eight time points (4,310/20,975 phosphosites from 1,952

proteins; Figure S1D) due to undersampling of highly complex

and low-signal-intensity phosphopeptide mixtures in individual

SILAC experiments. The largest changes in the DC phosphopro-

teome were observed at 30 and 45 min after LPS stimulation,

which covered 92.8% of all quantified phosphosites in this study

(19,456/20,795) (Figure S1E). In addition, these changes in phos-

phorylation were not due to changes in protein amounts, as only

0.65 and 1.81% of proteins showed an increase in both phos-

phorylation and protein levels at 2 and 6 hr after LPS stimulation,

respectively (Figure 1D). These results suggested that LPS stim-

ulation modifies a large fraction of the DC phosphoproteome

within an hour.

Temporal Analysis of Phosphorylation Changes
Highlights Known and Candidate Regulators of TLR4
Signaling
Next, to study the dynamics of the LPS-regulated phosphopro-

teome, we focused on the 3,557 phosphosites mapping onto

1,606 proteins that were quantified in at least six out of eight

time points and differentially regulated upon LPS stimulation in

a single or two consecutive time points (2,071/3,557 phospho-

sites for the latter) (Table S2). Overall, 53.4% (3,557/6,659) of

the phosphosites quantified in at least six independent time

points were found to be differentially regulated by LPS, which

corresponds to 61.4% (1,606/2,617) at the phosphoprotein

level. We used k-means clustering to partition these 3,557 phos-

phosites into ten co-abundance clusters with distinct temporal
profiles (Figures 2A and S2A). We found three general patterns

of changes in phosphorylation levels: (1) early upregulation until

45 min (clusters I and II), (2) late upregulation after 120 min (clus-

ter III), and (3) downregulation at various times (clusters IV–X)

(Figure 2B). Each temporal cluster contained known TLR

pathway proteins for a total of 43 out of 141 canonical TLR

components, including 7.8% (11/141) and 10.6% (15/141) for

clusters I and II, respectively (Figures 2B and S2B). Known

TLR proteins identified in this data encompassed both positive

(e.g., MAPK family, IRF3, and NF-kB) and negative (e.g., TANK

and TNFAIP3) regulators, and were differentially phosphory-

lated at multiple sites in some cases (Figure S2C). The 1,606

phosphoproteins present in these ten temporal clusters were

enriched for molecular functions, including kinases, transcrip-

tional regulators, or protein binding (Figure S2D). Some of the

enriched gene sets pointed to nascent areas of TLR biology,

such as the organization and regulation of the TLR systemwithin

the framework of intracellular organelles and structures (e.g.,

activity and regulation of GTPases, cytoskeleton; Figure S2D).

Cluster II, and to a lesser extent other clusters, showed a signif-

icant enrichment for other immune signaling pathways (e.g., B

and T cell receptor signaling or DNA-sensing pathways), high-

lighting the existence of shared proteins between these immune

response systems (Figure S2D). Taken together, these results

reveal the dynamic changes imparted on the DC phosphopro-

teome by LPS, which include known and putative regulators of

TLR4 signaling as well as processes linked to DC biology,

such as changes in cell shape, motility, metabolism, and antigen

processing.

Genetic Perturbations of Phosphorylated Proteins
Identify Putative Regulators of TLR4 Signaling
To test if the phosphoproteins identified above play a role in the

TLR system, we used our temporal and enrichment analyses to

prioritize candidates for genetic perturbations (Figure 3A). We

focused on 751 phosphoproteins from the 1,606 ones used for

temporal clustering, which were upregulated at 30 and 45min af-

ter LPS treatment (clusters I and II; Figure 2B). We reasoned that

using early clusters would help to identify candidate regulators

likely to be downstream of TLR4 by avoiding feedbacks from

transcription or autocrine and paracrine signaling. Third, we

selected 169 out of 751 phosphoproteins to test by retaining

all enzymes (e.g., kinases and GTPases) and enzyme binders

and regulators (e.g., GTPase regulators) (Figures S3A and S3B;

Table S3). All selected phosphoproteins were also found to be

expressed at the mRNA level in DCs (Garber et al., 2012). The

two TLR4 adaptor proteins MYD88 and TRIF (encoded by

Ticam1) were part of these candidate genes. MYD88 was added

manually as a positive control, although it was not found to be

differentially phosphorylated, whereas TRIF matched our selec-

tion criteria above.

We successfully perturbed 131 out of 168 candidate genes

with an average knockdown efficiency of 81% ± 9% SD (Fig-

ure S3C). We stimulated DCs with LPS and measured the effect

of gene silencing on the mRNA levels of 263 TLR response

signature genes, representing the inflammatory and antiviral

programs (Table S3). We determined statistically significant

changes in the expression of signature transcripts upon
Cell Reports 19, 2853–2866, June 27, 2017 2855
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Figure 2. Temporal Analysis of the LPS-Induced Phosphoproteome Reveals Known and Candidate Regulators of TLR4 Signaling

(A) Temporal phosphorylation profiles during LPS stimulation in DCs. Log2 fold changes between LPS-treated and untreated cells for 3,557 phosphosites (rows)

detected in at least six out of eight time points (columns). Phosphosites are partitioned into ten clusters using k-means (color bars, right). White indicates missing

values.

(B) Median log2 fold changes between LPS-treated and untreated cells (y axis) and median absolute deviation (MAD; colored error bar) at each time point (x axis)

for phosphosites in all ten k-means clusters from (A). Known TLR pathway proteins detected in each cluster are indicated on the right. Parentheses indicate the

number of phosphosites per proteins (when >1).

See also Figure S2 and Table S2.
individual knockdowns based on comparisons to 16 control

genes, whose expression remains unchanged upon TLR activa-

tion, and to 38 control short hairpin RNAs (shRNAs) that did not

affect TLR signature genes. 27 out of the 131 genes tested

significantly affected TLR signature gene expression, which

included known TLR signaling components such as TICAM1,

TBK1, MAPK9, RIPK3, and IRAK2 (Figure 3B). Furthermore,

several phosphoproteins were reported to function in TLR

signaling by independent studies: TRAFD1 (Sanada et al.,

2008), STK3 (Geng et al., 2015), ULK1 (Eriksen et al., 2015),

and CORO1A (Tanigawa et al., 2009). Interestingly, known

and candidate components had similar effects on the TLR

gene signature upon knockdown. By measuring the pairwise

similarity among these 27 perturbation profiles (using Pearson’s

correlation), we observed three major modules of signaling reg-

ulators: MYD88 and a set of four proteins (SAMHD1, TBC1D17,

AP1AR, and PDLIM7) affecting inflammatory gene expression

(module I), TICAM1 and five proteins (module II), and 16 proteins

displaying effects that overlap with MYD88 and/or TICAM1

(module III) (Figure 3B).
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Validation of AP1AR and Other Candidate Regulators of
the Myd88-Dependent Inflammatory Pathway
We next sought to validate the putative roles of the four phos-

phoproteins (AP1AR, PDLIM7, SAMHD1, and TBC1D17) whose

perturbation profiles closely resembled that ofMYD88 in control-

ling pro-inflammatory genes (Figure 4A). We measured the

expression levels of inflammatory and antiviral cytokines in

LPS-stimulated DCs infected by two independent, gene-specific

lentiviral shRNAs per candidate phosphoprotein. We observed a

decrease in inflammatory cytokine mRNA expression compared

to eight control hairpins in all cases (Il6, Cxcl1, and, to a lesser

extent, Tnf), whereas antiviral cytokines Ifit1 and Cxcl10 were

mostly unaffected (Figure 4B). Similarly, using mouse Ap1ar�/�

knockout DCs (Maritzen et al., 2012), we observed a strong

decrease in inflammatory cytokines, especially Il1b, Il12b, and

Tnf, whereas antiviral cytokines were not affected (Ifnb1) or

slightly reduced (Cxcl10) (Figure 4C).

To generate mechanistic insights about the putative role of

AP1AR in the TLR4 pathway, we sought to identify binding part-

ners of AP1AR in LPS-stimulated DCs using affinity purification
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Figure 3. Genetic Perturbations of Phos-

phorylated Proteins Identify Putative Regu-

lators of TLR4 Signaling

(A) Overview of phosphoprotein candidate selec-

tion for functional analysis.

(B) Perturbation profiles of the 27 phosphoproteins

that significantly impacted TLR4 outputs. Shown

are the perturbed candidates and control phos-

phoproteins (columns) and the log2 fold changes

for each target gene (rows) between gene-specific

and control shRNAs. The rightmost column cate-

gorizes target genes into antiviral (light green) and

inflammatory (light orange) programs.

See also Figure S3 and Table S3.
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Figure 4. Identification of Candidate Regulators in the MYD88-Dependent Inflammatory Pathway

(A) Perturbation profiles of genes affecting the MYD88 pathway. Shown are four perturbed candidate genes and MYD88 (columns) and the log2 fold changes

between gene-specific and control shRNAs (rows) of ten target genes. The rightmost column categorizes target genes into antiviral (light green) and inflammatory

(light orange) programs.

(B) Expression levels (qPCR) relative to control shRNAs (left bars, dark gray) for two antiviral cytokines (Ifit1 and Cxcl10) and three inflammatory cytokines (Il6,

Cxcl1, and Tnf) following LPS stimulation in DCs using two independent shRNAs. Bottom tick marks separate shRNAs controls and each gene (average indicates

the mean value for all eight control shRNAs). Two to three replicates for each experiment; error bars represent SD.

(legend continued on next page)
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followed by mass spectrometry in primary mouse DCs (Fig-

ure S4A). Protein overexpression was effective in nearly all trans-

duced cells asmeasured byGFP fluorescence anddid not impact

cell responsiveness to LPS, as shown by strong morphological

changes (Figure S4B). We overexpressed V5-tagged AP1AR

and GFP as control bait in SILAC-labeled DCs stimulated with

LPS for 30min (Figure S4C), which led to the identification of pro-

teins that co-precipitatedwithAP1AR, but notGFP (Figure4D;Ta-

ble S4). Several knowncomponents of the assembly protein com-

plex 2 (AP-2) were pulled down with AP1AR (AP2A1, AP2B1, and

AP2S1), as well as the AP-2 binding partner PICALM, which is an

important component of clathrin-mediated endocytosis (Miller

et al., 2015). Next, to test if some of these AP1AR binders affect

TLR4 signaling outputs, we turned back to genetic perturbations

followed by gene signature measurements. Out of ten putative

AP1AR binders (at least two peptides identified and >1.5 log2

SILAC ratio of AP1AR/GFP), six showed a knockdown efficiency

>50%. We found that PICALM led to a decrease in the induction

of LPS-induced inflammatory genes similarly to MYD88, TIRAP,

andAP1AR (Figure 4E). Altogether, these results suggest a poten-

tial mechanism whereby AP1AR and PICALM act together in the

regulation of MYD88-dependent inflammatory signaling.

For another candidate identified based on phosphorylation

changes, SAMHD1, we further tested its potential involvement

in TLR signaling using human skin fibroblasts derived from

Aicardi-Goutières syndrome (AGS) patients that carry deleterious

SAMHD1 mutations (Crow and Manel, 2015). We observed a

decrease in both inflammatory and antiviral gene expression

upon LPS stimulation in two independent patient cell lines

compared to three healthy controls (Figure 4F), which differed

fromknockoutmouseDCdata (FigureS4D). The latterobservation

might be attributable to the difference in cellular context or to

compensatorymechanisms in themouse knockout cells. Interest-

ingly, physical interactions between SAMHD1 and TLR pathway

proteins have been reported previously, such as the TLR4adaptor

protein TIRAP (Li et al., 2011), and also with CCNA2 and CDK2,

which can be activated by TLR4 signaling (Hasan et al., 2007;

Huttlin et al., 2015). Altogether, we gathered evidence supporting

that AP1AR, its binding partner PICALM, and SAMHD1 are likely

to act as regulators of pro-inflammatory TLR4 signaling.

Signaling Regulator Perturbation Profiles Overlap with
Transcription Factor Target Genes, Suggesting
Potential Signaling-to-Transcription Paths
Having shown that phosphorylation dynamics can help identify

potential regulators of TLR signaling-to-transcription events,

we next sought to identify how signaling regulators are con-
(C) Inhibition of transcription of inflammation cytokines in Ap1ar�/� DCs. mRNA

antiviral (light green) cytokines in three replicates per time point. Error bars repre

(D) Interaction proteomics identified putative binders for AP1AR in DCs. Log2 fold

tagged-AP1AR and -GFP (control bait) plotted against the number of peptides id

(E) Perturbation profiles of indicated genes (columns) and the log2 fold changes

rightmost column categorizes target genes into antiviral (light green) and inflamm

(F) Impact of SAMHD1mutations on human fibroblast cell response to LPS. Huma

c.445C > T p.Gln149* for M1 and c.1609-1G > C for M2) were stimulated with L

antiviral (light green) cytokine levels were measured by qPCR (relative to GAPDH

See also Figure S4 and Table S4.
nected to downstream transcriptional regulators. The two tar-

geted screens for candidate (1) phosphoproteins and (2)

AP1AR binders led to 29 perturbation profiles showing signifi-

cant changes in TLR signature genes upon LPS stimulation

(Figures 3B and 4E). Based on the similarity of these perturba-

tion-induced expression profiles (Pearson’s correlation), we par-

titioned these 29 proteins into three modules (Figure 5A; similar

to Figure 3B). Next, we asked what transcription factors (TFs)

are likely to act downstream of these three modules of proteins

by taking advantage of existing data on the binding sites across

the genome of 23 TFs involved in TLR4 signaling (Garber et al.,

2012). We reasoned that measuring the overlaps between genes

whose promoters are bound by a TF, and genes whose mRNA

levels are impacted by knockdown of a phosphoprotein, would

help to infer some of the signaling regulator-TF relationships

likely to be active upon TLR4 activation (Figure S5). For 20 out

of 23 TFs tested, we identified significant overlaps (p value <

0.05; hypergeometric test) between gene sets whose promoters

were bound by one or several TFs and those whosemRNA levels

were impacted by knockdown of 25 out of 29 candidate and

known regulators (Figure 5B; Table S5). Some of these overlaps

recapitulated known signaling regulator-TF relationships in the

TLR pathways, such as MYD88 and NF-kB family members

REL and RELB, or TRIF and IRFs and STATs. Gene targets of

AP1AR, MYD88, and PICALM overlapped significantly with

genes bound by RUNX1 and REL. Taken together, these results

further support a role for the 29 phosphoproteins identified

downstream of TLR4 and suggest the existence of signaling

regulator-TF relationships between 25 phosphoproteins and

20 TFs.

Physical and Functional Proteomics Pinpoint Binding
and Phosphorylation Events Downstream of the Myd88
Adaptor and Associate Kinases
Next, to decipher the biochemical events linking the signaling to

transcriptional regulator relationships identified above, we

measured protein-protein and kinase-substrate interactions by

focusing on MYD88-dependent signaling. First, in DCs stimu-

lated with LPS for 30 min, we rediscovered most known

MYD88 binding partners, including TIRAP, TRAF6, or IRAK fam-

ily kinases, which support the validity of our affinity-purification

coupled with mass spectrometry (AP-MS) assay in primary

DCs (Figures 6A and S6A; Table S6). IRAK2 immunoprecipitation

identified several interaction partners such as MYD88 and

TRAF6 but with lower enrichment ratios compared to MYD88,

which is likely due to the short-lived interaction dynamics of ki-

nases (Figure 6B).
levels (qPCR; relative to Gapdh) for indicated inflammatory (light orange) and

sent SD.

change (x axis) of proteins enriched differentially between DCs expressing V5-

entified per protein (y axis).

between gene-specific and control shRNAs (rows) of 150 target genes. The

atory (light orange) programs.

n fibroblasts from healthy (H) or mutant-carrying patients (M; with homozygous

PS or left untreated as control, and indicated inflammatory (light orange) and

). Error bars represent SD.
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Figure 5. Similarities in Perturbation Profiles and Overlap with TF Target Genes Suggest Three Functional Modules for the 29 Candidate

Phosphoproteins
(A) Functional classification based on similarity of perturbation profiles. Shown is a correlation matrix (Pearson correlation coefficient) of the perturbation profiles

from Figures 3B and 4E combined.

(B) Intersection between genes affected by a phosphoprotein perturbation and genes whose promoters are bound by transcription factors (TFs). Shown are the

overlaps between genes affected by 29 candidate signaling regulators knockdowns (columns, including positive control genes) and genes whose promoters are

bound by 20 TFs (rows). P values, hypergeometric test (purple: significant correlation; white: no correlation).

See also Figure S5 and Table S5.
Second, we used two complementary approaches to identify

the substrates downstream of MYD88-associated kinases,

which remain poorly characterized. Perturbation approaches fol-

lowed by phosphoproteomics have proven useful in determining

functional pathway components downstream of a given network

node (Bodenmiller et al., 2010; Chevrier et al., 2011). We

measured the impact of four knockout (KO) models (Myd88�/�,
Myd88�/�/Ticam1�/�, which abrogates all TLR4 signals),

Irak2�/� and Irak4�/�) on the DC phosphoproteome upon LPS

stimulation for 30 min (Figures 6C and 6D). To stringently eval-

uate KO effects on the LPS-dependent DC phosphoproteome,

we focused on the 1,628 phosphositesmapping onto 990 unique

proteins that were differentially regulated in both (1) LPS-treated

wild-type DCs at 30–45 min (time course data; Table S1) and (2)

Myd88�/�/Ticam1�/� DCs compared to wild-type (Table S6).

Out of these 1628 phosphosites, a third (38.1%, 621/1,628)

were only affected by Myd88�/�/Ticam1�/� double deletion,

whereas the remaining sites were affected by both double and

single mutants: 45.6% (742/1628) for Irak4�/�, 31.1% (506/

1628) for Myd88�/�, and 8.1% (132/1,628) for Irak2�/�. These
numbers agree with the essential role of IRAK4 in TLR signaling

(Picard et al., 2003; Suzuki et al., 2002) and the partially redun-

dant function of IRAK2 with IRAK1 (Kawagoe et al., 2008).

Furthermore, these 990 Myd88/Ticam1-dependent phospho-

proteins captured 32.6% (46/141) of the canonical TLR proteins,

including known phosphosites such as TBK1 S716 and JUN

S63/S73 downregulated in Myd88�/� and Irak4�/� cells, IRF3
2860 Cell Reports 19, 2853–2866, June 27, 2017
S379 impacted upon double KO only, or MAPK9 T183/Y185 by

MYD88- and TRIF-dependent pathways (Figure S6B).

To complement this genetic approach, we developed a large-

scale in vitro kinase (IVK) assay using recombinant kinases

IRAK4, TBK1, and IRAK2 mixed with native protein lysates

from SILAC-labeled DCs followed by phosphoproteomics (Fig-

ure 6E). We identified a total of 967 phosphosites upregulated

by IRAK4, 325 by TBK1, and 201 by IRAK2, which included sites

also upregulated in LPS-treated DCs: 55 out of 967 (5.7%) for

IRAK4 and 62 out of 325 (19.1%) for TBK1 (Figures 6F, 6G,

and S6C; Table S6). These results suggest that some of the

phosphosites identified by IVK are likely to be physiologically

relevant, although others might be due to off targets effects

(e.g., activation of secondary kinases, or proximity with proteins

in solution that would not exist in cells).

An IntegratedModel Reveals Signaling-to-Transcription
Paths across the TLR4 System
Lastly, we sought to combine ourmeasurements on physical and

functional interactions into an integrated model of signaling-to-

transcription relationships in the TLR4 system (Figure S7A). We

used a network-based approach that relies on three main steps

(Figure 7A). First, we assembled a ‘‘background’’ network of

92,610 protein-protein and 5,533 kinase-substrate interactions

from public repositories and 43 protein-protein and 230 ki-

nase-substrate interactions identified from this study using

DCs (Table S7). Second, we assigned weights to the edges
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Figure 6. Physical and Functional Prote-

omics Assays Pinpoint Binding and Phos-

phorylation Events Downstream of the

Myd88 Adaptor and Associated Kinases

(A and B) Affinity purification followed by prote-

omics. Shown are dot plots of SILAC ratios for

proteins identified in DCs overexpressing V5-tag-

gedMYD88 (A) or IRAK2 (B). Cells were stimulated

with LPS for 30 min and protein complexes puri-

fied using anti-V5 antibodies coupled to magnetic

beads. Each axis represents an independent

experiment.

(C) Diagram depicting our experimental approach

for measuring the impact of gene KO on the TLR4-

regulated phosphoproteome of mouse BMDCs.

(D) Phosphoproteomics in KO cells. Left: heatmap

for SILAC ratios of phosphosites (rows) in four KO

models (columns) at 30 min after LPS stimulation

compared to control wild-type cells, as indicated

(gray, missing values). Middle: phosphosites with

significant up- or downregulation in KO versus WT

(light brown). Right: phosphosites belonging to

known TLR proteins (black).

(E) Diagram depicting our experimental approach

for large-scale in vitro kinase assays using native

protein lysates from BMDCs and phosphopro-

teomics.

(F and G) In vitro kinase (IVK) assay followed by

phosphoproteomics. Shown are scatterplots of

SILAC ratios of phosphosites identified using the

purified kinases IRAK4 (F) and TBK1 (G). Light

gray, all data points; dark gray, phosphosites with

FDR < 0.1 in IVK; red, phosphosites with FDR < 0.1

in both IVK and cells stimulated with LPS, which

highlights the overlap between IVK and phos-

phoproteome measurements on stimulated cells

(denoted as IVK + cells). Gene names at the bot-

tom right of each plot indicate known TLR com-

ponents with the number of phosphosites in

parenthesis.

See also Figure S6 and Table S6.
(i.e., protein-protein and kinase-substrate interactions) and no-

des (i.e., signaling or transcriptional regulators) of the back-

ground network to create a ‘‘weighted’’ interaction network

based on the phosphorylation changes driven by LPS stimula-

tion and specific kinases (based on KO and IVK data). Third,

we searched the weighted network for biochemical paths linking

the 29 phosphoproteins/signaling regulators or ‘‘seed nodes’’ to

transcriptional regulators or ‘‘target nodes.’’ To test the validity

of this integrative algorithm, we quantified its performance in

retrieving known seed-target relationships between canonical

TLR pathway components using receiver-operator characteristic

(ROC) curves. In the high precision regime, using a weighted

network outperformed methods that used the background inter-

action network or phosphorylation data alone. For example, at a

false positive rate (FPR) of 0.001, the weighted network method
Cell Re
yielded a true positive rate (TPR) that was

3.9and10.4 timeshigher thanbackground

network and ‘‘phosphorylation only’’ ap-

proaches, respectively (Figure S7B). Thus,
our network-based approach correctly identified known signaling-

to-transcription relationships between canonical TLR pathway

components thanks to the information collected using DCs in this

study.

Next, we searched for biochemical paths connecting the 29

signaling regulators highlighted above as ‘‘seeds’’ (Figure 5A)

and the 782 TFs detected by mass spectrometry in bone

marrow-derived dendritic cells (BMDCs) as ‘‘targets’’ (Table S1).

We identified 420 significant relationships between 27 out of 29

seed(except for seed DMXL2 and RAB3IL1) and 95 out of 782

target nodes (p < 0.0005, FDR < 0.05), whereas only 12 relation-

ships linking 7 seeds to 11 targets can be foundwithout integrating

our DC-specific datasets with publicly available interactionswithin

our algorithmic framework (Figure 7B; Table S7). Each signaling

node reached between 51 (TBK1) and 3 (ARHGEF11) TFs, for an
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Figure 7. An Integrative Analysis Reveals Known and Candidate Signaling-to-Transcription Paths and Helps Parse the Effects of Myd88 and

Associated Kinases in the TLR4 System

(A) A computational framework for integrative analysis of the functional and physical proteomics datasets collected in this study (from left to right). A background

interaction network is assembled using database and local data, nodes and edges are scored based on experimental evidence from this work, and statistically

significant relationships determined by bootstrap analysis.

(B) Cumulative number of significant relationships (bootstrap p value < 0.0005, FDR < 0.05) identified between seed nodes (29) and any of the transcriptional

regulators detected in BMDCs (782 possible target nodes in total) using background network (dark gray) and weighted network (light gray) methods.

(C) Total number of relationships linking seeds (29) and known TLR transcription regulators (14) for background network (dark gray) and weighted network (light

gray) methods.

(legend continued on next page)
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average of 14.5± 11.6 SD. TFs via 1.5± 0.7 SD intermediate nodes

(FigureS7C). Importantly, these signaling-to-transcription relation-

ships captured 11 out of the 14 canonical TLR TFs and 8 out of 20

of the TFs whose binding sites were compared to knockdown ef-

fects (Figures 5B, 7C, and 7D). Furthermore, 49% (47/95) of the

TFs were both upregulated at the phosphorylation level upon

LPS stimulation and downregulated inMyd88�/�/Ticam1�/� cells.

Overall, each of the three modules identified based on co-pheno-

types upon knockdown (Figure 5) appeared to be biochemically

linked to similar downstream TFs (Figure 7D).

We asked which intermediate nodes were most central be-

tween seed and target nodes (i.e., most connected to target

TF nodes). For the 420 significant relationships linking the 27

seed and 95 target nodes, we ranked the top 25 intermediates

present across each of our three modules (Figure 7D), which

lead to a total of 60 non-overlapping intermediate nodes that

included 16 canonical TLR pathway components (Figures 7E

and 7F). These 60 intermediate nodes displayed various levels

of specificity across the three modules identified above, with

for example IRAK4 being central to module II (i.e., connected

to a relatively high number of nodes), whereas MAPK8 (JNK)

and MAPK14 (P38) were more connected across modules I

and III, respectively. Other nodes appeared shared between

modules such as AKT1 for I and III or TAB2 for I, II, and III.

Thus, intermediate nodes display both specific and shared roles

across the regulatory modules of the TLR4 pathway, which likely

reflects crosstalk within pathways leading to the regulation of

overlapping sets of target genes.

To gain insights into how signal is distributed downstream of

TLR4, we asked how the 420 seed-target relationships identified

here were affected by the four KO strains used in this study (Fig-

ure 6D). We quantified how many of the nodes (seed, intermedi-

ate, and target) present in each of the 420 seed-target pairs were

impacted at their phosphorylation level by KO. 391 out of the 420

pairs were significantly affected by Myd88�/�/Ticam1�/�, and
261 out of these 391 pairs were also impacted by Myd88�/�,
Irak2�/�, and/or Irak4�/�, leading to four clusters of effects: (1)

double KO only or together with (2) IRAK4 alone, (3) IRAK4 and

MYD88, or (4) IRAK4, MYD88, and IRAK2 (although to a lesser

extent) (Figure 7G). Interestingly, a large fraction of TLR4 signals

were impacted by MYD88 deletion, as expected, but IRAK4 was

responsible for broader effects despite the presence of IRAK4

and MYD88 in the same complex. Seed-target pairs that were

impacted by double-KO cells, but not MYD88 KO cells, are likely

to be important for TRIF-dependent signaling (i.e., module II).

Overall, this quantitative measurement of KO effects on

signaling-to-transcription paths provides additional information

on how signal is transmitted and partitioned from MYD88 and
(D) Significant relationships (420 pairs) found between 29 seeds (columns) and 95

(columns) in light green (I), purple (II), and orange (III). Transcriptional regulators wi

versus WT and in time series are indicated on the right (light brown). P values, b

(E) An interaction network connects 27 seeds (blue) to 95 transcriptional regulators

centrality measure (see Experimental Procedures).

(F) Centrality score of the top 60 intermediate nodes across the three modules fr

(G) t-distributed stochastic neighbor embedding (t-SNE) analysis of the effects of g

the paths mediating the seed-transcriptional regulator relationships identified in

Ticam1�/� (gray dots). The effects of Irak4, Myd88, and Irak2 on these paths are

See also Figure S7 and Table S7.
some of its kinase partners to downstream signaling and tran-

scriptional regulatory layers.

DISCUSSION

We established an integrative framework to dissect signal prop-

agation in the TLR system using data spanning both signaling

and transcriptional regulatory events. Previous studies have

connected paths within networks largely using protein-protein

interaction or phosphorylation data alone or in conjunction with

one to two different types of experimental data (Gitter et al.,

2013; Huang and Fraenkel, 2009; Huang et al., 2013; Terfve

et al., 2015). This study provides a proof-of-principle example

of the power of integrative analyses that take into account regu-

latory layers not typically studied in conjunction, from phosphor-

ylation dynamics to relationships between kinases substrates to

proteins forming complexes or binding to DNA to gene regula-

tion. In future work, it will be crucial to take into account addi-

tional regulatory layers such as the spatial distribution of proteins

(Brubaker et al., 2015), other PTMs and their enzymes (e.g., ubiq-

uitination, acetylation) (Mertins et al., 2013), and post-transcrip-

tional modifications (RNA) or translational control events.

The observations that AP1AR, its binding partner PICALM,

and SAMHD1 might play a role in pro-inflammatory signaling

will require future mechanistic studies. Interestingly, both

AP1AR and its binding partner, PICALM, interact with clathrin

adaptor proteins (Maritzen and Haucke, 2010; Miller et al.,

2015), suggesting a link between the TLR4-MYD88 pathway

and intracellular vesicle transport regulation that is reminiscent

of the TLR4-TRIF axis (Kagan et al., 2008). In addition, previous

work linked the Ap1ar locus to TNF production by DCs triggering

colitis (Ermann et al., 2011), which further support our results on

the role of AP1AR in pro-inflammatory signaling. The other

candidate regulator reported here, SAMHD1, is best character-

ized in viral restriction (Ballana and Esté, 2015), but it also plays

a role in processes such as TNF-mediated pro-inflammatory

signaling in fibroblasts (Liao et al., 2008), cell cycle (Pauls

et al., 2014), or DNA damage (Clifford et al., 2014) and in disease

such as AGS (Crow and Manel, 2015) and cancer (Schuh et al.,

2012). LPS regulated both known and previously unrecognized

phosphosites on SAMHD1 such as T634, mouse ortholog site

for the known human T592 regulatory site targeted by CDK2

(Pauls et al., 2014), or T52 found in the poorly characterized

SAM domain and that was regulated in a MYD88-dependent

manner. Taken together, these observations provide valuable in-

formation for future mechanistic investigations.

The multi-layer datasets reported here will be useful for

further analyses, mining and hypothesis-generating purposes
transcriptional regulators (rows). Modules from Figures 3B and 5A are shown

th phosphosites with significant up- or downregulation inMyd88�/�/Ticam1�/�

ootstrap (purple).

(red) through the top 60 intermediate (yellow) nodes that were ranked based on

om (D).

ene KO (data from Figure 6D) on the phosphorylation levels of nodes present in

(D). Shown are all of the 391 out of 420 relationships affected by Myd88�/�/
overlaid in orange, blue, and yellow, respectively.
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on additional candidate regulators, from the protein to the phos-

phosite level. First, many of the 131 phosphoproteins selected

for genetic screening had little to no effect on gene expression.

While poor knockdown efficiency and functional redundancy

can likely explain some of these cases, measuring the effects

of perturbing these proteins on other aspects of DC biology

such as motility or antigen presentation might help uncover

important mechanisms. Second, we focused our targeted

screen for regulators of gene expression on enzymes and their

regulators, but screening additional molecular functions is likely

to uncover additional regulators. For example, 24 phosphopro-

teins downregulated between 180 and 240 min after LPS stimu-

lation are involved in RNA binding and include the known

pathogen-sensing regulators Ddx21, Ddx3x, or Adar and a host

of potential candidates for this nascent area in TLR biology

(Anderson, 2010).

Lastly, it will be critical to build upon this work to systematically

identify functional phosphosites and their matching kinases. Our

study correctly identified many phosphosites of canonical TLR

components or other pathogen-sensing pathways such as

NLRC4 S533, which is a key site for host immunity (Qu et al.,

2012). Our large-scale IVK assay uncovered many known and

candidate substrates that will be important to validate using

in vivo chemical genetics approaches (Allen et al., 2007) and

shorter timescales to increase confidence about substrate spec-

ificity as shown in bacteria and yeast (Kanshin et al., 2015;

Skerker et al., 2008). Thus, future research on screening func-

tional phosphosites using site-directed mutagenesis will help

to reveal phosphorylated residues with functional significance

and potential therapeutic value.

EXPERIMENTAL PROCEDURES

Cells

Bone-marrow-derived DCs were generated from 6- to 8-week-old female

C57BL/6J (The Jackson Laboratory), Ap1ar�/� (Maritzen et al., 2012),

Samhd1�/� (Rehwinkel et al., 2013),Myd88�/�,Myd88�/�/Ticam�/�, Irak2�/�,
Irak4�/�mice. All stimulations were performed using ultra-pure E. coliK12 LPS

(Invivogen) at 100 ng/mL. For shRNA knockdowns, high-titer lentiviruses ex-

pressing shRNAs were used to infect bone marrow cells as previously

described (Chevrier et al., 2011).

mRNA Measurements

Total or poly(A)+ RNA was extracted and reverse transcribed prior to qPCR

analysis with SYBR green (Roche) in triplicate with Gapdh for normalization.

For mRNA counting, 5 3 104 bone-marrow-derived DCs were lysed in RLT

buffer (QIAGEN) with 1% b-ME (beta-mercaptoethanol). 10% of the lysate

was used for mRNA counting using the nCounter Digital Analyzer (NanoString)

and a customCodeSet constructed to detect a total of 267 genes (including 16

control genes whose expression remain unaffected by TLR stimulation). To

determine significantly affected signature genes, a fold-change ratio is

computed for each pairwise comparison of a knockdown sample versus a

set of control samples (i.e., non-targeting shRNA; at least ten per experimental

batch).

Affinity Purification followed by Mass Spectrometry

Analysis of interaction partners of V5-tagged proteins (MYD88, IRAK2 and

AP1AR) was performed using a single-step purification procedure as pre-

viously described (Hubner and Mann, 2011), with several modifications.

Peptide samples were analyzed on a Q Exactive mass spectrometer

(Thermo Fisher Scientific), and mass spectra were processed as described

above.
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For temporal phosphoproteome analysis, BMDCs grown in SILACmedia were

stimulated with LPS and lysed and processed for enrichment of phosphopep-

tides using strong cation exchange chromatography (SCX)/IMAC (immobilized

metal affinity chromatography) as described previously (Chevrier et al., 2011).

For IVK and KO phosphoproteome analysis, peptide samples were separated

by basic reversed-phase (RP) prior to IMAC enrichment as described previ-

ously (Mertins et al., 2013). IVK reactions were performed with recombinant ki-

nases for IRAK2, IRAK4, or TBK1 on SILAC-labeled native cell lysates from

DCs. For proteome analysis, total peptides were separated into 12 fractions

using an Agilent 3100 Offgel fractionator. Peptide samples were analyzed on

LTQ Orbitrap, LTQ Orbitrap Velos, or Q Exactive mass spectrometer (Thermo

Fisher Scientific). To identify and quantify peptides, mass spectra were pro-

cessed with the Spectrum Mill (Agilent Technologies) and the MaxQuant

(version 1.2.2.5) software packages (Cox andMann, 2008). Details on differen-

tial expression, clustering, pathway enrichment, and network analyses are in

the Supplemental Experimental Procedures.
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Figure S1. Overview of the experimental design and outcome of temporal phosphoproteomic profiling of 
TLR4-stimulated DCs, Related to Figure 1.
(A) Diagram highlighting the general steps of our integrative approach that includes the identification of temporal changes in 
phosphorylation (1), functional testing using genetic perturbations (2), connecting kinases and substrates (3), and inferring 
biochemical paths linking signaling to transcription events (4). All these steps rely on data capturing physical and functional 
interactions in mouse primary DCs stimulated with LPS. 
(B) Schematic depiction of the experimental workflow for phosphoproteomics. From left: Protein lysates from unstimulated 
(t = 0) and LPS-treated cells (t = 1 and 2) grown in   
“light”, “medium” or “heavy” SILAC media were mixed (1:1:1) and digested into peptides with trypsin before phospho-serine, 
-threonine, and -tyrosine (pS/T/Y) peptide enrichment using  immobilized metal affinity chromatography (IMAC), and 
LC-MS/MS analysis (see Experimental Procedures).
(C) Schematic summary of the temporal phosphoproteomic profiling. Six experiments were conducted (from top to bottom) 
to cover control and stimulated cells (top, 8 time points post-LPS stimulation) with SILAC label switching as indicated with 
the colored-dishes matching the nomenclature from B. Total counts of phosphosites and phosphoproteins detected across 
all time points are indicated on the right.
(D-E) Distributions of phosphosites and phosphoproteins detected across multiple (cumulative counts; D) and individual 
time points (E).
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Figure S2. Dynamic phosphoproteomic profiles reveal phosphosites regulated on known TLR components and 
differential pathway enrichment over time, Related to Figure 2.
(A-B) Distributions of phosphosites and phosphoproteins (A; Y axis), and known TLR pathway proteins (B; Y axis) detected 
across the 10 k-means clusters from Figure 1A (X axis). Numbers on top of each bar indicate the percent of known TLR 
proteins within each cluster (B).
(C) Phosphorylation profiles of known TLR pathway proteins. Log2 fold changes between LPS-treated and untreated cells 
for 92 phosphosites on known TLR proteins (rows) detected in at least 6 out of 8 time points (columns). Phosphosites are 
partitioned into 10 clusters using k-means (legend, top; color bars, right). Right, gene names and phosphosites localization 
(S, serine; T, threonine; Y, tyrosine). White indicates missing values.
(D) Gene enrichment analysis of LPS-dependent phosphoproteins. Enrichment p-values (modified Fisher's exact test, 
showing values < 10-5; grey boxes indicate values above this cutoff) for Gene Ontology (GO) and KEGG pathway terms 
(rows; term name indicated on the right) across all 10 k-means clusters (columns).
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Figure S3. Genetic perturbation profiles of the 131 phosphoproteins selected from phosphoproteomic profiles, 
Related to Figure 3.
(A-B) Candidate filtering and associated gene enrichment analysis of LPS-dependent phosphoproteins selected for func-
tional analysis. Enrichment p-values (modified Fisher's exact test, showing values < 10-5; grey boxes indicate values above 
this cutoff) for Gene Ontology (GO) and KEGG pathway terms (rows; term name indicated on the right) across all 3 filters 
for candidate gene selection (columns).
(C) Perturbation profiles of 131 phosphoproteins. Shown are the perturbed candidates and control genes (columns) and the 
log2 fold changes between gene-specific and control shRNAs (rows) of 263 target genes (including control targets used as 
“housekeeping”, unchanged genes for normalization). The right-most column categorizes target genes into controls (dark 
green), and antiviral (light green) and inflammatory (light orange) programs. Top, bar plot indicating knockdown efficiency 
for each perturbed gene (top left, percentage of remaining mRNA transcripts for indicated genes upon knockdown).



Figure S4

A

C

B

Unstimulated LPS 6h

GFP-expressing BMDCs

Ifnb1 

Cxcl1 

LC-MS/MS

GFP-V5

AP1AR-V5

R
el

at
iv

e 
in

te
ns

ity

m/z

Immuno-
precipitation

Pool &
on-bead digest
into peptides

“light”

“heavy”

BMDC
infection

Affinity purification followed by mass spectrometry (APMS)

50

37

25

kDa

GFP
AP1AR

Input IP

G
FP

AP
1A

R

G
FP

AP
1A

R

0

0.03

0.06

0

1.5

3

0

0.8

1.6

0

0.225

0.45

0

0.001

0.002

R
el

at
iv

e 
m

R
N

A 
le

ve
l 

R
el

at
iv

e 
m

R
N

A 
le

ve
l 

0 2 4 0 2 4
hours after LPS

Cxcl10 

0 2 4 0 2 4
hours after LPS

0 2 4 0 2 4

Tnf

0 2 4 0 2 4

Il6 

0 2 4 0 2 4
hours after LPS

Mouse BMDCsD Samhd1+/+

Samhd1-/-
Inflammatory
Antiviral

Heavy chain

Light chain

Figure S4. A method for affinity-purification followed by MS (AP-MS) in BMDCs, and analysis of Samhd1-/- mouse 
BMDCs, Related to Figure 4.
(A) Diagram depicting our experimental approach for AP-MS in mouse BMDCs.
(B) BMDCs overexpressing V5-tagged proteins through lentiviral infection respond normally to LPS. Micrographs of 
GFP-expressing DCs before and after LPS stimulation.
(C) Immunoblot analysis of input and immunoprecipitated (IP) samples from DCs expressing V5-GFP or V5-AP1AR.
(D) Expression levels (relative to Gapdh; qPCR) of indicated inflammatory (light orange) and antiviral (light green) cytokines 
in Samhd1+/+ and Samhd1-/- BMDCs stimulated with LPS for 2 and 4 h or left untreated as control (duplicate wells are 
shown). 
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Figure S6. Physical and functional proteomics assays pinpoint how phosphorylation of known TLR pathway 
regulators is modulated by KO, Related to Figure 6.
(A) Immunoblot analysis of input and immunoprecipitated (IP) samples from DCs expressing V5-GFP or V5-MYD88.
(B) Phosphoproteomics in KO cells. Left, shown is a heatmap for SILAC ratios of phosphosites (rows) in 4 KO models 
(columns) at 30 min after LPS stimulation compared to control wild-type cells, as indicated (grey, missing values). Middle, 
shown in light brown are phosphosites with significant up- or down-regulation in KO vs WT. Right, shown are the 46 phos-
phosites mapping to known TLR signaling regulators (Letters on the right indicated the phosphorylated residue: S, serine; T, 
threonine; Y, tyrosine. Numbers indicated the amino-acid position in the protein).
(C) In vitro kinase (IVK) assay followed by phosphoproteomics. Shown are dot plots of SILAC ratios of phosphosites 
identified using purified IRAK2. Light grey, all data points; dark grey, phosphosites with FDR < 0.1 in IVK; red, phosphosites 
with FDR < 0.1 in both IVK and in cells stimulated with LPS, which highlights the overlap between IVK and phosphopro-
teome measurements on stimulated cells (denoted as IVK + cells). Gene names at the bottom right of the plot indicates 
known TLR components with the number of phosphosites in parenthesis.
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Figure S7. An integrative analysis reveals signaling-to-transcription paths in the TLR4 system, Related to Figure 7.
(A) List summarizing the physical and functional interaction data sets collected in the cellular context of BMDCs stimulated 
with LPS.
(B) Receiver operator characteristic (ROC) analysis demonstrates the ability of our integrative algorithm to retrieve known 
seed-target node relationships between canonical TLR pathway components. 
(C) Total number of transcription regulators (TRs) for which significant relationships were found with the 29 ‘seed’ nodes 
using ‘weighted network’ (dark grey) and ‘background network’ (light grey) methods.
(D) An interaction network connects 27 seeds (blue) to 95 transcriptional regulators (red) through the top 60 intermediate 
(yellow) nodes. Shown is a close-up view of the network from Figure 7E depicting protein names on nodes and edge types 
(database, AP-MS, and/or IVK).
(E) Sub-network extracted from panel D showing interactions from local data sets as dark edges (AP-MS, undirected; IVK, 
directed).



	

SUPPLEMENTAL EXPERIMENTAL PROCEDURES 
 
 

Cells 

Bone marrow-derived dendritic cells (BMDCs) were generated from 6-8 week old female 

C57BL/6J (Jackson Laboratories), Ap1ar-/- (Maritzen et al., 2012), Samhd1-/- (Rehwinkel et al., 

2013), Myd88-/-, Myd88-/-/Ticam-/-, Irak2-/-, Irak4-/- mice. Bone marrow cells were collected from 

femora and tibiae and plated at 106 cells/mL on non-tissue culture treated petri dishes or 96-well 

plates in RPMI-1640 medium (Gibco), supplemented with 10% FBS, L-glutamine, 

penicillin/streptomycin, MEM non-essential amino acids, HEPES, sodium pyruvate, b-

mercaptoethanol, and murine GM-CSF (15 ng/mL; Peprotech). GM-CSF-derived BMDCs were 

used directly for all RNAi experiments. For all other experiments, floating cells from GM-CSF 

cultures were sorted at day 5 by MACS using the CD11c (N418) MicroBeads kit (Miltenyi Biotec), 

or used directly at day 8. Sorted CD11c+ or floating cells were used as GM-CSF-derived BMDCs, 

and plated at 106 cells/mL and stimulated at 16 h post sorting or collection. Human fibroblasts 

used in this study were AGS128 SI (c.445C>T p.Gln149* hom, referred to as M1), AGS495 SA 

(c.1609-1G>C hom, referred to as M2), and F10Y, F8Y, and PBX2 are controls (referred to as H1-

3), and were maintained in DMEM supplemented with 10% FBS. All cell stimulations were 

performed using ultra-pure E. coli K12 LPS (lipopolysaccharide) from Invivogen at 100 ng/mL 

for indicated times. 

 

mRNA isolation 

Total RNA was extracted with QIAzol reagent following the miRNeasy kit’s procedure (Qiagen), 

and reverse transcribed with the High Capacity cDNA Reverse Transcription kit (Applied 



	

Biosystems). For experiments with more than 12 samples, we harvested PolyA+ RNA in 96- or 

384-well plates with the Turbocapture mRNA kit (Qiagen) and reverse transcribed with the 

Sensiscript RT kit (Qiagen). 

 

qPCR measurements 

Real time quantitative PCR reactions were performed on the LightCycler 480 system (Roche) with 

FastStart Universal SYBR Green Master Mix (Roche). Every reaction was run in triplicate and 

GAPDH levels were used as an endogenous control for normalization. 

 

shRNA knockdowns 

High titer lentiviruses encoding shRNAs targeting genes of interest were obtained from The RNAi 

Consortium (TRC; Broad Institute, Cambridge, MA, USA). Bone marrow cells were infected with 

lentiviruses as described (Chevrier et al., 2011). For each gene of interest, we tested five shRNAs 

for knockdown efficiency using qPCR of the target gene and selected shRNAs with best 

knockdown efficacy (typically >75%). 

 

mRNA counting and data analysis 

5×104 bone marrow-derived DCs were lysed in RLT buffer (Qiagen) with 1% b-ME. 10% of the 

lysate was used for mRNA counting using the nCounter Digital Analyzer (NanoString) and a 

custom CodeSet constructed to detect a total of 267 genes (including 16 control genes whose 

expression remain unaffected by TLR stimulation). We normalize data by dividing the nCounter 

mRNA count values for each gene by the sum of counts obtained for the 16 control genes present 

in our custom CodeSet. To determine significantly affected signature genes, a fold-change ratio is 



	

computed for each pairwise comparison of a knockdown sample versus a set of control samples 

(i.e., non-targeting shRNA; at least 10 per experimental batch). As a threshold, we require a 

substantial fold-change (above a threshold value t) in the same direction (up- or down-regulation) 

in more than half of the pairwise comparisons sample vs. control shRNA. The threshold value t is 

determined as max (q, d), d being the mean + 1.645 times the standard deviation in the fold change 

shown by the control genes (corresponding top = 0.05, under the assumption of normality). The 

threshold q is similar for all comparisons and is based on the noise level estimated from the control 

shRNA samples. Specifically, we compute gene expression fold changes in all possible pairs of 

control shRNA samples (which are supposed to be consistent). We set the threshold q such that 

95% of the comparisons exhibit lower fold change than q. The resulting value of q is 1.961. 

Notably, we ignore all pairwise comparisons in which both control and knockdown samples had 

low counts before normalization (<50). All heatmaps and distance matrix analyses were generated 

using the software Gene-E (https://software.broadinstitute.org/GENE-E/index.html). 

 

Metabolic labeling of cells 

For stable isotope labeling of amino acids in cell culture (SILAC) experiments, GM-CSF-derived 

BMDCs were grown for seven days in media containing either normal L-arginine (Arg-0) and L-

lysine (Lys-0) (Sigma), L-arginine 13C6 (Arg-6) and L-lysine D4 (Lys-4), or L-arginine 13C6-

15N4 (Arg-10) and L-lysine 13C6-15N2 (Lys-8) (Sigma Isotec). Concentrations for L-arginine 

and L-lysine were 42 mg/L and 73 mg/L, respectively. To prevent metabolic conversion of L-

arginine to L-proline we added 200 mg/L L-proline to the cell culture medium. The cell culture 

media, Roswell Park Memorial Institute-1640 (RPMI) deficient in L-arginine and L-lysine, was a 

custom media preparation from Caisson Laboratories (North Logan, UT) and dialyzed serum was 



	

obtained from SAFC-Sigma. We followed all standard SILAC media preparation and labeling 

steps as previously described (Chevrier et al., 2011). 

 

Global serine, threonine, and tyrosine phosphorylation analysis for LPS time course 

experiments 

BMDCs grown in SILAC media were stimulated with LPS, and lysed and processed for 

enrichment of phosphopeptides as described previously (Chevrier et al., 2011; Mertins et al., 2013). 

Briefly, after LPS stimulation, cells grown in non-TC treated Petri dishes were placed on ice and 

scraped. Cell suspensions were washed in ice-cold PBS and sedimented by centrifugation at 4°C 

and 1,000 g for 5 minutes. The supernatant was removed and cell pellets were immediately frozen 

in liquid nitrogen. Cell pellets were lysed for 20 minutes in ice-cold lysis buffer containing 8 M 

Urea, 75 mM NaCl, 50 mM Tris pH 8.0, 1 mM EDTA, 2 µg/ml Aprotinin (Sigma, A6103), 10 

µg/ml Leupeptin (Roche, #11017101001), 1 mM PMSF, 10 mM NaF, 2 mM Na3VO4, 50 ng/ml 

Calyculin A (Calbiochem, #208851), Phosphatase inhibitor cocktail 1 (1/100, Sigma, P2850) and 

Phosphatase inhibitor cocktail 2 (1/100, Sigma, P5726). Lysates were pre-cleared by 

centrifugation at 16,500 g for 10 min and protein concentrations were determined by BCA assay 

(Pierce). We obtained on average 1 mg of total protein per label out of 10 million cells. Cell lysates 

were mixed in equal protein amounts per label and proteins were reduced with 5 mM dithiothreitol 

and alkylated with 10 mM iodoacetamide. Samples were diluted 1:4 with HPLC water (Baker) and 

sequencing-grade modified trypsin (Promega, V5113) was added in an enzyme to substrate ratio 

of 1:150. After 16 h digest, samples were acidified with 0.5% trifluoroacetic acid (final 

concentration). Tryptic peptides were desalted on reverse phase tC18 SepPak columns (Waters, 

500 mg, WAT036790) and dried in a vacuum concentrator centrifuge. Before phosphopeptide 



	

enrichment peptides were separated using strong cation exchange (SCX) chromatography. 

Peptides were reconstituted in 500 µl strong cation exchange buffer A (7 mM KH2PO4, pH 2.65, 

30% MeCN) and separated on a Polysulfoethyl A column from PolyLC (250 x 9.4 mm, 5 µm 

particle size, 200 A pore size) using an Akta Purifier 10 system (GE Healthcare). We used an 80-

min gradient with a 20-min equilibration phase with buffer A, a linear increase to 30% buffer B (7 

mM KH2PO4, pH 2.65, 350 mM KCL, 30% MeCN) within 33 min, 100% B for 7 min and a final 

equilibration with Buffer A for 20 min. The flow rate was 3 ml/min and the sample was injected 

after the initial 20 min equilibration phase. Upon injection, 3 ml fractions were collected with a 

P950 fraction collector throughout the run. 60 fractions were collected of which 3-4 adjacent 

fractions were combined to obtain 12 samples. The 12 fractions were desalted with reverse phase 

tC18 SepPak columns (Waters, 100 mg, WAT036820) and lyophilized to dryness. SCX-separated 

samples were enriched for phosphopeptdies by immobilized metal affinity chromatography 

(IMAC) as described previously (Chevrier et al., 2011). Peptides were reconstituted in 200 µl 

IMAC binding buffer (40% MeCN, 0.1% FA) and incubated for 1 h with 5 µl of packed Phos-

Select beads (Sigma, P9740) in batch mode. After incubation, samples were loaded on C18 

StageTips, washed twice with 50µl IMAC binding buffer and washed once with 50µl 1% formic 

acid. Phosphorylated peptides were eluted from the Phos-Select resin to the C18 material by 

loading 3 times 70 µl of 500 mM K2HPO4 (pH 7.0). StageTips were washed with 50 µl of 1% 

formic acid to remove phosphate salts and eluted with 80 µl of 50% MeCN / 0.1 % formic acid. 

Samples were dried down by vacuum centrifugation and reconstituted in 8 µl 3% MeCN / 0.1 % 

formic acid. Peptide samples were separated on an online nanoflow HPLC system (Agilent 1200) 

and analyzed on a LTQ Orbitrap and a LTQ Orbitrap Velos instrument, as described (Chevrier et 

al., 2011). Briefly, 50% of the enriched phosphopeptide samples were loaded onto a 14-cm reverse 



	

phase fused-silica capillary column (New Objective, PicoFrit PF360-75-10-N-5 with 10 µm tip 

opening and 75 µm inner diameter) packed in-house with 3 µm ReproSil-Pur C18-AQ media (Dr. 

Maisch GmbH). The HPLC setup was connected via a custom-made electrospray ion source to the 

mass spectrometer. After sample injection, peptides were separated at an analytical flowrate of 

200 nL/min with a 70-min linear gradient (~ 0.29 %B/min) from 10% solvent A (0.1% formic acid 

in water) to 30% solvent B (0.1% formic acid/90% acetonitrile). The run time was 130 min for a 

single sample, including sample loading and column reconditioning. Data-dependent acquisition 

was performed using the Xcalibur 2.1 software in positive ion mode. Survey spectra were acquired 

in the orbitrap with a resolution of 60,000 and a mass range from 350 to 1750 m/z. In parallel, up 

to 16 of the most intense ions per cycle were isolated, fragmented and analyzed in the LTQ part of 

the instrument. Ions selected for MS/MS were dynamically excluded for 20 s after fragmentation. 

 

Analysis of relative total protein expression 

BMDCs grown in SILAC media were left untreated or stimulated with LPS for 2 and 6 h. SILAC 

samples were lysed, digested and desalted as described for the global phosphoproteome analysis. 

To reduce sample complexity, 100 µg of total peptides were separated using an Agilent 3100 

Offgel fractionator (Agilent, G3100A) as described in the manual. For separation into 12 fractions, 

we used Immobiline DryStrips, 13cm, pH 3-10 (GE Healtcare, 17-6001-14) that were rehydrated 

in a 1:50 dilution of IPG buffer, pH 3-10 (GE Healthcare, 17-6000-87) containing 5% glycerol. 

Peptides were reconstituted in IPG buffer (1:50 dilution) containing 5% glycerol and focused for 

20kV*h with a maximum current of 50 µA and power of 200 mW. After separation, fractions were 

acidified by adding 1% formic acid and desalted using StageTips. For global proteome analysis 1 

µg of peptide sample was separated on an online nanoflow HPLC system (Agilent 1200) and 



	

analyzed on a LTQ Orbitrap and a LTQ Orbitrap Velos instrument, as described for the global 

phosphoproteome analysis of LPS timecourse samples. 

 

Affinity purification followed by mass spectrometry (APMS) for V5-tagged MYD88, IRAK2 

and AP1AR 

Analysis of interaction partners of V5-tagged proteins was performed using a fast and low-

stringency single-step purification procedure (to retain weak binders and potentially transient 

interactions) as previously decribed (Hubner and Mann, 2011), with several modifications to fit 

our experimental system. 2 x 106 bone marrow cells were plated in SILAC complete medium 

supplemented with 15 ng/mL GM-CSF in 10-cm Petri dishes, and infected two days later with 

lentiviruses (MOI ~10-20) containing V5-tagged ORFs (Yang et al., 2011) in 10-cm Petri dishes. 

2-4 h after infection, cells were fed with GM-CSF-containing complete medium. Two days after 

infection, GM-CSF-containing complete medium supplemented with blasticidin (10 µg/mL) was 

added to cells, which were further incubated for 3 days. ORF expression and size was validated 

using standard Western blotting with anti-V5 antibody (Invitrogen). For immunoprecipitation (IP) 

of protein complexes, BMDCs expressing a V5-tagged ORF encoding human MYD88 (81.8% 

amino acid (AA) identity to mouse counterpart), IRAK2 (69.4% AA identity to mouse), or AP1AR 

(89.8% AA identity to mouse) were stimulated with LPS for 30 min, scraped on ice and washed 

in ice-cold PBS. Cell pellets were lysed for 30 min on ice in a lysis buffer containing 150 mM 

NaCl, 50 mM Tris pH 7.5, 5% Glycerol, 1% IGPAL-CA-630 (Sigma, #I8896), and freshly added 

protease and phosphatase inhibitors (Roche). After centrifugation at 4°C for 10 min at 14,000 g, 

protein concentration in supernatants was measured by BCA (Pierce), and equal amounts (~2.5-3 

mg) of lysates from each SILAC sample were used for subsequent IP. Cell lysates were incubated 



	

for ~16 h at 4°C on a roller with anti-V5 tag antibody covalently bound to magnetic beads (MBL). 

APMS experiments for MYD88 and IRAK2 were performed as on-bead digests with single-shot 

mass spectrometry runs, and the AP1AR interaction partners were analyzed by 8 slice in-gel 

digests with 8 LC-MS/MS runs. For MYD88 and IRAK2, beads were washed after anti-V5 

immunoprecipitation twice with wash buffer (150 mM NaCl, 50 mM Tris pH 7.5, 5% Glycerol) 

containing 1% IGEPAL-CA-630, and twice with wash buffer alone. Beads from each SILAC state 

were combined after the first wash. Purified protein complexes were then eluted by direct on-bead 

digestion with trypsin using a buffer containing 2 M urea, 50 mM Tris pH 7.5, 1 mM DTT, and 5 

µg/mL Trypsin. After elution, samples were reduced (4 mM DTT) and alkylated (10 mM 

iodoacetamide) following standard procedures, and further digested with trypsin overnight. 

Digestion were stopped by adding 1% TFA, and peptides were desalted purified on C18 StageTips 

before LC-MS/MS analysis. For AP1AR, anti-V5 enriched samples were washed three times with 

wash buffer and eluted from beads by heating to 100°C in SDS sample buffer (Life Technologies) 

for 5 min. Samples were separated on a 4-12% gradient gel (NuPAGE; Life Technologies) and cut 

into 8 slices that were subjected to in-gel trypsin digest and desalting on C18 StageTips as 

described previously (Lee et al., 2013). Desalted peptide samples for MYD88, IRAK2 and AP1AR 

APMS experiments were separated on an online nanoflow UHPLC system (Proxeon EASY-nLC 

1000) and analyzed on a Q Exactive (Thermo Fisher Scientific) mass spectrometer. We used a 13-

cm reversed phase fused-silica capillary column (New Objective, PicoFrit PF360-75-10-N-5 with 

10 µm tip opening and 75 µm inner diameter) packed in-house with 3 µm ReproSil-Pur C18-AQ 

media (Dr. Maisch GmbH) and separated peptides at a flow rate of 200 nL/min in a 82 min linear 

gradient from 6 to 30% composition of solvent A (3% acetonitrile /0.1% formic acid) and solvent 

B (90% acetonitrile /0.1% formic acid). The Q Exactive was operated at a spray voltage of 2 kV, 



	

a capillary temperature of 250 C and a S-lens RF level of 50. Data was acquired in positive ion 

mode, with MS1 scans at a resolution of 70,000 at m/z=200, a mass range of 300-1800, AGC target 

of 1e6 and 5 ms maximum ion time. Up to 12 of the most intense ions per duty cycle were isolated 

using an isolation window of 2.5 m/z and fragmented by HCD at a NCE of 25 with an underfill 

ratio set at 5%. For data-dependent MS2 scans we used a resolution of 17,500, an AGC target of 

5e4 and a maximum ion time of 120ms. All ions selected for MS2 scans were dynamically 

excluded for 20 s after fragmentation. 

 

Massively parallel in vitro kinase (IVK) assay 

In vitro kinase reactions were performed with recombinant kinases on SILAC-labeled native cell 

lysates, as follows: 10 million cells were lysed in 1 ml of IVK lysis buffer (0.5% CHAPS, 50 mM 

Tris pH 7.5, 150 mM NaCl, 5 mM MgCl2, 5 mM MnCl2, 2 µg/ml Aprotinin (Sigma, A6103), 10 

µg/ml Leupeptin (Roche, 11017101001) and 1 mM PMSF) for 20 minutes on ice to obtain a ~1 

mg/ml protein lysate. Cell debris was removed by centrifugation for 15 minutes at 20,000 g and 

the protein concentration was measured using a Bradford assay. The buffer and low molecular 

weight components of the cell lysate were exchanged by size-exclusion chromatography using 

Zeba Spin Desalting Columns (Thermo Fisher Scientific, 89891, 5 ml column, 7K MWCO) at 4 

C. The storage solution of the column was removed by centrifugation at 1,000 g for 2 minutes. 

The column was washed and equilibrated 4 times with 2.5 ml of ice-cold IVK reaction buffer (50 

mM Tris pH 7.5, 150 mM NaCl, 5 mM MgCl2, 5 mM MnCl2, 0.5 mM DTT, 2 µg/ml Aprotinin 

(Sigma, A6103), 10 µg/ml Leupeptin (Roche, 11017101001) and 1 mM PMSF) by centrifugation 

at 1,000 g for 2 minutes. The column was then placed in a new collection tube, 1 ml of the IVK 

cell lysate was applied and the buffer exchanged by centrifugation at 1,000 g for 2 min. The column 



	

flow-through contained cellular components of >7 kDa molecular weight in IVK reaction buffer. 

Before the in vitro kinase reaction phosphatase inhibitors were added as 1:100 dilutions of PIC2 

(Sigma, P5726) and PIC3 (Sigma, P0044). For each IVK reaction 500 µg of SILAC-labeled total 

cellular proteins in IVK reaction buffer were used. Directly before the reaction, 1 mM of adenosine 

triphosphate (ATP) and 0.5 µg of recombinant kinase were added and the reaction was incubated 

for 1 h at 25 C. IVK reactions were performed for IRAK2 (SignalChem, I10-10BG), IRAK4 (EMD 

Millipore, 14-599), and TBK1 (EMD Millipore, 14-628).  IVK reactions were stopped by adding 

480 mg of urea per 500 µl of reaction buffer, resulting in a final concentration of 8M urea. Different 

SILAC samples for kinase and control (no kinase) reactions were combined, reduced with 5 mM 

DTT for 30 min, alkylated with 10 mM iodoacetamide for 30 min in the dark, diluted 1:4 with 50 

mM Tris/HCl pH 7.5 and proteolytically digested with trypsin at a 1:50 enzyme to substrate ratio 

at 25 C for 16 h. The digests were acidified with 1% formic acid, precipitated urea was removed 

by centrifugation at 1,000 g for 10 min, and the samples were desalted using SepPak columns 

(Waters, 100 mg tC18, WAT036820). For single-shot IVK analysis samples were directly enriched 

for phosphopeptides by IMAC, whereas for deep coverage IVK analysis samples were separated 

into 6 basic reversed-phase (RP) fractions and then enriched by IMAC (see below).  

 

Global phosphoproteome analysis of IVK samples and knock-out samples 

For IVK and KO phosphoproteome analysis desalted peptide samples were separated by basic 

reversed-phase (RP) prior to IMAC enrichment as described previously (Mertins et al., 2013). 

Total peptide amounts were 0.5 mg per SILAC state for IVK and 1.5 to 2 mg per SILAC state for 

wt and KO samples. For basic RP separation, desalted peptides were reconstituted in 900 µL of 20 

mM ammonium formate, pH 10. Basic reversed-phase chromatography was performed on 4.6 mm 



	

× 250 mm Zorbax 300 Å Extend-C18 columns (Agilent, 3.5 µm bead size), using an Agilent 1100 

Series HPLC instrument. Prior to each separation, columns were monitored for efficient separation 

with standard mixtures containing 6 peptides. Solvent A (2% acetonitrile, 5 mM ammonium 

formate, pH 10), and a nonlinear increasing concentration of solvent B (90% acetonitrile, 5 mM 

ammonium formate, pH 10) were used to separate peptides by their hydrophobicity at a high pH. 

The flow rate was 1 ml/min and the percentage of solvent B was increased in a nonlinear gradient 

with 4 different slopes (0% for 9 min; 0% to 6% in 4 min; 6% to 28.5% in 50 min; 28.5% to 34% 

in 5.5 min; 34% to 60% in 13 min; 60% for 8.5 min). Eluted peptides were collected in 96 × 2 mL 

deepwell plates (Whatman, #7701-5200) with 1 min (= 1 ml) fractions. Early eluting peptides were 

collected in fraction “A”, which is a combined sample of all fractions collected before any major 

UV-214 signals were detected. Samples were combined into 6 or 12 subfractions, in a serpentine, 

concatenated pattern, combining every 12th fraction (1,13,25,37,..; 2,14,26,38,...; ...), or every 6th 

fraction (1,7,13,19,25,…; 2,8,14,20,26,…; ...). Subfractions were acidified to a final concentration 

of 1% formic acid and dried in a vacuum concentrator. For IMAC enrichment, iron-chelated IMAC 

beads were prepared from Ni-NTA superflow agarose beads (Qiagen, #1018611) that were 

stripped of nickel with 100 mM EDTA and incubated in an aqueous solution of 10 mM FeCl3 

(Sigma, 451649). Dried phosphopeptide fractions were reconstituted in 50% acetonitrile/0.1% 

trifluoroacetic acid and then diluted 1:1 with 100% acetonitrile/0.1% trifluoroacetic acid to obtain 

a final 80% acetonitrile/0.1% TFA peptide solution at a concentration of 0.5 µg/µl. Peptide 

mixtures were enriched for phosphorylated peptides with 10 µL IMAC beads for each sample for 

30 min. Enriched IMAC beads were loaded on Empore C18 silica-packed Stage tips (3M, 2315). 

Stage tips were equilibrated with 2 × 100 µL washes of methanol, 2 × 50 µL washes of 50% 

acetonitrile/0.1% formic acid, and 2 × 100 µL washes of 1% formic acid. Samples were then loaded 



	

onto stage tips and washed twice with 50 µL of 80% acetonitrile/0.1% trifluoroacetic acid and 100 

µL of 1% formic acid. Phosphorylated peptides were eluted from IMAC beads with 3 × 70 µL 

washes of 500 mM dibasic sodium phosphate, pH 7.0, (Sigma, S9763) and washed twice with 100 

µL of 1% formic acid before being eluted from stage tips with 60 µL 50% acetonitrile/0.1% formic 

acid. All washes were performed on a tabletop centrifuge at a maximum speed of 3,500g. Prior to 

LC-MS/MS analysis IMAC enriched samples were dried in a vacuum concentrator and 

reconstituted in 9 ul of 3% ACN / 0.1% FA. 

IMAC samples were analyzed on an online nanoflow EASY-nLC 1000 UHPLC system (Thermo 

Fisher Scientific) coupled to a benchtop Orbitrap Q Exactive mass spectrometer (Thermo Fisher 

Scientific). Fifty percent of each phosphopeptide sample were injected onto a Picofrit column (10 

µm tip opening / 75 µm diameter, New Objective, PF360-75-10-N-5) packed in-house with 20 cm 

C18 silica material (1.9 µm ReproSil-Pur C18-AQ medium, Dr. Maisch GmbH, r119.aq). The 

UHPLC setup was connected with a custom-fit microadapting tee (360 µm, IDEX Health & 

Science, UH-753), and capillary columns were heated to 50 °C in column heater sleeves (Phoenix-

ST) to reduce backpressure during UHPLC separation. Injected peptides were separated at a flow 

rate of 200 nL/min with a linear 80 min gradient from 100% solvent A (3% acetonitrile, 0.1% 

formic acid) to 30% solvent B (90% acetonitrile, 0.1% formic acid), followed by a linear 6 min 

gradient from 30% solvent B to 90% solvent B. Each sample was run for 150 min, including 

sample loading and column equilibration times. Data-dependent acquisition was obtained using 

Xcalibur 2.2 software in positive ion mode at a spray voltage of 2.00 kV. MS1 Spectra were 

measured with a resolution of 70,000, an AGC target of 3e6 and a mass range from 300 to 1800 

m/z. Up to 12 MS2 spectra per duty cycle were triggered at a resolution of 17,500, an AGC target 



	

of 5e4, an isolation window of 2.5 m/z and a normalized collision energy of 25. Peptides that 

triggered MS2 scans were dynamically excluded from further MS2 scans for 20 s. 

 

Identification and quantification of phosphopeptides and proteins 

Mass spectra were processed within the Spectrum Mill (Agilent Technologies) and the MaxQuant 

(version 1.2.2.5) software packages (Cox and Mann, 2008) using a Uniprot mouse database 

containing 59,348 entries. The mass tolerance for precursor ions and for fragment ions was set to 

20 ppm and 0.7 Da for LTQ-Orbitrap data and 20 ppm and 20 ppm for Q Exactive data, 

respectively. Cysteine carbamidomethylation was searched as a fixed modification, whereas 

variable oxidation on methionine and N-acetylation (Protein) was used for all analyzed datasets 

and phosphorylation on serine, threonine or tyrosine residues were considered as variable 

modifications for all phosphoproteome analyses. The enzyme specificity was set to trypsin and 

cleavage N-terminal of proline was allowed. The maximum of missed cleavages was set to 3. For 

peptide identification the maximum peptide FDR was set to 1%. SILAC ratios for phosphosites 

were obtained from the proteinPeptideComparisonColumnsExport table in Spectrum Mill and the 

Phospho (STY)Sites table in MaxQuant. The median ratios of all non-phosphorylated peptides 

derived from separate unmodified peptide exports in Spectrum Mill and MaxQuant were used to 

normalize the M/L and H/L ratios of all phosphorylated peptides and corresponding phosphosites. 

To allow better phosphosite grouping, Spectrum Mill and MaxQuant phosophosite annotations 

were converted to a unique identifier containing the uniprot accession number, the modified amino 

acid location and the number of phosphorylated residues on a peptide for each phosphosite 

quantification event. Median SILAC ratios of phosphopeptides for each experiment were 

calculated over all versions of the same peptide including different charge states and methionine 



	

oxidation states. The highest scoring versions of each distinct peptide were reported per 

experiment. Data derived from both software packages was combined and Spectrum Mill data was 

reported when the same phosphopeptide was identified and quantified by both programs. Site-

specific phosphosite localization scores were provided for both Spectrum Mill and MaxQuant. 

Lastly, only phosphosites that were observed in at least two independent SILAC experiments are 

reported. 

 

Differential expression (DE) analysis of phosphoproteomic data 

To identify differentially regulated phosphosites in the time series, knockout, and IVK data sets, 

we used sets of 2 replicates of SILAC ratios for each experimental condition and filtered them to 

retain reproducible data. We deemed two ratios as reproducible if found within the 95% agreement 

limits of a Bland-Altman plot (Bland and Altman, 1986; Krönke et al., 2015). Then, we assessed 

statistical significance of differential phosphorylation using a moderated T-test (Smyth, 2004) and 

by correcting for multiple hypothesis testing using false discovery rate (FDR). When 2 replicates 

were not available, we proceeded as follows: (1) for the time series data, we paired 15- and 45-

min samples with the corresponding, most correlated 30-min replicates (Pearson’s correlation of 

0.62 and 0.71 respectively); and (2) for the double knockout Ticam-/-Myd88-/- data, we used an 

absolute log2 fold-change threshold of 0.79 to filter phosphosites that were also asymmetrically 

differentially phosphorylated at 30 and 45 min in the time series data set. Lastly, for single KO 

datasets (i.e., Irak2-/-, Irak4-/-, Myd88-/-), we focused our analyses on differentially regulated 

phosphosites that were also found to be (1) regulated in the time series data, and (2) affected by 

the double knockout Ticam-/-Myd88-/-.  

 



	

Clustering of phosphoproteomic time series and candidate selection 

We performed supervised k-means clustering to partition the differentially expressed 

phosphopeptides from the time series experiment. We focused this analysis on phosphosites that 

were independently measured in 6 out of 8 time points, and showed differential regulation – based 

on the statistical criteria defined above – in at least 2 consecutive time points following LPS 

stimulation. We set the parameter k (number of clusters) as the minimal number of clusters that 

provided a sufficient level of within-cluster similarity. For every cluster, we define the within-

cluster similarity as the average r2 between the members of the cluster and the centroid of the 

cluster. We used the following cutoffs for: the minimum within-cluster similarity (across all 

clusters) to be >0.7, and the average (across all clusters) to be >0.75. Using clustering and DE 

results, we selected 168 candidate phosphoproteins for genetic perturbations (Figure 3), including: 

(i) 121 that were both present in k clusters and differentially regulated in at least 2 consecutive, 

early time points (15 and 30 or 30 and 45 min); and (ii) 47 candidates manually added that were 

regulated in the same consecutive time points, but not measured in enough independent time points 

to pass the filters set prior to k-means clustering. Because several well-known TLR components 

(e.g., TICAM1) were found to be strongly differentially regulated at early time points but were 

absent from the data at later time points, we reasoned that adding back several phosphoproteins 

showing a similar trend would alleviate some of the false negative problem associated with 

phosphoproteomic measurements. 

 

Pathway enrichment analysis 

We measured enriched pathways in our data sets using DAVID (http://david.abcc.ncifcrf.gov), 

focusing on KEGG pathways and GO terms, and heatmaps were generated with Gene-E 



	

(https://software.broadinstitute.org/GENE-E/index.html). Furthermore, to compile a gene set 

capturing most of the well described signaling and transcriptional regulators that have been 

implicated in the TLR pathways, we compiled a list of 141 genes (Table S2) by merging 

information from multiple databases: KEGG, InnateDB, Panther, Reactome, and Uniprot. 

 

Integrative network analysis 

Overview of the computational framework to identify signaling-to-transcription 

relationships. To help uncover signaling-to-transcription relationships in the TLR4 system, we 

developed a computational framework to integrate biochemical datasets from this study and 

publicly available databases. First, we assembled a background interaction network combining 

protein-protein and kinase-substrate interactions (referred to as PPIs and KSIs, respectively) from 

several public repositories and augmented by adding APMS and IVK data from BMDCs. Second, 

we assigned weights to the edges (i.e., PPIs, KSIs) and nodes (i.e., signaling or transcriptional 

regulators) of this network to reflect prior knowledge and the biochemical changes affecting them 

based on our data sets (i.e., differential phosphorylation upon LPS stimulation, kinase KO and 

IVK). Third, we searched for potential paths within the network that linked our 29 phosphoproteins 

(‘seed nodes’) to selected transcriptional regulators (‘target nodes’) and determined their 

significance using network randomization whereby weights were shuffled iteratively to compute 

statistical significance. We describe each step below. 

 Step 1: Assembling the background interaction network. We assembled an input set of 

interactions: 92,610 PPIs and 5,533 KSIs from public databases and AP-MS and IVK data sets 

from this study (Table S7). We collected the union of interactions found in mouse and/or human 

model systems in the following databases: (i) BioGRID (Stark et al., 2006), by keeping interactions 



	

supported by at least one of the following experiments: Affinity Capture-Luminescence, Affinity 

Capture-MS, Affinity Capture-Western, Biochemical Activity, Co-crystal Structure, FRET, Far 

Western, PCA, Proximity Label-MS, Two-hybrid; (ii) PhosphoSitePlus (2014-09-03) (Hornbeck 

et al., 2015); and (iii) the Human Protein Reference Database (HPRD release 9) (Keshava Prasad 

et al., 2009), by focusing on interactions identified from two-hybrid experiments. Next, we filtered 

the resulting network by removing interactions with extracellular proteins (according to Swiss-

Prot annotations) (Bairoch et al., 2004) and ubiquitously interacting protein modifiers (i.e., Ubc, 

Ubd, Sumo1, Sumo2, Sumo3, Nedd8). 

 Step 2: Defining seed-target relationship score. First, we computed ‘relationship scores’ 

for each seed-target pair linked in the interaction network through at least one path (whereby a 

path represents a set of nodes and edges linking a seed to a target). The interaction network can be 

represented as a graph G=(V,E,wn,we), where V is a set of nodes (proteins),  E is a set of edges 

(interactions), and wn and we represent corresponding sets of weights assigned to nodes and edges 

respectively. The weight values were designed to be bigger than or equal to 0 but smaller than 1. 

Given a set of targets T Ì V and a set of candidate seeds A, we compute a ‘relationship score’ 

S(A,T)=R (where R is a set of non-negative, real numbers). To do so, we take each simple path k 

from a Ì A to t Ì T, and assign to it a path score 𝑆" = 𝑤%& ∗ 	 𝑤)**&  where i and j go over all 

nodes and edges in the path. This score reflects the evidence that a interacts with t through the path 

k. Given that every path between a and t is increasing the total evidence that a influences t we 

compute the ‘relationship score’ as 𝑆 𝑎, 𝑡 = 	 𝑆""  where k enumerates all simple paths from a 

to t having at most 2 intermediate nodes. We note that in general, the longer the path, the smaller 

its score 𝑆". 



	

 Step 3: Assigning weights to edges and nodes from the background interaction 

network. First, to assign edge weights, we used two components: one to reflect the experimental 

evidence supporting a given PPI or KSI, and another to capture the local network topology as 

measured by the number of edges arriving to and leaving from a given node. The first component 

we1 depended on the number nexper of different experiment types supporting the interaction 

underlying a given edge (e.g., AP-MS, Y2H, etc.): 

 

𝑤). = 	1 (1 +	𝑒34%56758) 

 

Therefore, the larger the number of experiment types nexper, the higher the interaction weight. The 

second component we2 depended on the local network topology: for an edge originating at node 1 

and ending at node 2, ndout, nuout are the numbers of all directed and undirected edges, respectively, 

originating at node 1, and ndin, nuin the numbers of all edges ending at node 2. Then: 

𝑤)4 =
1

0.5 ∗ 𝑛𝑑?@A 	+ 	𝑛𝑢?@A + 	1 ∗ 0.5 ∗ 𝑛𝑑&% + 	𝑛𝑢&% 	+ 	1	

C

 

 

where the value of c = 0.01, was derived in the optimization step described below. The composite 

edge weight value we was set to 0.9 ∗ 	 𝑤). ∗ 𝑤)4E  for directed edges and 

0.45 ∗ 	 𝑤). ∗ 𝑤)4E  for undirected ones. In addition, when an interaction was supported by AP-

MS and/or IVK data from this study, we set the corresponding values of we to 0.999 and 0.99 for 

directed and undirected edges, respectively. 

 Second, to assign node weights, we first considered the background case, where 

differential phosphorylation information was not used. In this case, all network nodes were given 



	

the same weight of 0.1, which maximized the performance on the following task: take KEGG 

pathway database (Kanehisa et al., 2016) (without ‘Toll-like receptor signaling pathway’), and use 

the transcription regulators as targets. Next, compute the seed-target relationship score for each 

possible seed-target pair. The pairs found to belong to the same KEGG pathway were then 

considered as true, and the pairs crossing the pathways as false (the intermediate nodes in network 

paths joining seed-target pairs were not restricted to KEGG proteins). The ‘relationship score’ 

depended on both the uniform node weight wn0 and the edge weights. Therefore, we concurrently 

searched for the optimal values of wn0 and parameter c (from the edge weight equation above) that 

maximized the area under the ROC curve. The resultant values for wn0 and c were 0.10 and 0.01, 

and they were used to define the ‘background network’ that is the input set of interactions with we 

and wn0. Lastly, we reasoned that network nodes corresponding to differentially phosphorylated 

proteins in our experiments were more likely to transduce the signal from TLR4 to downstream 

gene regulation events. Therefore, for a given node i its weight wni increased with the number of 

experiments that indicated i as differentially phosphorylated: 

Data set wni Number of nodes 

Non-phosphorylated 0.10 8710  

Time series (TS; 15, 30, 45 min) 0.20 1784 

K-means 0.30 223 

TS and double KO (dKO) 0.60 335 

TS, dKO and 1 KO 0.63 302 

TS, dKO and 2 Kos 0.67 217 

TS, dKO and 3 Kos 0.70 31 

 



	

(where TS stands for time series, KO stands for Irak2-/-, Irak4-/-, or Myd88-/-, and dKO for Myd88-

/-/Ticam1-/- experiments). Resulting values wni were normalized such that their average was equal 

to 0.1 (i.e., the same value as the uniform node weights wn0).  

Resulting weights on network nodes defined the ‘weighted network’ that was used for ROC 

analysis (Figure S7B), as follows: (1) we used the set of known TLR components defined above 

(Table S2) and split it into targets (i.e., transcriptional regulators) and seeds (i.e., all other nodes). 

Furthermore, we focused on the 11 out of 14 TLR targets that were found as differentially 

phosphorylated in our time series phosphoproteomic data. (2) Seed-target pairs among the known 

TLR components were set as ‘true’, whereas pairs between TLR ‘targets’ and non-TLR ‘seeds’ 

present in the KEGG database set as ‘false’. (3) Lastly, we ordered seed-target pairs using only the 

sum of seed and target node weights as their relationship scores (i.e., without using network paths 

scores). The corresponding ROC curve (‘phosphorylation only’) served as a reference benchmark 

for methods that used network information (Figure S7B). 

 Step 4: Identify significant seed-target relationships. We used bootstrapping to assign 

statistical significance of the ‘relationship scores’ computed above. To do so, we created 1000 

randomized networks by swapping edges while keeping constant the node degrees (i.e., the number 

of edges linking a given node) to maintain the network topology (Maslov and Sneppen, 2002). We 

randomized directed and undirected edges separately. The phosphorylation dependent node 

weights were randomly permuted among all nodes in the randomized networks. Next, ‘relationship 

scores’ between seeds and targets were computed in each random network. The resulting scores 

were used as a background distribution for empirical p-value computations. Specifically, we used 

marginal distributions, parametrized by the minimal path length. For example, if in the original 

non-randomized interaction network, a given seed was connected to its closest target by a path of 



	

length l, then we used a distribution of relationship scores computed with paths of lengths bigger 

or equal l.  

 

Centrality score analysis. After identifying significant seed-target pairs, we aimed to 

assign and compare the signaling centralities of the intermediate nodes (i.e., excluding seed and 

target nodes) in each module of seeds (Figures 3B and 5A). For each module and each 

intermediate node, we summed scores of paths linking it with the corresponding set of significant 

seed-target pairs. This sum was then divided by the number of seeds in the module to arrive at the 

centrality score of an intermediate node in a module.  

 

Visualization of knockout effects seed-target relationships. We quantified the effects of 

KO (i.e. Myd88-/-, Irak2-/-, Irak4-/-) on the ‘relationship scores’ of the significant (bootstrap p < 5 

x 10-4, Benjamini-Hochberg FDR < 0.05) seed-target pairs that were also affected by Myd88-/-

/Ticam1-/-. For each simple seed-target path, we computed the percentage of the nodes affected by 

each KO. The total KO effect on a given seed-target pair was computed as the weighted average 

percentage from all paths, where weights were proportional to path scores Sk.  The resulting KO 

effects were visualized using t-Distributed Stochastic Neighbor Embedding (t-SNE) (Figure 7G) 

and KOs with the weighted percentage of affected nodes bigger or equal to 50 were colored. 
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