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ABSTRACT 

The transcription factor NF-κB controls key features of hair follicle (HF) development, but the 

role of NF-κB in adult HF cycle regulation remains obscure. Using NF-κB reporter mouse 

models, strong NF-κB activity was detected in the secondary hair germ (SHG) of late telogen and 

early anagen HFs, suggesting a potential role for NF-κB in HF stem/progenitor cell activation 

during anagen induction. At mid-anagen, NF-κB activity was observed in the inner root sheath 

(IRS) and unilaterally clustered in the HF matrix, which indicates that NF-κB activity is also 

involved in hair fiber morphogenesis during HF cycling. A mouse model with inducible NF-κB 

suppression in the epithelium revealed pelage hair-type-dependent functions of NF-κB in cycling 

HFs. NF-κB participates in telogen-anagen transition in awl and zigzag HFs, and is required for 

zigzag hair bending and guard HF cycling. Interestingly, zigzag hair shaft bending depends on 

non-canonical NF-κB signaling, which previously has only been associated with lymphoid cell 

biology. Furthermore, loss of guard HF cycling suggests that in this particular hair type NF-κB is 

indispensable for stem cell activation, maintenance and/or growth. 
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INTRODUCTION  

The hair follicle (HF) undergoes lifelong tissue remodeling cycles which involve intensive 

molecular interactions between the epithelial and mesenchymal part of the HF, and between the 

HF and its macroenvironment (Plikus and Chuong, 2014, Schneider et al., 2009). Molecular 

regulators of the hair cycle include WNT, SHH, TGF-β2, FGFs and BMP signals, all of which 

also play important roles in HF development (Choi et al., 2013, Hsu et al., 2014, Oshimori and 

Fuchs, 2012, Plikus et al., 2008, Schneider et al., 2009).  

In HF development, NF-κB activity is required for primary guard HF formation and zigzag hair 

fiber morphogenesis downstream of the TNF family member EDA-A1 and its receptor EDAR 

(Schmidt-Ullrich et al., 2006). EDA-A1 and EDAR proteins are also expressed in adult cycling 

pelage HFs, suggesting possible functions for EDA-A1/EDAR signaling in the hair cycle 

(Elomaa et al., 2001, Fessing et al., 2006). Furthermore, during hair follicle development NF-κB 

orchestrates WNT, BMP and SHH signaling, all of which also play important roles in the hair 

cycle (Bazzi et al., 2007, Fliniaux et al., 2008, Mou et al., 2006, Pummila et al., 2007, Schmidt-

Ullrich et al., 2006, Tomann et al., 2016, Zhang et al., 2009). Recently, extensive NF-κB target 

gene analyses revealed that NF-κB controls the expression of transcription factors Sox9 and Lhx2 

(Tomann et al., 2016) which regulate HF stem cell (HFSC) maintenance and activation 

(Folgueras et al., 2013, Kadaja et al., 2014, Rhee et al., 2006, Vidal et al., 2005). Together, these 

observations strongly suggest a role for NF-κB in the hair cycle. However, the precise functions 

and regulation of NF-κB in the hair cycle remain obscure. 

To address this question, HF cycle-associated NF-κB activity was examined using NF-κB 

reporter mice (Tomann et al., 2016), which revealed activity in key regulating sites. To analyze 

NF-κB functions in the hair cycle of all pelage HF types, independent of morphogenetic defects, 
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we generated mice with doxycycline-inducible NF-κB suppression in the epithelium. We show 

that NF-κB promotes anagen induction and growth of awl and zigzag follicles and is required for 

guard HF cycling. Moreover, we verify a requirement for non-canonical NF-κB signaling in hair 

shaft bending. 
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RESULTS 

NF-κB activity is detected in the SHG, IRS and anagen hair bulb 

To investigate NF-κB functions in the hair cycle, two NF-κB reporter mouse lines that use either 

β-galactosidase activity (κ-Gal; Figure 1a) or EGFP (κ-EGFP; Figure 1a-b, Supplementary 

Figure S1 online) as read-out for NF-κB activity were analyzed for reporter gene expression at 

successive hair cycle phases (Schmidt-Ullrich et al., 1996, Tomann et al., 2016).  

At the second postnatal telogen phase (P53), strong 4-chloro-5-bromo-3-indoyl β-D-

galactopyranoside (X-Gal) staining for β-galactosidase and EGFP expression were observed in 

the secondary hair germ (SHG), the lower bulge, and around the sebaceous gland (SG) (Figure 

1a). In early anagen follicles, one to three days after back skin depilation to induce anagen, NF-

κB activity was observed in the SHG (d1, d3; Figure 1b). At mid-anagen, five days after 

depilation (d5), most activity co-localized with nuclear phospho-p65 in a unilateral cluster of HF 

matrix cells (Figure 1b, d), and in the inner root sheath (IRS) (Figure 1b). The distinctive NF-κB 

activity in the SHG and lower bulge suggested a role for NF-κB-mediated signaling in HFSC 

activation during anagen induction and/or progenitor cell proliferation to form the anagen HF 

matrix. Note that NF-κB activity was observed in the SHG, the SG area, IRS and the hair bulb of 

anagen follicles following depilation as well as in the absence of depilation (Figure 1a-b, 

Supplementary Figure S1). Furthermore, we did not detect any increased apoptosis in K5-∆N 

mice when compared to controls at d1 – d5 (data not shown). This demonstrates that in our 

experimental settings NF-κB activity in anagen HFs is independent of inflammatory and cell 

death signals which may be caused by depilation (Chen et al., 2015, Ito et al., 2002). 
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At d16, when hair follicles begin to enter catagen, some residual NF-κB activity was observed in 

the IRS (Figure 1d). In telogen HFs (d21) NF-κB activity was again detected in the SGH (Figure 

1d). mRNA expression of the bona fide NF-κB target gene Nfkbia (IκBα) at postnatal days P25 

(anagen I) to P30 (full anagen) confirmed NF-κB activity in the SHG, IRS and unilaterally in the 

matrix (Supplementary Figure S2). As expected, Nfkbia expression was absent in ∆N and Edar-

mutant mice (downless, dl; Supplementary Figure S2).  

Unilateral NF-κB reporter expression in the matrix from d5 (anagen III/IV) onwards was 

reminiscent of the expression of known regulators of hair shaft bending (Hammerschmidt and 

Schlake, 2007, Schlake, 2005, 2006), suggesting that NF-κB also controls bending in adult HFs 

(see below). 

 

In early anagen HFs NF-κκκκB activity co-localizes with expression of SHG markers  

To further characterize HF cells with active NF-κB, expression of various markers for quiescent 

and activated HFSC, as well as for transit-amplifying cells (TAC) and other HF keratinocytes 

was analyzed in κ-EGFP mice (Figure 2 a-c). For this purpose co-expression of EGFP with 

transcription factors NFATc1, SOX9, LHX2 or TRPS1, or with Keratin 15 (K15), LGR5, SHH 

or EDAR was examined (Figure 2 a-c).  

NF-κB activity was not observed in NFATc1-expressing quiescent bulge HFSC (Figure 2a). 

However, in activated bulge HFSC progenitors of the SHG NF-κB activity co-localized with K15 

and LHX2 expression, and with some SOX9-expressing cells (Figure 2a; d3, early anagen). Lhx2 

and Sox9 were identified as NF-κB target genes (Tomann et al., 2016), and both markers are 

essential for maintenance of HFSC and the stem cell niche (Folgueras et al., 2013, Nowak et al., 
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2008). However their strong expression in the SHG suggests an additional role in anagen 

induction/HFSC activation (Tornqvist et al., 2010). Furthermore, expression of intestinal and 

cycling HF stem cell marker LGR5 (Barker et al., 2007, Jaks et al., 2008) co-localized with NF-

κB activity in the SHG (Figure 2b). Strong NF-κB activity was also observed in TACs together 

with SHH and EDAR expression (Figure 2a). EGFP/EDAR co-expression was restricted to the 

TAC area, which suggests that in TACs, NF-κB activity may be regulated by EDA-A1/EDAR 

signaling (Figure 2a). In summary, these results indicate a potential novel role for NF-κB in 

HFSC activation and TAC proliferation during anagen induction (see Suppl. Discussion).  

 

In mid anagen NF-κκκκB activity co-localizes with hair shaft bending markers 

At mid-anagen (d5), when NF-κB activity shifted mainly to the HF matrix (Figure 1b), EGFP 

expression no longer co-localized with K15 or SOX9 expression (Figure 2c). However, co-

expression of EGFP with EDAR, LHX2 and SHH remained and was confined unilaterally to the 

matrix (Figure 2c). TRPS1, that is a potential target gene of NF-κB in guard HF induction 

(Tomann et al., 2016) and is expressed in proliferating and differentiating cells of the lower HF 

(Fantauzzo et al., 2008), was also partially co-expressed with EGFP unilaterally in the HF matrix 

(Figure 2c). A role for SHH in hair shaft bending was suggested previously (Hammerschmidt and 

Schlake, 2007), however, the function of LHX2 and TRPS1 in hair shaft bending remains 

unknown.  
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NF-κB participates in anagen induction  

Based on the localization of NF-κB activity in cycling HFs, we next examined hair cycle 

induction and progression. As ∆N mice only develop an intermediate awl hair type (Schmidt-

Ullrich et al., 2001), we generated K5rtTA;tetO-Cre;loxP∆N mice in which NF-κB activity can 

be conditionally suppressed in the epithelium including HFs by oral administration of 

doxycycline (dox) (Supplementary Material and Discussion, Figures S3a-d, S4a-b). K5rtTA;tetO-

Cre;loxP∆N mice allow analyzing NF-κB functions in the hair cycle for all pelage hair types.  

In dox-treated K5rtTA;tetO-Cre;loxP∆N mice (here K5-∆N), the transition from telogen to 

anagen was delayed, as indicated by a reduced hair cycle score (HCS) and percentage of HFs that 

had entered anagen I when compared to untreated K5rtTA;tetO-Cre;loxP∆N mice (controls) 

(Figure 3a-b, Supplementary tables S1 and S2). At mid-anagen (d5) K5-∆N HFs continued to 

exhibit a decreased HCS and percentage of HFs in anagen IIIb-IV when compared to controls 

(Figure 3a-b, Supplementary tables S1 and S2).  

At d10, HFs of K5-∆N and control mice were indistinguishable in terms of hair cycle stage, with 

equal HCS and percentage of anagen IV-VI HFs in K5-∆N mice and controls (Figure 3a-b, 

Supplementary tables S1 and S2). This indicated that once anagen has developed, the HFs 

completed anagen normally. 

Due to delayed anagen development, catagen entry (d16) and progression (d18) and telogen 

transition (d25) were again retarded in K5-∆N mice when compared to controls (Figure 3a-b, 

Supplementary tables S1 and S2). This was supported by an overall reduced HCS and percentage 

of HFs in distinct catagen phases and in telogen (d25) for K5-∆N mice compared to controls 

(Figure 3a-b, Supplementary tables S1 and S2).   
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These data suggest that NF-κB assists anagen induction (Figure 3c). However, the overall delay 

in hair cycle progression and completion in K5-∆N mice is due to the delayed telogen-anagen 

transition (see Figure 3c). Note that ∆N mice showed a reduced HCS at d2 and d5 and delayed 

anagen induction in the absence of depilation comparable to dox-treated K5-∆N mice (data not 

shown and Supplementary Figure S5). Importantly, ∆N mice only develop awl and zigzag 

follicles (Schmidt-Ullrich et al., 2001), which suggests that the hair cycle defects observed in K5-

∆N mice may particularly affect these two HF types. 

 

Proliferation of HFSC progenitors and HF and fiber length partly depend on active 

NF-κκκκB  

In search of the reason for delayed anagen induction in K5-∆N mice, we analyzed proliferation in 

anagen follicles, and HF and fiber length (Figure 4). At d1 (anagen I), immunoreactivity for 

proliferation marker Ki67 was decreased by 50% in the SHG of K5-∆N mice when compared 

with controls (Figure 4a). This finding partly explains the delayed anagen development in K5-∆N 

mice and suggests a direct or indirect role for NF-κB in HFSC progenitor proliferation.  

However, at d10 Ki67 staining showed abundant expression in K5-∆N and control hair bulbs 

(Figure 4b). Furthermore, neither BrdU incorporation nor TUNEL staining revealed any 

differences between K5-∆N and controls at d10 (data not shown). These data suggest that once 

anagen has been initiated, NF-κB is no longer required for maintaining cell proliferation in the 

hair bulb. 

Anagen progression is characterized by increasing HF and fiber length (Schneider et al., 2009). 

At d5, K5-∆N mice showed a reduced HF length when compared with controls (Figure 4c), and at 
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d18, hair fiber length was decreased by 15%-20% in K5-∆N mice when compared with controls 

(Figure 4d). Because of unaltered anagen progression (see above) the mechanism behind the 

reduced HF growth and fiber length in K5-∆N mice remains unknown. Possible reasons may be 

reduced/delayed hair shaft production or altered hair matrix keratinocyte differentiation in K5-∆N 

mice. 

 

Non-canonical NF-κB signalling is required for hair shaft bending 

In ∆N mice zigzag fibers lack their characteristic bending (Schmidt-Ullrich et al., 2001). A 

potential role for NF-κB in hair shaft bending during the hair cycle was thus investigated and 

revealed ≥ 90% straight awl-type hair fibers in K5-∆N mice at d10 (Figures 5a, 6c). 

Quantification of hairs at d18, d21 and d25 showed strongly reduced numbers of zigzag hairs and 

a proportional increase in awl-type hairs (Figure 5b).  

Hair shaft bending appears to be regulated by asymmetric proliferation rates in the bulb (Schlake, 

2007). In line with this, mRNAs of Eda-A1, of zigzag HF marker Krox20 and of NF-κB targets 

Nfkbia, Shh, Wnt10a, Wnt10b and Dkk4, as well as of ctnnb1 and Ccnd1 were expressed 

unilaterally in hair bulbs of controls at P30 or d10, but were absent in K5-∆N HFs (Figure 5c, 

Supplementary Figure S6a-b). However, in accordance with maintained zigzag follicle density in 

K5-∆N and ∆N mice, expression of zigzag marker Igfbp5 remained unaltered (Figure 5c, 

Supplementary Figure S6a). It has previously been suggested that hair shaft bending is regulated 

by WNT, EDA-A1 and downstream SHH signaling (Hammerschmidt and Schlake, 2007). Our 

data indicate that in the HF cycle EDA-A1 signaling also controls NF-κB activity to generate hair 

shaft bending. While overall WNT activity in the hair bulb of K5-∆N mice was unaltered 

compared to controls, unilateral WNT activity and Wnt expression were absent (Figure 5c, 
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Supplementary Figure S6a and S7), suggesting that EDA-A1/EDAR/NF-κB controls SHH and 

WNT signaling in hair shaft bending.  

Lack of zigzag hairs in Lymphotoxin-β (LT- β) KO mice suggested a possible involvement of 

non-canonical NF-κB signaling (Cui et al., 2006). Canonical NF-κB signaling regulates 

expression of non-canonical NF-κB subunits RelB and p100/p52, and of LT-β  (Mordmuller et 

al., 2003, Sun, 2012, Yilmaz et al., 2014). To examine whether zigzag hair formation in K5-∆N 

mice also depends on non-canonical signaling, protein and/or mRNA expression of RelB and 

p100 (Nfkb2) was analyzed in anagen HFs at d5 (Figure 5d, Supplementary Figure S8). RelB 

protein and Nfkb2 and RelB mRNAs displayed unilateral expression in controls, but were absent 

in K5-∆N mice (Figure 5d, Supplementary Figure S8a). p105 mRNA (Nfkb1) and protein 

(NFKB1) expression was also detected unilaterally in the hair bulb of controls and was absent in 

K5-∆N (Supplementary Figure S8b). In line with K5-∆N mice, Nfkb1 KO mice (Nfkb1
-/-

) did not 

generate any zigzag hairs (Figure 5a; Supplementary Figure S8c).  

To demonstrate a requirement of non-canonical NF-κB signaling in hair shaft bending, RelB was 

deleted in an inducible manner in epithelial and HF keratinocytes (K5-RelB
-/-

; Supplementary 

Material). Macroscopic analysis revealed the formation of only straight guard and awl-type hairs 

in K5-RelB
-/-

 mice (Figure 5e).  

These data confirm a role for non-canonical NF-κB signaling in hair shaft bending during the hair 

cycle. Non-canonical NF-κB most likely is activated by LTβ (Cui et al., 2006) that is upregulated 

by canonical EDA-A1/EDAR/NF-κB.  
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NF-κκκκB activity is essential for maintenance of guard HFs  

∆N mice do not develop primary guard HFs (Schmidt-Ullrich et al., 2001). Therefore we 

hypothesized that upon inducible suppression of epithelial NF-κB activity, guard HF cycling 

might also be affected. This hair type only represents 2 - 10% of all pelage hairs and there are no 

adequate molecular markers to distinguish guards from large awl HFs. We thus relied on 

counting plucked guard hair fibers and on morphological identification of guard HFs in 

histological sections at d5 (Chi et al., 2013, Sundberg et al., 2005). Compared with controls, a 

significant reduction of guard hair fibers was observed in depilated K5-∆N mice and in K5-∆N 

mice that were treated with dox for 6-7 months in the absence of depilation (Figure 6a and b). 

Unlike in ∆N mice, loss of guard and zigzag hairs in K5-∆N mice was not 100% which indicates 

that Cre-dependent depletion of NF-κB activity in K5-∆N epithelial keratinocytes is mosaic 

(Figure 5a and b).  

To confirm reduced guard hair fiber numbers, follicle morphology was analyzed in back skin 

sections (Figure 6c). As expected, in most control sections very large HFs with two sebaceous 

glands were observed (Figure 6c). In contrast, in K5-∆N mice the percentage of guard HFs was 

significantly lower (Figure 6c). This indicates that NF-κB is required for guard HF maintenance 

during the adult hair cycle, but the molecular and physiological mechanisms remain unknown 

and may differ from guard HF development. Interestingly, K5-RelB
-/-

 and Nfkb1 KO mice had 

normal numbers of guard hairs which suggests that only canonical NF-κB signaling is required 

for guard HF cycling (Figure 5e, Supplementary Figure S8c). 
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DISCUSSION 

 

NF-κB plays an important role in HF development, but its role in mature HF biology has 

remained unknown. Here we show that NF-κB is strongly activated in the SHG, IRS and in the 

hair bulb and provide evidence for involvement of NF-κB signaling in anagen induction. This 

role appears to be confined to awl and zigzag HFs, which are the only follicle types formed in ∆N 

(Schmidt-Ullrich et al., 2001) and K5-∆N mice. Hair cycle-associated NF-κB activity is also 

required for hair shaft bending and for guard HF maintenance, which recapitulates NF-κB 

functions in embryonic HF development (Schmidt-Ullrich et al., 2001). This supports an 

important previous hypothesis that many signaling pathways which play a role in embryonic HF 

morphogenesis, including NF-κB, regulate analogous processes in anagen development and hair 

cycle progression (Schneider et al., 2009). In agreement with this, the SHG is often termed 

“placode” of the adult follicle, with both structures revealing strong WNT (Myung et al., 2013, 

Reddy et al., 2001) and NF-κB activity.  

The mechanism behind the loss of guard HFs in K5-∆N mice remains obscure. In early HF 

development NF-κB regulates signals (WNT, BMP inhibitors, SHH) that prevent premature 

placode keratinocyte differentiation and promote placode growth (Mou et al., 2006, Tomannet al., 

2016). Thus, NF-κB activity in the SHG might prevent premature differentiation of the HFSC 

progeny and promote SHG cell proliferation. A significant reduction in Ki67-positive cells in the 

SHGs of K5-∆N mice supports this hypothesis. This putative NF-κB function might be required 

particularly for guard HFs, which fail to undergo anagen development following depilation in 

K5-∆N mice. Furthermore, the recently identified NF-κB/LHX2/TGFβ2 signaling axis may not 

only promote placode down-growth (Tomann et al., 2016), but also SGH proliferation and 
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growth. By contrast, no long-term loss of awl and zigzag follicles was observed in K5-∆N mice 

(Figure 6b), suggesting that other signaling factors are able to compensate for the lack of NF-κB 

activity in the SHG of these HF types. Interestingly, unique lack of murine primary guard and 

human scalp HFs upon loss of EDA-A1/EDAR/NF-κB signaling (Doffinger et al., 2001, Monreal 

et al., 1999, Schmidt-Ullrich et al., 2001, Smahi et al., 2002) suggests analogies between these 

two follicle types regarding their molecular regulation and possibly their evolutionary origin. In 

human mid-anagen HFs NF-κB activity is required for anagen maintenance and, similarly to 

murine HFs, for hair fiber elongation (Kloepper et al., 2014). 

We show here that non-canonical NF-κB signaling is a key regulator of hair shaft bending since 

zigzag hair formation is selectively lost when non-canonical signaling is blocked in the 

epithelium. Nevertheless, ∆N, K5-∆N, Nfkb1 KO and K5-RelB
-/-

 mice share the same phenotype 

in terms of hair bending, because canonical NF-κB signaling is required to activate non-canonical 

signaling (Mordmuller et al., 2003). Interestingly, loss of zigzag hairs was also observed in mice 

that overexpress BMP antagonist Noggin (Sharov et al., 2006). This loss was due to an increased 

hair follicle size which indicates that BMP regulates hair bulb cell numbers (Sharov et al., 2006). 

In contrast, K5-∆N and ∆N mice have mostly small-sized hair bulbs which would point to an 

increased number of zigzag hairs. We and others show that canonical/non-canonical NF-κB 

rather specifies hair fiber shape by regulating hair shaft axial polarity and asymmetric matrix cell 

proliferation downstream of EDA-A1 and LTβ signaling (Cui et al., 2006, Hammerschmidt and 

Schlake, 2007). Thus, hair fiber shape appears to be determined by hair bulb size, DP cell 

numbers and by axial polarity of the hair shaft and asymmetric proliferation in the hair matrix 

(Chi et al., 2013, Hammerschmidt and Schlake, 2007, Sharov et al., 2006). Finally, asymmetric 

matrix proliferation and a similar mRNA expression pattern of known NF-κB target genes, 
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including Nfkbia, Wnt10a and 10b, Shh, Dkk4, and Edar in human (Kloepper et al., 2014) and 

murine mid-anagen HF bulbs suggest related mechanisms behind human curly and murine zigzag 

hair formation  (see also (Schlake, 2007, Thibaut et al., 2005)). 

This study supports a role for NF-κB in the murine hair cycle, and at the same time leaves a 

number of very interesting unanswered questions to be addressed in the future. These include the 

role of EDA/EDAR signaling in NF-κB regulation during the hair cycle and in TACs, the 

functions of the NF-κB/LHX2/TGFβ2 signaling axis in HF growth, and a role for NF-κB in 

human curly hair. Importantly, on the basis of our previous observation that NF-κB regulates the 

expression of stem cell markers such as Lhx2 and Sox9 (Tomann et al., 2016) and that NF-κB 

appears to be indispensable for stem cell activation, maintenance and/or growth in guard HF, it 

will be highly interesting to explore a potential role for NF-κB in stem cell biology of other 

epithelial appendages and tissues, as well as in cancer.  
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MATERIALS AND METHODS 

Mice 

Animal care and experimental protocols were approved by the Berlin Animal Review Board 

(Reg. G 0077/08, G 0082/13, G 0358/13 and X 9013/11). Mice were genotyped by genomic 

DNA PCR. See Supplementary Material for further detailed information. 

Hair cycle analysis 

Sagittal sections of mid-dorsal skin samples taken at indicated time points after depilation  were 

analyzed according to (Muller-Rover et al., 2001). For quantification of hair types and calculation 

of hair cycle score (HCS), hair fiber and HF length see Supplementary Material. Statistical 

analysis was performed using unpaired Student’s t-test. 

Histology, X-Gal staining, immunofluorescence and in situ hybridization 

Depilated back skin samples were fixed in 4% paraformaldehyde/MEM (immunofluorescence) or 

in Bouin’s fixative (in situ hybridization) overnight at 4°C, dehydrated and paraffin-embedded. 

Routine H&E staining was done for morphological evaluation. Immunofluorescence and in situ 

hybridization on paraffin sections were performed as described (Zhang et al., 2009). For 

antibodies and in situ hybridization probes see Supplementary Material. DAPI was used for 

nuclear counterstain. For X-Gal staining, fresh tissue was embedded in TissueTek, and 5 – 10µm 

cryosections were treated as described (Zhang et al., 2009). Images were obtained using 

conventional or confocal Zeiss microscopes. 
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FIGURE LEGENDS 

Figure 1. NF-κκκκB is active in all hair cycle phases. (a) Telogen HFs in κ-Gal (left panel) and κ-

EGFP (right panel) mice before depilation (P53). (b) – (d) Sagittal sections of κ-EGFP reporter 

mice showing EGFP (b, c, d) and p65 (d) expression in anagen (b, d), catagen and telogen (c) 

HFs at indicated time points after depilation (d1, 3, 5, 16 and 21). Model below (a) and (b) 

summarizes NF-κB activity (red) during the hair cycle. Red arrows/arrowheads indicate NF-κB 

activity, green arrowhead (d) nuclear p65 expression, yellow arrowheads (d) co-localization of 

EGFP and nuclear p65 expression. APM, arrector pili muscle; B, bulge; DP, dermal papilla; HF 

KC, HF keratinocytes; IRS, inner root sheath; SG, sebaceous gland; SHG, secondary hair germ. 

Scale bars = 50µm (a – c), 100µM (d). 

Figure 2. NF-κκκκB activity co-localizes with known HF markers. (a) Sagittal sections of κ-

EGFP reporter mice at d3 showing anagen I and II HFs stained with antibodies as indicated in 

each panel. (b) Sagittal section of κ-EGFP reporter mice at P53 (telogen) using antibodies 

against EGFP and LGR5. (c) Sagittal sections of κ-EGFP reporter mice at d5 stained with 

antibodies as indicated in each panel. Blue and green arrows/arrowheads indicate expression sites 

of the corresponding HF marker, red arrows/arrowheads mark NF-κB activity, and yellow 

arrows/arrowheads indicate co-localization of NF-κB activity with HF marker. B, bulge; DP, 

dermal papilla; SG, sebaceous gland; SHG, secondary hair germ; TACs, transit-amplifying cells. 

400x magnification. 

Figure 3. Delay in anagen development and hair cycle progression in K5-∆∆∆∆N mice. (a) 

Hematoxylin-stained sagittal sections compare HFs at different stages of the hair cycle in 

K5-∆N and control mice: d1 – d3, early anagen; d5, mid-anagen; d10, late anagen; d16, early 
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catagen; d18, mid-catagen; d25, telogen. (b) Quantification of HFs in distinct hair cycle phases 

and HCS analysis in K5-∆N and control mice (see Supplementary Material for further 

information). (c) Schematic illustration shows delayed HF cycle progression in K5-∆N mice 

when compared with controls. Scale bars = 50 µm. *; p<0.05, **; p<0.01, error bars = SEM. 

DP, dermal papilla; HS, hair shaft; IRS, inner root sheath. 

Figure 4. K5-∆∆∆∆N mice reveal shorter HFs and fibers. (a) Left panels: Ki67 staining on 

sagittal sections of K5-∆N (n=2) and control mice (n=2) at d1. Scale bars = 50µm. Right panel: 

Quantification of Ki67+ cells/HF. *: p<0.05, error bars = SEM. (b) Ki67 staining on sagittal 

sections of K5-∆N (n=2) and control mice (n=2) at d10. Scale bars = 50µm. (c) Hematoxylin-

stained HFs (200x magnification) and HF length measurements of K5-∆N (n=3) and control mice 

(n=3) at d5. *: p<0.05, error bars = SEM. (d) Plucked hairs (left panels) and measurements of 

hair fiber length (right panel) of K5-∆N (n=2) and control mice (n=2) at d18. *: p<0.05, error 

bars = SEM.  Scale bars = 0.5mm. 

Figure 5. Non-canonical NF-κκκκB signalling is required for hair shaft bending. (a) Plucked 

hairs at d18. (b) Awl/intermediate and zigzag hair quantification in K5-∆N and control mice at 

d18, d21 and d25. *: p<0.05; ***: p≤0.001; error bars = SEM. (c) In situ hybridization (ISH) 

using Eda-A1, Nfkbia (IκBα), Shh, Wnt10b, Dkk4 and Igfbp5 riboprobes on sagittal sections 

of K5-∆N and control mice at d10. (d) Upper panels: RELB protein expression in anagen HFs 

of K5-∆N and control mice. Lower panels: ISH with RelB riboprobe. (e) Overview of pelage 

hairs of untreated (control) and dox-treated K5-RelB
flox/flox

 mice (K5-RelB
-/-

) at d18. Black 

arrows indicate mRNA/protein expression. au = auchene, aw = awl, g = guard, z = zigzag, i 

= intermediate awl. Scale bars = 50µm. (a) and (e), 64x magnification. 
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Figure 6. K5-∆∆∆∆N mice have decreased numbers of guard HFs. (a) Quantification of plucked 

hairs of K5-∆N (n=7) and control mice (n=6) 18, 21 and 25 days after depilation. (b) Long-term 

dox treatment (6-7 months) without depilation of K5-∆N (n=6) and untreated control mice (n=4) 

resulted in significantly reduced numbers of guard and zigzag hairs. (c) Images (left panels) and 

quantification (right panels) of guard HFs on Hematoxylin-stained sagittal sections of K5-∆N 

(n=3) and control mice (n=3) at d5. 100x magnification. 40 sections/untreated or dox-treated K5-

∆N mouse were analyzed. Guard HFs were identified by shape and size. Note a significant 

reduction of guard HFs in K5-∆N (30.6% ± 18.1%) vs. control mice (92.7% ± 8.0%). *: p≤0.05, 

**: p≤0.005, ***: p≤0.0005. Error bars = SEM. 
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Supplementary Material 

Supplementary Figures and Tables 

Supplementary Figure S1. 

In the absence of depilation (natural hair cycle) NF-B activity is also observed in the SHG, 

IRS and around the sebaceous gland. Represenative immunofluorescence images of sagittal 

sections of -EGFP reporter and control littermates (n=2/day/genotype) showing EGFP 

expression in late telogen (at P20), early anagen (at P21, 22 and 23) and mid-anagen (at P27) 

HFs. Scale bars for P20-P23 = 20m; scale bar of middle panel of P23: 10m; scale bars for P27 

= 50m. DP, dermal papilla; epi, epidermis; IRS, inner root sheath; SG, sebaceous gland; SHG, 

secondary hair germ; TAC, transit-amplifying cell. Note that NF-B activity in the sebaceous 

gland area strongly diminished at mid-anagen. 
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Supplementary Figure S2. 

Further evidence for NF-B activity in the murine hair follicle (HF). In situ hybridization on 

sagittal sections of N (ubiquitously suppressed NF-B activity; (Schmidt-Ullrich et al., 2001)), 

Edar-mutant (dl, downless; B6C3Fe-a/a-Edardl-j/J, obtained from Jackson Laboratories; see 

below in Supplementary Information, Material and Methods) and the corresponding littermate 

control mice (n=3 of each genotype and corresponding control) using an antisense riboprobe for 

the NF-B target gene Nfkbia (IB) at indicated postnatal days (P25, P28 and P30). Arrows 

point to Nfkbia mRNA expression in SHG, hair bulb and IRS of controls. As expected, Nfkbia 

mRNA expression was absent in N mice. 200x magnification. 
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Supplementary Figure S3.  

Inducible doxycycline (dox)-dependent NF-B suppression in epithelial keratinocytes of 

adult mice. (a) Scheme for dox-inducible expression of super-repressor IBN. Double 

transgenic (K5rtTA;tetO-Cre) mice were mated with mice carrying a floxed IBN allele in the 

-catenin locus (ctnnb1) (Schmidt-Ullrich et al., 2001). In triple transgenic offspring (K5-N) 

Cre-mediated IBN expression is induced upon doxycycline (dox) treatment in epithelial 

keratinocytes. (b) Expression of IBN protein, which lacks 71 amino acids in the N-terminus 

(35kDa) was verified by Western blotting using whole skin extracts of dox-treated (referred to as 

K5-N) and untreated K5-N mice (referred to as control) at different time points after 
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depilation (d1 and 2) and antibodies against C-term IB or ERK1/2 (control). Full length IB: 

37kDa. n=2-4 N, dox-treated and untreated K5-N mice. (c) Representative 

immunofluorescence images of sagittal back skin sections of dox-treated and untreated (controls) 

K5-N;-EGFP mice (n=3) 3 days after depilation using an anti-EGFP antibody (red) and 

nuclear DAPI staining. As expected, NF-B activity was absent in HFs of dox-treated K5-N;-

EGFP mice when compared with untreated controls 3 days after depilation (early anagen). DP, 

dermal papilla; der, dermis; epi, epidermis; SG, sebaceous gland; SHG, secondary hair germ. (d) 

Outline of experimental design (see also main text and below). 
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Supplementary Figure S4. 

Further proof of suppressed NF-B activity in epithelial keratinocytes of K5-N mice: 

Strongly reduced or absent mRNA and protein expression of previously described NF-B 

target genes Nfkbia, Lhx2 and Shh (Schmidt-Ullrich et al., 2006, Tomann et al., 2016, Zhang et 

al., 2009). (a) Representative images of in situ hybridization on sagittal back skin sections of 

dox-treated (K5-N; n=3) and untreated (control; n=3) K5-N mice 3 days after depilation (d3) 

using antisense riboprobes for Nfkbia (IB), Shh and Lhx2. As expected, the Lhx2 sense 

riboprobe (Lhx2, s) did not hybridize. 100x, and 630x magnification (Nfkbia). Arrows point 

to Nfkbia, Lhx2 and Shh mRNA expression in the SHG. Note that there still is very weak 

Nfkbia and some Lhx2 mRNA expression in K5-N mice (arrows). (b) Representative 

immunofluorescence images using an antibodies against LHX2 AND SHH on sagittal skin 

Page 34 of 55



6 
 

sections of K5-N (n=3) and control mice (n=3) 3 days after depilation (d3). 200x magnification. 

Arrows point to expression sites of LHX2 and SHH protein in the SHG. Reduced LHX2 or 

absent SHH protein expression in K5-N mice corresponds to reduced Lhx2 or strongly reduced 

Shh mRNA expression seen in (a).  
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Supplementary Figure S5.   

Natural anagen induction is also delayed in mice with ubiquitous suppression of NF-B 

activity (N) in the absence of depilation. Representative images of HE-stained back skin 

sections of N mice (n=3) and control littermates (n=3) at indicated time points. P15: 50x 

magnification, P17 – P25: 100x magnification. Note that no differences were observed in catagen 

phase between N mice and controls. 
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Supplementary Figure S6.   

Expression analysis of HF bending markers. (a) In situ hybridization on sagittal back skin 

sections of N and control littermates (n=3/3, control/N) at postnatal day P30, and dox-

treated (K5-N) and untreated (control) K5-N mice (n=3/3, control/K5-N) 10 days after 

depilation (d10) using antisense riboprobes for Krox20 and Igfbp5. 100x and 200x 

magnification. (b) mRNA expression of known direct (Wnt10a, Wnt10b, Shh) and indirect 

(Ccnd1) NF-B target genes, as well as of -catenin (ctnnb1) in full anagen follicles. In situ 

hybridization on sagittal back skin sections of wildtype mice (n=3) at P30 using antisense 

riboprobes as indicated. 200x magnification. Arrows point to Krox20 and Igfbp5 mRNA 

expression in the hair bulb. 
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Supplementary Figure S7.   

WNT signaling is still observed in K5-N mice. Representative images of anagen follicles 3 

(d3) and 5 (d5; mid-anagen) days after depilation. To detect WNT signaling, an X-Gal assay was 

performed on whole mount back skin samples from K5-N (K5-N + dox; negative control) as 

well as from offspring of matings between K5-N and the WNT reporter line cond-lacZ (K5-

N;cond-lacZ + dox) mice and controls (K5-N;cond-lacZ – dox). n=3 for each genotype. 

Following embedding in paraffin, sagittal sections were stained with Hematoxylin. Red arrow 

points to unilateral WNT activity in the hair bulb of untreated controls which is absent in dox-

treated K5-N;cond-lacZ mice. d3, 200x magnification; d5, 100x magnification 
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Supplementary Figure S8.   

K5-N and Nfkb1-/- mice lack zigzag hairs. (a) In situ hybridization using an antisense 

riboprobe for Nfkb2 (p100) on sagittal back skin sections of K5-N and control mice 5 days 

after depilation (d5). 400x magnification. n=3/3 (control/K5-N). (b) Upper panels, in situ 

hybridization with antisense riboprobe for Nfkb1 (p105), and lower panels, representative 

immunofluorescence images with antibody against phospho-NFKB1 (p105) on sagittal back 

sections of K5-N and control mice 5 days after depilation (d5). 400x magnification. n=3/3 

(control/K5-N). (c) Images of plucked hairs from Nfkb1-/- (p105 KO mice; see below) and 

control littermates. n=3 Nfkb1-/- and 3 controls. Similarly to K5-RelB-/- mice (see Figure 6e), 

Nfkb1-/- mice only revealed guard and awl-type hairs. Arrows point to Nfkb1 and Nfkb2 

mRNA and NFKB1 protein expression in hair bulbs of controls.  
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Table S1. Hair cycle stages: 

Days after 
depilation: 

d1 
anagen I* 

d3 
anagen II 

d5 
anagen IIIa 

d10 
late anagen 

d16 
catagen I 

and II 

d18 
mid-

catagen, 
catagen VI 

d25 
telogen 

Untreated 
K5-N 

(controls) 

39% ± 4% 56% ± 11% 1% ± 1% in 
anagen IIIa. 
99% HFs in 
anagen IV. 

No 
difference. 

100%, 
60% in 
catagen II. 

62% ± 8% 
in catagen 
VI 

92% ± 7% 

Dox-
treated 
K5-N 

5% ± 4% 38% ± 8% 30% ± 13% No 
difference 

50% in 
anagen VI, 
and 50% in 
catagen I. 
0% in 
catagen II. 
 

20% in 
catagen I, 
15% ± 5% 
in catagen 
II,  
55-60% in 
catagen III 
– VI. 

83% ± 6% 

n (control/ 
K5-N 

2/4 3/3 4/6 2/2 2/2 3/4 3/3 

*Hair cycle stage/s listed below days after depilation refer to the expected stage in control mice at the 
given time point. 

Delayed anagen development and hair cycle progression in K5-N mice. When compared 

with controls (untreated K5-N mice), HFs in K5-N (dox-treated K5-N) mice showed a 

delay in anagen development and hair cycle progression after depilation, which was 

indicated by a peak shift in the percentage of HFs at a given hair cycle stage. 
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Table S2. Hair cycle score: 

 d1,  
anagen I* 

d3,  
anagen II 

d5,  
anagen IIIa 

d10,  
late anagen 

d16, 
catagen I 
and II 

d18,  
mid-
catagen, 
catagen VI 

d25, 
telogen 

Untreated 
K5-N 
(controls) 

1.5 ± 0.03 3.0 ± 0.1 5.9 ± 0.1 8.88 ± 0.02 10.7 ± 0.05 14.6 ± 0.4 9.03 ± 0.04 

Dox-
treated  
K5-N 

1.08 ± 0.02 2.6 ± 0.2 4.6 ± 0.5 8.89 ± 0.08 9.5 ± 0.06 11.4 ± 0.7 8.83 ± 0.11 

p-value 0.02 0.06 0.03 - 0.004 0.02 0.06 
*Hair cycle stage/s listed below days after depilation refer to the expected stage in control mice at the 
given time point. 

Reduced hair cycle score in K5-N mice. The delay in anagen development and hair cycle 

progression in K5-N mice after depilation was further endorsed by significantly reduced 

hair cycle scores (HCS) when compared to controls. 
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Supplementary Discussion and Observations 

- Further remarks on the K5-N mouse model (see also below: Material and Methods, Mouse 

lines): In our hands Cre deletion in the epidermis of K5-N mice was >98% after 2 weeks feeding 

with doxycycline chow. This was tested by treating offspring of matings between Tg(KRT5-rtTA-

tetO-Cre) and B6;129S-Gtrosa26tm1Sor mice (obtained from Jackson Laboratories) with 

doxycycline at various lengths of time. A 15 day doxycycline treatment was required in order to 

express -galactosidase in close to 100% epidermal and HF keratinocytes (K. K., data not 

shown).  

However in all mouse models that harbor the NF-B suppressor IBN (Krappmann et al., 

1996), some residual NF-B activity can still be detected. This is why constitutive and ubiquitous 

IBN expression (N mice; see main text and Suppl. Material and Methods) is only 

embryonic lethal in about 25% of cases in contrast to complete NF-B inhibition (Schmidt-

Ullrich et al., 2001). 

However, suppression by IBN appears to be sufficient in all cells/tissues that require NF-B 

activity for development and maintenance. This is strongly supported by an identical phenotype 

of N mice with mice lacking a functional TNF ligand EDA-A1 (tabby), or its receptor EDAR 

(downless), or EDARADD or Traf6 expression (Headon et al., 2001, Headon and Overbeek, 

1999, Kere et al., 1996, Mikkola et al., 1999, Naito et al., 2002, Yan et al., 2002), or with mice 

lacking secondary lymph nodes and Peyer`s patches (Aly/Aly (Nik (NF-B-inducing kinase) KO), 

Lt KO, RelB KO; (Alimzhanov et al., 1997, Fagarasan et al., 2000, Shinkura et al., 1999, Yilmaz 

et al., 2003, Yin et al., 2001)).  

IBN has been knocked into the -catenin (Ctnnb1) locus (Schmidt-Ullrich et al., 2001). 

Therefore the amount of IBN expression depends on the expression of -catenin in a 
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particular tissue. In the epidermis and in HFs -catenin, and thus IBN, are highly expressed 

(R. S.-U., unpublished data).  

Nevertheless, it cannot be ruled out entirely that the HF phenotype observed in inducible K5-N 

mice might have been more intensive in a setting of complete suppression of NF-B activity. The 

hair cycle defect (delayed anagen entry) is more pronounced in N mice when compared to dox-

treated K5-N mice (compare Figure 3 and Supplementary Figure S5). 

 

- Further remarks on NF-B activity in cycling HFs in connection with a possible function: NF-

B is not activated in quiescent HFSCs (no co-staining with NFATc1, see Figure 2a) and is thus 

not involved in HFSC maintenance. This suggests that lack of guard HF cycling/maintenance in 

dox-treated K5-N mice is rather due to halted cell proliferation in the SHG, and/or premature 

maturation of SHG cells and/or lack of proper TAC functions (see below). Note that in early 

guard HF development NF-B negatively regulates BMP signaling in order to prevent premature 

differentiation of placode keratinocytes (Mou et al., 2006) which may also apply to the SHG of 

guard HFs but needs further investigation. 

 

The delayed anagen entry observed in awl/auchene and zigzag HF may be due to a retarded onset 

in SHG cell proliferation, which in K5-N mice picks up at a later time point when compared to 

controls (see Figure 4). This may be a direct or indirect effect of suppressed NF-B activity. We 

have previously shown that in early HF development, placode keratinocyte proliferation is 

dependent on, but not directly regulated by NF-B (Schmidt-Ullrich et al., 2006, Tomann et al., 

2016, Zhang et al., 2009). This may also be true for the SHG.  
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Note that NF-B activity is not detected in all SHG germ cells. This is the reason why not all K15 

or SOX9 expressing cells show simultaneous staining for EGFP. The reason for this remains 

unknown, but suggests specific functions for NF-B in only a subset of the proliferating HFSC 

progeny in the SHG. However, for LHX2 and EGFP expression we saw a significant overlap (see 

Figure 2a; see also below). 

 

- Further remarks on NF-B target genes in mature HFs (Fig. 5, S3, S4): The expression of three 

previously identified NF-B target genes in HF development, Nfkbia (Le Bail et al., 1993, 

Schmidt-Ullrichet al., 2006), Shh (Pummila et al., 2007, Schmidt-Ullrich et al., 2006, Tomann et 

al., 2016) and Lhx2 (Tomann et al., 2016), was analyzed in early anagen HFs to further support 

efficient suppression of NF-B activity in the epidermis of doxycycline-treated K5-N mice 

(Supplementary Figure S4). The results suggest that NF-B may also partially regulate Shh and 

Lhx2 gene expression in mature cycling follicles (Supplementary Figure S4). However, although 

anagen induction is delayed in K5-N mice, the HF cycle of awl and zigzag HFs proceeds 

normally once anagen is established. This indicates that the reduced levels of LHX2 expression 

are sufficient to allow normal hair cycle progression in K5-N mice. Absent SHH expression in 

the HF bulb 3 days after depilation (d3; Supplementary Figure S4) appears to be overcome by 

other signals, at least in awl/auchene and zigzag follicles. However, lack of SHH expression in 

TACs may be detrimental for guard HFs (see below). 

 

- EDA-A1/EDAR/NF-B signaling in the hair cycle: EDA-A1/EDAR signaling directly controls 

canonical NF-B activity during early primary guard hair follicle development (Schmidt-

Ullrichet al., 2006). The role of EDA-A1/EDAR signaling in the adult hair cycle has not been 
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sufficiently analyzed to allow any clear-cut conclusions. However it has been shown that ligand 

and receptor are expressed in mature HFs (Elomaa et al., 2001, Fessing et al., 2006), which is 

confirmed in the present study. Furthermore, in downless mice (Edar-mutant mice) catagen entry 

appeared to be accelerated due to premature apoptosis in the outer rout sheath (ORS) (Fessing et 

al., 2006).  

Here we show overlapping EDAR and EGFP expression only in the TAC area (see below) and 

unilaterally in the hair bulb at full anagen, concomitant with hair shaft bending markers (see main 

text). In contrast to Fessing et al. (Fessing et al., 2006), we did not observe any significant NF-B 

activity at catagen. This may explain why we did not see accelerated catagen entry or increased 

apoptosis in mice with suppressed NF-B activity. Catagen also appeared to proceed normally in 

N mice (Supplementary Figure S5). Thus, it remains unknown how EDAR signaling regulates 

catagen entry.  

Finally, we did not see any EDAR expression in the SHG at any time point. Hence, the signal that 

is responsible to regulate NF-B activity in anagen development has also yet to be identified. 

 

- Possible function for NF-B in guard HF TACs? TACs are an intermediate phase between 

undifferentiated stem cells and differentiating cells. It was previously shown that HF TACs 

express SHH which is required for induction of quiescent stem cell proliferation (Hsu et al., 

2014). In the absence of SHH activity in the epithelial part of the HF, the SHG and TAC 

population diminishes enormously and HF regeneration is blocked (Hsu et al., 2014). Our data 

suggests that EDA-A1/EDAR/NF-B may regulate SHH expression in the TAC (see Figure 2 and 

S4). However, as discussed in the main text, this hypothetical function most likely would be 

limited to guard hair follicles which do no longer cycle in the absence of epidermal NF-B 
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suppression. In the other HF types it must be overcome by other signals. These highly interesting 

findings need to be analyzed in more detailed in the future. 

Our findings that suggest that EDA-A1/EDAR/NF-B regulates SHH expression in TACs might 

also be interesting from another point of view: A recent publication showed that SHH signaling in 

TACs was responsible for dermal adipocyte production (dermal adipogenesis) (Zhang et al., 

2016). During the hair cycle various changes in the surroundings of the cycling follicle take 

place, including expansion of adipose tissue during anagen phase. This appears to be controlled 

by SHH produced in TACs, as loss of Shh expression in TACs revealed loss of HF growth and 

concomitant dermal adipogenesis (Zhang et al., 2016). We have observed a reduction in adipose 

tissue in dox-treated K5-N mice and particularly in adult N mice (K. K. and R. S.-U., 

unpublished data). Thus, absent or strongly reduced SHH expression in HF TACs of N and K5-

N mice may not only be responsible for reduced HF growth but also for reduced adipose tissue 

formation, which will be a further future project. 
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Supplementary Material and Methods 

 

Mouse lines, generation of lines, doxycycline treatment, depilation 

B6-Tg(-EGFP)3Pt/Rsu (-EGFP) and B6-Tg(-Gal)3Rsu (-Gal) NF-B reporter lines, as well 

as mice with ubiquitously suppressed NF-B activity 129;129P2-ctnnb1tm(NFKBIAN)1Rsu (∆N), 

Nfkb1-/- (B6;129P2-Nfkb1tm1Bal/J, obtained from Jackson Laboratories), B6C3Fe-a/a-Edardl-j/J 

(dl, downless, obtained from Jackson Laboratories) and the WNT reporter line cond-lacZ (B6-

Axin2tm1Mdcb, kindly provided by Walter Birchmeier, MDC, Berlin, Germany) were described 

previously (Headon and Overbeek, 1999, Schmidt-Ullrich et al., 2001, Schmidt-Ullrich et al., 

1996, Sha et al., 1995, Tomann et al., 2016, Yu et al., 2005). K5-N mice were generated by 

mating Tg(KRT5-rtTA-tetO-Cre) ((Diamond et al., 2000, Mucenski et al., 2003); see also (Chu et 

al., 2004, Zhang et al., 2008)) with 129;129P2-ctnnb1tm(NFKBIANfl/fl)RSU mice (loxP∆N; (Henke et 

al., 2007, Marko et al., 2016, Schmidt-Ullrich et al., 2001)). K5-RelBflox/flox mice were produced 

by mating Tg(KRT5-rtTA-tetO-Cre) with RelBtm1Weih (RelBflox) mice, a generous gift of Falk 

Weih, FLI for Age Research, Jena, Germany (Powolny-Budnicka et al., 2011).  

For tetracycline-inducible NF-B suppression or RelB deletion in epithelial keratinocytes, K5-N 

or K5-RelBflox/flox mice were placed on doxycycline (dox) chow (6g/kg, Bio-Serv or Plexx B.V.) 

for 15 days starting at postnatal day 36 - 39 (P36 – 39; see Supplementary Figure 2d). Note that 

dox-treated K5-RelBflox/flox mice are designated as K5-RelB-/- mice throughout the text. 

For long-term treatments with doxycycline chow, feeding was also started at P36 and was 

continued for 6-7 months without interruption before animals were analyzed for pelage hair 

composition. These mice were not depilated. 

Depilation of back skin was performed around postnatal day P53 when hair follicles reside in 

telogen. Prior to depilation, mice were anesthetized with an air mixture containing 2% isoflurane 
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(Abbott). Back skin was depilated three times with cold wax stripes (Isana).  

For every experiment/time point n = 2-7 mice of the corresponding genotype and their controls 

were used (for details see also Figure legends). 

 

Western Blotting 

Freshly isolated back skin was shock frozen in liquid nitrogen and was pulverized using a mortar. 

The pulverized skin was incubated in 300 µl lysis buffer (50mM Tris, 150mM NaCl, 1% NP-40, 

1% Trition-X 100, 1µM MG-132) for 5 h on a rotating table. Sample was centrifuged for 20 min 

at 13.000 rpm. The supernatant was used for western blotting analysis. Antibodies used for 

Western blotting: IB, rabbit, Santa Cruz (sc-371) 1:1000; Erk1/2, rabbit, Cell Signaling 

(137F5) 1:1000. 

Calculation of the hair cycle score (HCS) 

To facilitate the correct assignment of all hair cycle stages (anagen I-VI, catagen I-VIII, telogen), 

the HCS was calculated for each HF in a histological section. To perform this analysis, every hair 

cycle stage is assigned a factor in ascending numerical order, e.g. 1 = telogen, 2 = anagen I, 3 = 

anagen III, 4 - 6 = anagen IIIa - c, 7 = anagen IV, 8 = anagen V, 9 = anagen VI, 10 = catagen 

I, 11 = catagen II, 12 = catagen III, 13 = catagen IV, 14 = catagen V, 15 = catagen VI, 16 = 

catagen VII, 17 = catagen VIII. The number of HFs in a particular hair cycle stage is multiplied 

by the corresponding factor. The result is divided by the total number of HFs counted (Muller-

Rover et al., 2001). Additionally, the percentage of HFs in distinct hair cycle stages was 

calculated for dox-treated K5-N mice and untreated controls. For every analyzed time point a 

minimum of three biological replicates were used for each group (n ≥ 3). 
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Quantification of pelage hair types and calculation of hair fiber and HF length in control 

and K5-N mice 

For Figure 5a and b, and 6a: To quantify pelage hair types and calculate fiber length, pelage 

hairs were plucked from mid-dorsal skin of untreated (controls; total n=6) or dox-treated K5-N 

(K5-N; total n=7) mice 18 (n=2/2; controls/K5-N), 21 (n=2/3) and 25 (n=2/2) days after 

depilation. To define the percentage of each hair type, a minimum of n = 100 randomly taken hair 

fibers were counted. The number of each hair type/total number of counted hairs was calculated. 

This led to the following numbers of zigzag and awl hairs: Zigzag hairs: 50.0% ± 3.6% (controls) 

vs. 6.2% ± 4.2% (K5-N). Awl-type hairs: 41.5% ± 2.4% (controls) vs. 91.5% ± 4.3% (K5-N).  

For Figure 6b: After 6-7 months pelage hairs were plucked from mid-dorsal skin of untreated 

(controls; n=4) or dox-treated K5-N (K5-N; n=6) mice. To define the percentage of each hair 

type, n = 300 randomly taken hair fibers were counted. Calculations were performed as above. 

For Figure 6c: Quantification of guard HFs on hematoxylin-stained sagittal back skin sections 

was preformed by counting n = 40 sections/per mouse/genotype. n =3 mice per genotype: 3 dox-

treated K5-N mice and 3 untreated controls. Guard HFs were identified by shape and size. All 

guard HFs identified in one section were counted. 

N = 20 hair fibers/mouse were measured to calculate hair fiber length. Hairs in K5-N mice were 

significantly shorter: 7.8 mm ± 0.3 mm vs. 9.1 mm ± 0.1 mm (controls) for guard hairs (p = 

0.006), 4.9 mm ± 0.0 mm vs. 6.1 mm ± 0.1 mm (controls) for awl/intermediate hairs (p = 0.009). 

To define the HF length, sagittal back skin sections of dox-treated K5-N (n=3) and untreated 

control mice (n=3) 5 days after depilation were analyzed under the light microscope. To calculate 

the HF length, the distance between proximal HF bulb and the lower tip of the sebaceous gland 
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was measured (see Figure 4c). For each sample a number of n = 20 HF was measured. To 

measure the HF length, the ruler plugin software (Zeiss Axio Imager) was used. The mean values 

were calculated in Excel, and the unpaired Student’s t-test was used to calculate the p-value. A 

significant p-value was set for p ≤ 0.05. Follicles in K5-N mice were significantly shorter: 

224µm ± 23 µm vs. 319 µm ± 4 µm (controls), (p = 0.04). 

Quantification of Ki67-positive cells in early anagen HFs 

To quantify the number of Ki67-positive cells at d1 after depilation (see Fig. 4a), all Ki67-

positive cells in the epithelial part of the HF between dermal papilla and sebaceous gland (= the 

cycling part) were counted in a total of 20 HFs/mouse. The average number of Ki67-positive 

cells/HF was then calculated. n=2 dox-treated K5-N and n=2 untreated controls were used: 

 

 

In situ hybridization probes 

In situ hybridization was carried out using the following mouse cDNA probe templates: Eda-A1, 

(Ectodysplasin-A1; nt 59 – 603; Y13438), Shh (nt 120 – 760; X76290) and Ctnnb1 (-catenin; nt 

150 – 540; NM_007614), all kindly provided by Joerg Huelsken/W. Birchmeier, MDC, Berlin, 

Germany; Nfkbia (IB; nt 1 – 1091; U36277/NM010907); Krox20 (zinc finger transcription 

factor, Egr2; nt 1 – 2742; BC009093); Igfbp5 (insulin-like growth factor binding protein 5; nt 1 – 

Control K5‐DN

9,95 3,7

9,5 5,35

Mean 9,725 4,525

SD 0,225 0,825

n 2 2

(n) 1,41421356 1,41421356

SEM 0,15909903 0,58336309

ttest 0,04
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2192; BC057447); Ccnd1 (cyclin D1; nt 931 – 2358; BC044841); Lhx2 (nt 1 – 1891; 

BC055741); Nfkb1 (p105; N-terminal 1.3 Kb, NM_008689); Nfkb2 (p100; nt 274 – 1489; 

AF155373) and Relb (nt 1 – 2041; BC034523;), both kindly provided by F. Weih, FLI, Jena, 

Germany; Dkk4 (Dickkopf 4; nt 77 – 837; NM_145592); Wnt10a (nt 1295 – 2487; U61969); 

Wnt10b (nt 735 – 2066; U61970). 

Antibodies and dilutions used  

The literature is referring to the identification and functions of the respective proteins in the 

murine hair cycle. A role for canonical NF-B subunits p65 (RelA) and NFKB1 (p50) or for non-

canonical RelB in hair cycling has not yet been identified. 

- Digoxigenin-AP Fab fragments, sheep, Roche (11093274910) 1:1000, 

- EDAR (Ectodysplasin receptor), goat, R&D Systems (AF745) 1:100, (Schmidt-Ullrich 

and Paus, 2005), 

- EGFP, chicken, Abcam (ab13970) 1:400, 

- Ki67, rabbit, Abcam (ab15580) 1:100, 

- LGR5 (leucine-rich G protein–coupled receptor 5), rabbit, Novus Biologicals (NBP1-

28904) 1:100, (Barker et al., 2007), 

- LHX2 (LIM homeobox protein 2), goat, Santa Cruz (sc-19344) 1:100, (Folgueras et al., 

2013, Rhee et al., 2006, Tornqvist et al., 2010), 

- Keratin15 (K15), Abcam (ab52816) 1 :100, (Liu et al., 2003), 

- NFATc1 (nuclear factor of T-cell C1), rabbit, Santa Cruz (sc-13033) 1:100, (Horsley et 

al., 2008), 

- p65 (= RelA), rabbit, Santa Cruz (sc-372) 1:100,  

- phospho-NFKB1 (= phospho-p105), rabbit, Cell Signaling (4806) 1:100,  
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- RelB, rabbit, Santa Cruz (sc-226, C-19) 1:100,  

- SHH (sonic hedgehog), rabbit, Santa Cruz (sc-9024) 1:100, (Hsu et al., 2014, St-Jacques 

et al., 1998), 

- SOX9 (SRY-box 9), rabbit, Santa Cruz (sc-20095) 1:100, (Nowak et al., 2008, Vidal et 

al., 2005), 

- TRPS1 (trichorhinophalangeal syndrome 1), goat, Santa Cruz (sc-26974) 1:100, 

(Fantauzzo et al., 2008, Momeni et al., 2000).  
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