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1 The ssHMM

1.1 Schematic overview of our Gibbs sampling approach

Figure S1: Schematic overview of our Gibbs sampling approach The dark gray
boxes represent the RNA sequences. Each RNA sequence is characterized by
its nucleotide sequence and several possible structure sequences (light gray).
During initialization, a structure and a motif start (red) are set for each
sequence. Every iteration consists of 3 steps: (1) One of the sequences is
randomly chosen. Then, the ssHMM is re-estimated using all but this chosen
sequence; (2) The two unknown variables of the held-out sequence are re-
estimated. For this purpose, the probability of every combination of structure
and motif start (black) given the ssHMM is calculated; (3) According to the
distribution of these probabilities, a new structure and a new motif start is
drawn (yellow). These three steps are repeated until termination.
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1.2 Parameters of the motif finder

Our motif finder ssHMM can be customized by a set of six different parameters (see Ta-
ble S1). Initialization has been discussed in the Methods section. The other parameters
are described in the following.

1.2.1 Motif length

The ssHMM possesses a set of states for each motif position. Therefore, the length of
the searched motif has to be defined prior to any training. For most RBPs, however,
the size of the binding site is unknown.

We therefore recommend to try different biologically meaningful motif lengths n for
an RBP (e.g. from 4 to 12) and to inspect the resulting average sequence-structure in-
formation content per position (see Sec. 3.7). In other words, we propose to run ssHMM
several times with several n and, at the end, pick the model with best n according to an
empirical rule. We evaluate the trained models both on the used motif length (n) and
average per-position sequence-structure information content (in). Unfortunately, longer
motifs tend to have a lower information content. To find a good compromise between n
and in, we suggest the following simple heuristic for determining the best motif length
b: b = argmaxn in + (n ∗ 0.15).

Such a heuristic prefers the higher motif length n + 1 over the lower motif length n
only if the average information content in+1 of its resulting trained model is no more
than 0.15 less than for the shorter motif.

1.2.2 Block size

Gibbs sampling generates a Markov chain of samples from the multivariate probability
distribution over all unknown variables. Each of these samples is correlated with nearby
samples. To reduce this correlation and allow the algorithm to make progress faster,
one can employ block sampling [1].

In the original Gibbs sampling algorithm, exactly one sequence is chosen in each
iteration to have its unknown variables re-estimated. A blocked Gibbs sampler, in
contrast, re-estimates the unknown variables of multiple sequences in one iteration.
Thus, the ssHMM is not re-estimated for every single variable re-estimation. This can
have two advantages: (1) a more stable optimization of the ssHMM and (2) an improved
runtime.

The block size parameter determines the number of sequences for which the two
unknown variables are estimated in each iteration. A block size of one is equivalent to

Table S1: The parameters of the motif finder.

Parameter Description
Motif length Length of the motif to find
Initialization Type of initialization: random or Baum-Welch
Block size Number of sequences for variable estimation in

each iteration
Flexibility Number of top variables (determined by condi-

tional probabilities) to draw new variable from
Termination interval Interval for checking termination condition
Termination threshold Minimum difference in data log-likelihood

needed to justify a continuation of the training
process.
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the original Gibbs sampling algorithm.

1.2.3 Flexibility

In the second estimation step of a Gibbs sampling iteration, the conditional probabilities
of each combination of motif start position and structure are calculated. These condi-
tional probabilities reflect how well a combination of motif start and structure fits the
current ssHMM. According to the distribution that is proportional to the conditional
probabilities, the new motif start position and structure can be drawn.

Since the drawing of the two variables is a random process, it can happen that very
unlikely and possibly unfavorable variables are drawn (i.e. variables that do not fit
the current ssHMM well). For this reason, we introduce a flexibility parameter f . It
determines that the new motif start and structure is drawn according to the distribution
proportional to only the top f conditional probabilities. Consequently, a small f makes
the Gibbs sampling greedier as we draw from only the most likely (i.e. best) variables.

While the Gibbs sampler is completely greedy for f = 1 and runs into the adjacent
local optimum, a larger f promises a more flexible walk through the search space. The
original Gibbs sampling approach of drawing from all variables can be chosen by setting
f = 0.

1.2.4 Termination condition

Like for any iterative algorithm, we need to define a termination condition. It is desirable
to finish the execution when the algorithm has converged on variables, i.e. an ssHMM,
that maximize the posterior probability P (ssHMM |data) of the ssHMM given the data.
We can rearrange the posterior probability using Bayes’ theorem:

P (ssHMM |data) =
P (data|ssHMM) ∗ P (ssHMM)

P (data)
(1.1)

P (data) does not depend on the ssHMM and the prior P (ssHMM) is unknown which
is why we assume that all possible models are equally likely. Therefore, the likelihood
P (data|ssHMM) can be used as a proxy for the posterior P (ssHMM |data). The
execution shall terminate when the likelihood P (data|ssHMM) converges.

Concretely, the likelihood is computed as the joined log-likelihood
log(P (sequences, structures|ssHMM)). This computation has a considerable runtime
for a large set of sequences. Therefore, we introduce an interval parameter i. Only every
i iterations, the joined log-likelihood is computed and compared to its three most recent
values.

The log-likelihood improvement made in every iteration decreases over time. There is
a point from which the improvement does not satisfy the required computational time
anymore. The parameter t lets the user define the minimum difference in log-likelihood
needed to justify a continuation of the training process. If the joined log-likelihood
does not improve by at least t compared to any of its three last values, execution is
terminated.

1.3 Motif output of the ssHMM

The main purpose of this motif finder is the recovery of interpretable sequence-structure
motifs from experimental RBP data. It is therefore necessary to produce a clear and
intuitive visualization of the motif that has been found by training the models described
in this section. HMMs are graphical models that lend themselves to a visualization
as a graph. The states and emissions of an HMM can be depicted as nodes while the
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transition and emission probabilities can be represented as weighted edges between the
nodes.

As an example, Figure S2 shows the output of our motif finder after it has been trained
on a CLIP-Seq dataset of the RBP DGCR8. It depicts the final state of the ssHMM.
The states of the ssHMM, including the start and the end state, are represented by
rectangular boxes that are arranged into rows and columns. The columns represent the
motif positions while the rows represent the five structural contexts of RNA.

The emissions of the ssHMM are the four nucleotides A, C, G, and T. Sequence logos
have been successfully used for years to intuitively visualize probability distributions
over these nucleotides. We therefore chose them as a means to visualize the emission
probabilities of each state directly in the state’s box. The heights of the nucleotide
letters in the sequence logos depend on two properties: Firstly, the relative height of a
letter reflects its prevalence in this state, i.e. its emission probability. Secondly, the total
height of the stack of four nucleotides is scaled according to the information content of the
emission probabilities in this state. Consequently, states with a high information content
stand out because of their size while those with more uniform emission probabilities are
smaller. Different colors for the four nucleotides make it very easy to immediately grasp
the sequence motif defined by the ssHMM. For this concrete RBP, the sequence motif
is UGGAA.

The transition probabilities between the states are visualized as arrows. The thicker
an arrow between two states, the more likely is a transition between the two. The most
important transitions originate from the start state because they determine in which
structural context the motif starts. Often, the motif remains in one particular context
for its entire length (as can be seen for the hairpin and stem context in Fig. S2 but not
for the internal loop context). To reduce clutter and increase clarity, unlikely transitions
with a probability of less than 0.05 are completely omitted. This can be observed, for
example, between the start state and both multiloop and exterior loop contexts. The
RBP depicted in Fig. S2 preferably binds stem regions of RNA but to a lesser extent
also hairpin loops and internal loops.
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Figure S2: Output of the motif finder after training on experimental data from the
RBP DGCR8. The figure visualizes the final state of the ssHMM. Each of
its states, including the start and the end state, is represented by a box.
The states are arranged into rows and columns where the columns represent
the motif positions and the rows represent the five structural contexts of
RNA. Each state’s emission probabilities are visualized as a sequence logo.
The relative heights of the nucleotides in a stack represent their emission
probabilities. The total height of all four nucleotides is scaled according to
the information content of the state’s emission distribution. The transition
probabilities between the states are visualized as arrows. The thicker an
arrow between two states, the more likely is a transition between the two.
To reduce clutter, no arrow is shown if the transition probability is less than
0.05.
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2 Evaluation on synthetic datasets

2.1 Details on the synthetic datasets

Table S2: Properties of the 24 different synthetic datasets.

ID Background seq. IC per position Structural context
H.A uniformly random 1.0 100% hairpin
H.B uniformly random 1.0 50% hairpin
H.C uniformly random 1.0 10% hairpin
H.D uniformly random 0.5 100% hairpin
H.E uniformly random 0.5 50% hairpin
H.F uniformly random 0.5 10% hairpin
H.G 3’UTR 1.0 100% hairpin
H.H 3’UTR 1.0 50% hairpin
H.I 3’UTR 1.0 10% hairpin
H.K 3’UTR 0.5 100% hairpin
H.L 3’UTR 0.5 50% hairpin
H.M 3’UTR 0.5 10% hairpin
S.A uniformly random 1.0 100% stem
S.B uniformly random 1.0 50% stem
S.C uniformly random 1.0 10% stem
S.D uniformly random 0.5 100% stem
S.E uniformly random 0.5 50% stem
S.F uniformly random 0.5 10% stem
S.G 3’UTR 1.0 100% stem
S.H 3’UTR 1.0 50% stem
S.I 3’UTR 1.0 10% stem
S.K 3’UTR 0.5 100% stem
S.L 3’UTR 0.5 50% stem
S.M 3’UTR 0.5 10% stem

2.2 Parameter optimization on synthetic datasets

Before commencing the benchmarks, we explored the influence of the different program
parameters on the motif finder’s performance. For all these tests, we set termination
interval = 100 and termination threshold = 10. These two parameters have only a
minor influence on the motif finder performance as they only determine when algorithm
execution stops. Therefore, we did not perform a systematic search for their optimal
values. A termination interval of 100, however, constitutes a good compromise between
lower values with a higher computation overhead and higher values which could result
in many unnecessary iterations being made after convergence.
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Figure S3: Recovery rates on synthetic datasets with random background. Shown is the
percentage of successfully recovered motifs from synthetic datasets H.A to
H.F. Six different program configurations are compared.
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Figure S4: Recovery rates on synthetic datasets with random background. Shown is the
percentage of successfully recovered motifs from synthetic datasets H.G to
H.M. Six different program configurations are compared.
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2.2.1 Initilization approach

Firstly, we evaluated the performance of four selected configurations of the motif finder
on the 12 synthetic datasets with hairpin motifs (H.A - H.M). The four configurations
differed by initialization approach and the flexibility parameter:

• Random initialization, flexibility 0 (original)

• Random initialization, flexibility 10 (greedy)

• Baum-Welch initialization, flexibility 0 (original)

• Baum-Welch initialization, flexibility 10 (greedy)

All 72 benchmarks were executed with motif length = 6, termination interval = 100,
termination threshold = 10 and block size = 1. We performed three repetitions for each
benchmark. The results clearly show that Baum-Welch initialization is superior to a
random initialization (Figures S3 and S4).
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Figure S5: Recovery rates for different configurations of block size and flexibility. Color
represents the percentage of successfully recovered motifs from synthetic
dataset H.F. The warmer the color, the better the recovery rate.

2.2.2 Block size and flexibility

Secondly, we performed a systematic evaluation of different values for the block size and
flexibility parameters. For that purpose, we used the synthetic dataset H.F (information
content 0.5, hairpin fraction 10%) because it is the potentially most challenging among
those with random background sequences. Since it contains motifs of length 6, we fixed
the motif length parameter accordingly. As initialization, we chose the Baum-Welch
variant as it generally yields superior results.
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We ran the motif finder with all combinations of block sizes 1, 5, 10, and 50 and
flexibilities 0 (original Gibbs), 10 (slightly greedy), and 1 (completely greedy). Each
combination was executed with three repetitions.

The results (see Fig. S5) show that the motif finder’s performance degrades with
increasing block size. The original Gibbs sampling approach (block size = 1) that re-
estimates the variables of exactly one sequence in each iteration performs best. No
clear trend is visible, however, for the flexibility parameter. For small block sizes, the
flexibilities 0 and 10 perform similarly well and substantially better than the greedy
flexibility 1.

2.3 Program parameters for evaluation on synthetic
datasets

All three analyzed tools as well as our method have multiple parameters that heavily
influence their performance. Below, we describe how we chose the best parameters for
each tool. Tables S3 to S6 list these parameters.

2.3.1 MEMERIS

Table S3: Chosen parameters for execution of MEMERIS

Parameter Explanation Value
-pi Pseudocount to flatten structure

prior
0, 1, 100

-w Motif length 6
-bfile Background distribution of nu-

cleotides
uniform

-mod Distribution of motif sites one motif occurrence per
sequence

MEMERIS inherits most parameters from MEME and adds one of its own: pi, which
specifies the pseudocount that is used to flatten the prior probability distribution of the
motif starts. In essence, it defines how strongly MEMERIS prefers motifs in a single-
stranded context. The lower its value, the more does it prefer single-stranded motifs. A
very high pseudocount of 10 or higher results in a MEME -like behavior which ignores
structure completely. We ran MEMERIS with three different values for pi : 0, 1, and
100.

Besides that, we left most parameters at their default values. Motif length was natu-
rally set to 6. A uniform background distribution was assumed because the sequences are
too short to reliably estimate the background distribution of the characters from them.
Lastly, the distribution of motif sites was set to OOPS which means that MEMERIS
expects exactly one motif occurrence per sequence.

2.3.2 RNAcontext

RNAcontext has two important parameters. w specifies the range of motif lengths. A
range of 4-7, for instance, means that the algorithm searches for motifs starting from
length 4 until length 7. RNAcontext ’s initialization procedure uses previously learned
models for smaller motif lengths to initialize longer motif lengths. Therefore, they
suggest to use, e.g. 4-6 instead of 6-6 when looking for motifs of length 6. We found,
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Table S4: Chosen parameters for execution of RNAcontext

Parameter Explanation Value
-w Motif length range 6-6
-s Number of initializations 5

however, that w set to 6-6 performed much better than 4-6 which is why we use that
setting. Depending on the initialization, RNAcontext can generate different results. The
parameter s defines the number of different initializations that are tried to obtain the
best result. For this parameter, we use the default value 5.

2.3.3 GraphProt

Table S5: Optimized parameters for GraphProt

Dataset Epochs Lambda R D Bitsize Abstraction
H.A 50 0.0001 1 5 14 3
H.B 50 0.0001 1 4 14 3
H.C 10 0.0001 2 4 14 3
H.D 40 0.0001 1 3 14 3
H.E 40 0.001 1 4 14 3
H.F 10 0.0001 4 4 14 3
H.G 50 0.0001 1 4 14 3
H.H 50 0.0001 2 4 14 3
H.I 40 0.0001 2 4 14 3
H.K 10 0.0001 1 2 14 3
H.L 50 0.001 1 3 14 3
H.M 50 0.0001 1 3 14 3

GraphProt has eight parameters which can be optimized in a dedicated parameter
optimization step (program option -ls). We ran parameter optimization on the first
sequence set of each dataset and used these optimized parameters for the entire dataset.

2.3.4 Our motif finder

Table S6: Optimized parameters of our motif finder (ssHMM)

Parameter Value
Motif length 6
Initialization Baum-Welch
Block size 1
Flexibility 1
Termination interval 100
Termination threshold 10

Our motif finder has six different parameters. See Sec. 2.2 for how we determined the
best-performing values for these parameters.
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2.4 Accurate recovery of structure preferences on
synthetic datasets

The unique topology of our model and the incorporation of the full spectrum of struc-
tural RNA contexts allows ssHMM to recover structure motifs beside sequence motifs.
To evaluate its ability to accurately detect the structural context of a binding site, we
analyzed the synthetic datasets with hairpin motif. Figure S6 shows that the hairpin
fractions recovered by ssHMM closely reflect the estimated hairpin fractions of the syn-
thetic datasets. There is a striking Pearson correlation of 0.91 between the recovered
and the estimated hairpin fraction. This confirms that ssHMM is able to recover both
accurate sequence and structure motifs.

Figure S6: Hairpin fractions recovered by ssHMM accurately reflect estimated
hairpin fractions of the synthetic datasets Boxplot of the recovered
hairpin preference in the ssHMM models trained on synthetic datasets H.A
to H.I. The results are grouped by the estimated hairpin fraction of the
datasets (H.A, H.D and H.G: 100%; H.B, H.E and H.H: 60%; H.C, H.F
and H.I: 28%). The recovered hairpin preference is defined as the transition
probability between the start state and the H1 state in the trained ssHMM.
Datasets H.K to H.M were excluded because of their low motif recovery rates
(see Fig. 5 in the main text).
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3 Evaluation on CLIP-Seq datasets

3.1 Full list of CLIP-Seq datasets

Table S7: Full list of CLIP-Seq datasets used in our analyses.

Protein Data source Genome Cell line Protocol Ref.
Ago1/2/3/4 doRiNA hg19 HEK293 PAR-CLIP [2]
Ago2 doRiNA hg19 HEK293 HITS-CLIP [3]
Ago2 doRiNA hg19 HEK293 PAR-CLIP [3]
CAPRIN1 doRiNA hg19 HEK293 PAR-CLIP [4]
DGCR8 doRiNA hg19 HEK293 PAR-CLIP [5]
DICER GEO hg19 HEK293 PAR-CLIP [6]
EIF4A3 doRiNA hg19 HeLa HITSCLIP [7]
EWS doRiNA hg19 HEK293 PARCLIP [8]
EZH2 GEO mm9 ESC PAR-CLIP [9]
FMRP doRiNA hg19 HEK293 PAR-CLIP [10]
FXR2 doRiNA hg19 HEK293 PAR-CLIP [10]
HuR doRiNA hg19 HEK293 HITS-CLIP [3]
HuR doRiNA hg19 HEK293 PAR-CLIP [3]
IGF2BP1/2/3 doRiNA hg19 HEK293 PAR-CLIP [2]
LIN28B doRiNA hg19 HEK293 PAR-CLIP [11]
MOV10 doRiNA hg19 HEK293 PAR-CLIP [12]
Nova Suppl. material mm9 HITS-CLIP [13]
PTBP1 GEO hg18 HeLa HITS-CLIP [14]
PUM2 doRiNA hg19 HEK293 PAR-CLIP [2]
QKI doRiNA hg19 HEK293 PAR-CLIP [2]
SRSF1 doRiNA hg19 HEK293 HITS-CLIP [15]
TAF2N doriNA hg19 HEK293 PAR-CLIP [8]
TIA1 doRiNA hg19 HeLa iCLIP [16]
YY1 GEO mm9 HITS-CLIP [17]
ZC3H7B doRiNA hg19 HEK293 PARCLIP [4]

3.2 Length distribution and its influence on structure
prediction

The CLIP-Seq datasets used in our analyses possess different length properties. Each
dataset consists of thousands of binding sites determined by a CLIP-Seq experiment
of the RBP under investigation. Figure S7 plots the length distribution of the binding
sites for the five proteins shown in Table 2 and discussed in the Results section of the
manuscript. While DICER, DGCR8, NOVA, and QKI binding sites are relatively short
with median lengths in bps of 26, 31, 56 and 32, respectively, YY1 binding sites are
much longer with a median of 164 bps.
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Figure S7: Length distribution of selected CLIP-Seq datasets The histograms
show the length distributions of RBP-RNA binding sites as determined with
the CLIP-Seq protocol. While DICER, DGCR8, NOVA, and QKI binding
sites are short with median lengths of 26, 31, 56 and 32, respectively, YY1
binding sites are much longer with a median of 164.

To analyze the impact that sequence length has on the structure folding, we per-
formed the following experiment: We elongated the binding sites for the five RBPs
DICER, DGCR8, NOVA, QKI and YY1 by n base pairs up- and downstream where
n ∈ 10, 20, 40, 60. Then, we performed structure prediction using the tool RNAshapes
on all four classes of elongated binding site sequences. Figure S8 shows how the propor-
tions of predicted structural contexts changed due to the elongation of binding sites.

One can see that a large fraction of base pairs in the only slightly elongated binding
sites are predicted to be unpaired. This makes sense because of two reasons: Firstly, very
short sequences are often unable to form secondary structures which leads to a larger
number of unpaired bases. Secondly, secondary structure prediction is sensitive to the
exact cutpoints of a nucleotide sequence. The two ends of an input nucleotide sequence
only rarely match up exactly. More often, one or both of the ends are left unpaired in a
3’ or 5’ overhang even though the ends would find binding partners if the sequence was
longer. Cosequently, structure prediction tools almost always predict unpaired bases
at one or both ends of a nucleotide sequence. If the sequence length is increased, the
proportion of these unpaired bases in relation to sequence length decreases.

Conversely, the other structural contexts become more prevalent with increasing elon-
gation span and sequence length. This is particularly true for stem and multi-loop
contexts whose proportions are monotonically increasing. Differences are most striking
between an extension of 10 nt and 20 nt. With increasing elongation span, the differ-
ences become more subtle. Extending the binding sites by 20 nt as we did seems like a
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Figure S8: Predicted structural contexts depending on extension of original
binding sites (RNAshapes) The original RBP binding sites as determined
by CLIP-Seq were extended by 10, 20, 40, or 60 nt on each side (x-axis).
The barplot visualizes how the predicted secondary structures changed as a
consequence. The only slightly extended (extension span = 10) binding sites
of DGCR8, DICER, NOVA and QKI contain many unpaired bases (exterior
context). With increasing extension span, the stem and multi-loop contexts
become more prevalent.

good choice but the users of our tool can customize the elongation span with a program
parameter.

The YY1 protein is a special case again. Due to its a priori long binding sites,
elongation does not have a large effect. Consequently, the proportions between predicted
structural contexts do not change substantially (see Figure S8).

In a next step, we assessed the impact that elongating structure prediction input
(as described above) had on the sequence-structure motifs recovered by ssHMM. Fig-
ures S9 to S13 show the trained sequence-structure motifs for the five proteins. Most
importantly, the motif graphs (e.g. the arrows indicating the most probable transitions
between different structures) remain overall conserved even though the predicted struc-
tures varied (see Fig. S8). For example, the strong preference of DGCR8 (Fig. S9) for
the UGG motif in a stem context is always picked up, no matter what the length of
the sequence subject to folding. Similar considerations hold for the other four analyzed
proteins. Also the YY1 motif is robust to variations in sequence length. However, one
notices the following things: 1) For QKI and NOVA, increasing the length of the se-
quence increases the chance to find the multiloop motif, as expected; 2) For QKI with
an elongation by 10 nt, ssHMM picks up a probably unreliable exterior loop preference.
This is probably due to its very short binding sites and can be fixed by elongation of
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(a) extended by 10bp on each side (b) extended by 20bp on each side

(c) extended by 40bp on each side (d) extended by 60bp on each side

Figure S9: DGCR8 motifs recovered by ssHMM with different extension spans
Original binding sites of DGCR8 were elongated by 10, 20, 40 and 60 nt up-
and downstream prior to secondary structure prediction with RNAshapes.
Then, the resulting structure sequences as well as nucleotide sequences of
the original binding sites were used to train ssHMM. Shown are the trained
sequence-structure motifs.

(a) extended by 10bp on each side (b) extended by 20bp on each side

(c) extended by 40bp on each side (d) extended by 60bp on each side

Figure S10: DICER motifs recovered by ssHMM with different extension
spans Original binding sites of DICER were elongated by 10, 20, 40 and
60 nt up- and downstream prior to secondary structure prediction with
RNAshapes. Then, the resulting structure sequences as well as nucleotide
sequences of the original binding sites were used to train ssHMM. Shown
are the trained sequence-structure motifs.
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(a) extended by 10bp on each side (b) extended by 20bp on each side

(c) extended by 40bp on each side (d) extended by 60bp on each side

Figure S11: NOVA motifs recovered by ssHMM with different extension spans
Original binding sites of NOVA were elongated by 10, 20, 40 and 60 nt up-
and downstream prior to secondary structure prediction with RNAshapes.
Then, the resulting structure sequences as well as nucleotide sequences of
the original binding sites were used to train ssHMM. Shown are the trained
sequence-structure motifs.

(a) extended by 10bp on each side (b) extended by 20bp on each side

(c) extended by 40bp on each side (d) extended by 60bp on each side

Figure S12: QKI motifs recovered by ssHMM with different extension spans
Original binding sites of QKI were elongated by 10, 20, 40 and 60 nt up-
and downstream prior to secondary structure prediction with RNAshapes.
Then, the resulting structure sequences as well as nucleotide sequences of
the original binding sites were used to train ssHMM. Shown are the trained
sequence-structure motifs.
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(a) extended by 10bp on each side (b) extended by 20bp on each side

(c) extended by 40bp on each side (d) extended by 60bp on each side

Figure S13: YY1 motifs recovered by ssHMM with different extension spans
Original binding sites of YY1 were elongated by 10, 20, 40 and 60 nt up-
and downstream prior to secondary structure prediction with RNAshapes.
Then, the resulting structure sequences as well as nucleotide sequences of
the original binding sites were used to train ssHMM. Shown are the trained
sequence-structure motifs.

20 nt and more. All in all, these results show that ssHMM is generally robust to length
variations of the binding site sequences subject to RNA structure folding.

3.3 Classification performance comparison

As described in Material and Methods, we compared the classification performance of
ssHMM and three different setting of MEMERIS (pi=0, pi=1 and pi=100) on 23 CLIP-
Seq datasets. Two datasets, SFRS1 and DICER, were omitted from the analysis because
MEMERIS needed more than a full week to process them. The classification accuracy
of both tools was evaluated using the Area under the Precision-Recall curve (AUCPR).

Table S8 lists the AUCPR for MEMERIS and ssHMM on the 23 protein datasets.
In all settings, ssHMM outperformed MEMERIS on at least 15 out of 23 datasets,
while MEMERIS outperformed ssHMM only on 7 dataset. On average, the increases
in AUCPR of ssHMM over MEMERIS were considerably larger than the decreases,
with several gains higher than 10%. These results demonstrate that the full sequence-
structure model of ssHMM yields a substantial benefit over a sequence-only model
(MEMERIS with pi=100). The superiority of ssHMM over MEMERIS is also consis-
tent over the other two MEMERIS settings. For the majority of proteins, the structural
preference incorporated into the model of ssHMM helps to distinguish binding from non-
binding sites. However, there are a number of datasets (particularly PTBP1, TAF2N,
IGF2BP123, EZH2, FMRP and AGO2 (PARCLIP)) for which MEMERIS performs
better than ssHMM.

For precision-recall curves of all four tools (including RNAcontext and GraphProt)
refer to Additional File 4.
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Table S8: ssHMM substantially outperforms MEMERIS on the majority of our CLIP-
Seq datasets. The table lists the area under the Precision-Recall curve for
ssHMM and three different settings of MEMERIS (pi = 0, pi = 1 and pi =
100). Because ssHMM employs Gibbs sampling and results may vary from
run to run, the 5th column shows the mean and standard deviation from
3 independent executions of ssHMM. The last three columns visualize the
differences between ssHMM and MEMERIS (with parameter pi = 0, pi = 1
and pi = 100, respectively).

Protein ssHMM

TIA1 69.4% 63.5% 64.8% 75.4% ± 0.8% 6.0% 12.0% 10.7%
AGO1234 50.6% 47.8% 47.6% 55.7% ± 0.5% 5.1% 7.9% 8.1%
PUM2 63.3% 69.3% 71.5% 77.0% ± 0.6% 13.7% 7.8% 5.5%
QKI 56.1% 65.1% 69.8% 72.2% ± 0.7% 16.1% 7.1% 2.4%
MOV10 52.0% 50.7% 51.7% 56.4% ± 0.3% 4.5% 5.7% 4.7%
HuR_HITSCLIP 66.9% 65.1% 65.2% 70.5% ± 0.4% 3.7% 5.5% 5.3%
EIF4A3 54.3% 59.8% 61.7% 64.3% ± 0.7% 10.0% 4.5% 2.6%
LIN28B 49.8% 49.8% 49.9% 53.4% ± 0.5% 3.6% 3.6% 3.5%
AGO2_HITSCLIP 46.1% 49.5% 52.1% 53.0% ± 1.0% 6.9% 3.5% 0.9%
NOVA_HITSCLIP 61.2% 70.6% 71.5% 73.3% ± 0.2% 12.1% 2.7% 1.8%
YY1 78.4% 80.6% 82.4% 82.4% ± 1.9% 4.1% 1.9% 0.1%
EWSR1 60.8% 58.7% 59.3% 60.1% ± 0.2% -0.7% 1.4% 0.8%
ZC3H7B 51.8% 51.7% 50.1% 52.6% ± 0.5% 0.7% 0.9% 2.5%
CAPRIN1 52.0% 52.4% 52.3% 52.9% ± 0.6% 0.9% 0.6% 0.7%
HuR_PARCLIP 75.2% 73.3% 72.5% 73.5% ± 0.8% -1.7% 0.2% 1.0%
FXR2 53.3% 54.8% 55.5% 54.8% ± 0.8% 1.5% 0.0% -0.7%
DGCR8 66.8% 67.8% 67.2% 67.7% ± 0.1% 0.9% -0.1% 0.5%
AGO2_PARCLIP 57.1% 56.2% 58.3% 54.7% ± 0.5% -2.3% -1.5% -3.5%
FMRP 62.7% 64.1% 63.9% 61.3% ± 0.2% -1.3% -2.7% -2.6%
EZH2 66.1% 66.9% 67.2% 63.9% ± 0.9% -2.2% -3.0% -3.3%
IGF2BP123 61.0% 61.0% 60.8% 56.7% ± 0.5% -4.3% -4.3% -4.1%
TAF2N 63.8% 63.3% 63.8% 58.7% ± 0.3% -5.1% -4.6% -5.1%

MEMERIS 
(pi=0)

MEMERIS 
(pi=1)

MEMERIS 
(pi=100)

ssHMM – 
MEMERIS (pi=0)

ssHMM – 
MEMERIS (pi=1)

ssHMM – 
MEMERIS (pi=100)

3.4 Classification performance with only best shape

The structure prediction tools that we use compute several highly probable secondary
structure conformations for each RNA nucleotide sequence. By default, ssHMM samples
over all of them to obtain the best sequence-structure motif. To elucidate whether sam-
pling over all structures is superior to sampling over the optimal one only, we performed
a comprehensive comparison and executed ssHMM with both sampling variants on all
25 CLIP-Seq datasets. Because of the non-deterministic nature of the Gibbs sampler,
we ran ssHMM three times for each setting. Figure S14 shows using the example of YY1
that training on all shapes leads to a model that is better fit to the training data. When
using only the optimal shape for training, the likelihood of the data given the trained
model is substantially lower.

We also analyzed whether the sampling variant had any influence on the classification
performance. Similarly to the classification setting that is described in the manuscript,
we analyzed the Areas under the precision recall curve for all 25 CLIP-Seq datasets (see
Fig. S15). The results were ambiguous and differed a lot between the proteins. To filter
for significant differences, we performed Welch’s t-test on the two sets of AUCPRs for
each protein. After applying Benjamini-Hochberg correction to the p-values, only the
differences for NOVA and SFRS1 came out to be significant (p-values 0.04 for both).
In both cases, sampling over all shapes produced a higher AUCPR than using only the
optimal shape.

We conclude that sampling over all shapes leads to a better model fit but does not
have a major impact on classification performance. Sampling over all shapes is the
default setting of ssHMM but the user can decide to use only the optimal shape with
the command-line parameter only best shape in train seqstructhmm.
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Figure S14: Sampling over all shapes produces a model with better fit The
joined log-likelihood of the training data (YY1 CLIP-Seq dataset) given the
current model is plotted over training time (in iterations). The three runs
of ssHMM using all shapes reach a substantially better fit than the three
runs of ssHMM using only the optimal shape.
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Figure S15: Areas under the precision recall curve (AUCPR) for sampling over
all shapes versus using only the optimal shape For all 25 CLIP-Seq
datasets, points and error bars visualize the mean and standard deviation
of the AUCPR, respectively. The values were computed from three inde-
pendent training runs of ssHMM for each setting.
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3.5 Program parameters for analysis of CLIP-Seq
datasets

Tables S9-S11 list all parameters of MEMERIS, RNAcontext, and ssHMM that were used
in the analysis of the CLIP-Seq datasets. For MEMERIS and ssHMM, different config-
urations were used in the classification setting versus the motif retrieval for Additional
File 2. For GraphProt, we used the default parameters.

Table S9: Chosen parameters for execution of MEMERIS

Parameter Explanation Value for class. Value for motif retr.
-pi Pseudocount to flatten

structure prior
0, 1, 100 1

-w Motif length 6
-bfile Background distribu-

tion of nucleotides
uniform

-mod Distribution of motif
sites

one motif occurrence per sequence

Table S10: Chosen parameters for execution of RNAcontext

Parameter Explanation Value
-w Motif length range 6-6
-s Number of initializations 5

Table S11: Optimized parameters of our motif finder (ssHMM)

Parameter Value for class. Value for motif retr.
Motif length 6
Initialization Baum-Welch
Block size 1
Flexibility 10 0, 10
Termination interval 100
Termination threshold 10 5, 10

3.6 Fisher’s exact test

Table S12 lists the adjusted p-values from Fisher’s exact test on loglikelihoods of positive
and negative test sequences (and structures). Initially, all 25 protein datasets were split
into training and test data and a motif ssHMM was trained for each protein on the
training data portion. Then, the trained models were used to compute loglikelihoods
of the sequences from the test portion. To find the optimal classification cutoff on
these loglikelihoods, we chose the cutoff with the lowest p-value as obtained by Fisher’s
exact test. Finally, the p-values of the optimal cutoffs for all proteins were adjusted
using Benjamini & Hochberg correction [18]. All p-values (see Table S12) were below a
significance threshold of 0.05 which demonstrates that ssHMM can distinguish between
real binding sites and background sites.
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Table S12: Adjusted p-values from Fisher’s exact test on loglikelihoods of positive and
negative test sequences.

Protein Adjusted p-value
Ago1/2/3/4 1.24e-03
Ago2 (HITS-CLIP) 2.54e-03
Ago2 (PAR-CLIP) 4.98e-04
CAPRIN1 1.24e-02
DGCR8 <1e-16
DICER 4.78e-15
EIF4A3 <1e-16
EWSR1 <1e-16
EZH2 <1e-16
FMRP <1e-16
FXR2 3.14e-05
HuR (HITS-CLIP) <1e-16
HuR (PAR-CLIP) <1e-16
IGF2BP1/2/3 3.43e-10
LIN28B 7.21e-03
MOV10 <1e-16
Nova <1e-16
PTBP1 <1e-16
PUM2 <1e-16
QKI <1e-16
SRSF1 <1e-16
TAF2N <1e-16
TIA1 <1e-16
YY1 <1e-16
ZC3H7B 9.39e-05

3.7 Computation of motif information content

We measured the ability of ssHMM to retrieve informative motifs given a set of binding
site sequences by computing the information content of the retrieved motif model. Three
variants of the motif information content were computed on three different alphabets A:

• Information content of the sequence motif (A = {A,C,G,U})

• Information content of the structural motif (if applicable, A = {E, I, S,H,M})

• Information content of sequence and structure combined (if applicable, A = {A,C,G,U}×
{E, I, S,H,M})

Depending on the underlying alphabet A, the information content of a binding motif
position can range from 0 to log2 |A|. Consequently, the maximum information content
per position of a nucleotide sequence motif is log2 4 = 2. The maximum information
content per position of a structural motif with |A| = 5 is log2 5 ≈ 2.32 and of a sequence-
structure motif it is log2(4 ∗ 5) ≈ 4.32. To calculate the information content of a motif
position, the frequency fs of each symbol s ∈ A is required (e.g. from a PPM) [19].
Then, the Shannon entropy H and small-sample correction e of that position are defined
as

H = −
∑
s∈A

fs ∗ log2(fs) (3.1)
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and

e =
1

ln2
∗ |A| − 1

2n
. (3.2)

Finally, the information content of that position can be computed as [19]

R = log2(|A|)− (H + e). (3.3)

We distinguish two ways of calculating the information content: 1) Information con-
tent from the top sequences, and 2) Information content directly from the model.

3.7.1 Information content from the top sequences

GraphProt computes sequence and structure logos from the 1,000 highest-scoring k-mer
nucleotide sequences and structure profiles. From these 1,000 sequences, the frequency
fs of each symbol s ∈ A in each motif position can be calculated by counting. These
frequencies serve as input to compute the information content as described above.

To ensure comparability, we followed a similar procedure to obtain the information
content of sequence motifs produced by our motif finder. We calculated the information
content on the 1,000 sequences with the best score given our trained motif model. First,
the estimated motif start and best structure of each of these sequences was obtained
from the trained model. They pointed directly to each sequence’s motif occurrence which
made it possible to align the 1,000 motif occurrences (sequence and structure separately).
Then, the frequencies were counted and the three different types of information content
(sequence, structure and combined sequence-structure) were computed.

3.7.2 Information content directly from the model

RNAcontext directly produces a PPM representing its inner model. To compare against
RNAcontext, we obtained a second set of information contents directly from the ssHMM.
First, a sequence motif (or PPM) was extracted from the trained ssHMM by averaging
over all paths in the model. The average was weighted by the transition probabilities
so that more likely structural contexts have a bigger impact on the sequence motif than
less likely contexts. Then, the information content was computed.

The information contents calculated from the top sequences are naturally larger than
those directly from the model. The reason is that those sequences, which are most likely
given the model, are more homogeneous than the set of all sequences. Consequently,
the resulting motif is more clearly defined.
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4 Comparison of runtime

To assess how the runtimes of GraphProt, RNAcontext, MEMERIS and the ssHMM
progress with increasing input size, we took runtime measurements with GNU time
1.7, the Linux timekeeping tool. We measured the runtime (User time) of all four
tools on ten different datasets containing 200, 400, ... and 2,000 RNA sequences. The
datasets were sampled from the synthetic dataset H.D. For each tool and dataset, 3
independent measurements were taken and the mean of the three values was reported.
All measurements were taken on a Linux machine with 8 cores running at 3.40GHz (Intel
i7-3770) and 7.6 GB RAM.

We measured the total runtimes required to obtain motifs from sequence files. Thus,
the runtimes include both structure prediction and sequence logo computation if these
are separate from the training step. Figure S16 shows the results for ssHMM and
GraphProt only. The results of all four tested tools are plotted in the Results section of
the paper.

Figure S16: ssHMM scales approximately linearly on the input size. The CPU time in
seconds (y-axis) is plotted against the number of input sequences (x-axis).
Only the two fastest tools GraphProt and ssHMM are shown.
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