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Abstract: Optical coherence tomography (OCT) allows three-dimensional (3D) imaging of
the retina, and is commonly used for assessing pathological changes of fovea and macula in
many diseases. Many neuroinflammatory conditions are known to cause modifications to the
fovea shape. In this paper, we propose a method for parametric modeling of the foveal shape.
Our method exploits invariant features of the macula from OCT data and applies a cubic Bézier
polynomial along with a least square optimization to produce a best fit parametric model of the
fovea. Additionally, we provide several parameters of the foveal shape based on the proposed 3D
parametric modeling. Our quantitative and visual results show that the proposed model is not
only able to reconstruct important features from the foveal shape, but also produces less error
compared to the state-of-the-art methods. Finally, we apply the model in a comparison of healthy
control eyes and eyes from patients with neuroinflammatory central nervous system disorders
and optic neuritis, and show that several derived model parameters show significant differences
between the two groups.
© 2017 Optical Society of America

OCIS codes: (100.0100) Image processing; (100.2960) Image analysis; (110.4500) Optical coherence tomography;
(000.4430) Numerical approximation and analysis.
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1. Introduction

Optical coherence tomography (OCT) is a non-invasive imaging modality based on low-coherence
interferometry [1]. OCT has become an essential diagnostic tool in ophthalmology for its capability
to image the retina at micrometer resolution.
Recently, the scope of retinal OCT imaging has extended towards neurologic diseases. As

part of the central nervous system, the retina comprises a similar cellular composition as
the brain, and many neurologic disorders thus affect the retina. OCT is able to detect retinal
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Fig. 1. Figure shows the structures of interest in the retina with layers ILM (Inner limiting
membrane), GCL (Ganglion cell layer) and RPE (Retinal pigment epithelium layer).

changes in neurodegenerative disorders like Parkinson’s disease [2] and cerebellar ataxias [3]
as well as autoimmune neuroinflammatory disorders like clinically isolated syndrome [4],
multiple sclerosis [5], MOG-ab-positive encephalomyelitis [6], and neuromyelitis optica spectrum
disorders [7, 8].
Traditionally, OCT has been used to detect and describe macroscopic changes. However,

neurologic diseases often lead to only small retinal changes, which rather need to be measured
than can be seen directly. In the following, we will use the term quantitative OCT for this approach.
Commonly, quantitative OCT determines the size of retinal structures as thickness or volume in a
defined area of interest [9]. Structures of interest for measurements are the optic nerve head and
the macula (Fig. 1). For example, one of the quantitative OCT parameters is the peripapillary
retinal nerve fiber layer thickness (pRNFL), which is usually measured in a 12°ring scan around
the optic nerve head. Quantitative measurements of macular changes were initially defined by,
for example, total macular thickness (TMV) or total retinal thickness (TRT), which measure
the full retinal thickness across the macula [9]. Recently, intra-retinal layer segmentation at the
macula has been developed to allow quantification of intraretinal thickness or volume changes,
for example, of the ganglion cell layer (GCL) [10–13].

Foveal shape analysis is a promising approach for quantitative OCT next to thickness or volume
measurements. The few studies in this regard can be divided into two categories: data-driven,
which directly employ segmentation lines from the OCT scan itself to compute various metrics,
and model-driven, which use mathematical constructs to create a representation of the macula
and fovea in order to calculate different features directly from the model.

Data-driven approaches All data-driven approaches known to the authors are based on the
analysis of 2D images (B-scans) with results computed from one B-scan or averaged over two
B-scans.

To analyze the variability of the healthy foveal shape and to investigate the relationship between
this structure and the foveal avascular zone (FAZ), Tick et al. computed several parameters: pit
depth, central foveal thickness, maximal retinal thickness, pit diameter, pit cross-sectional area,
and the foveal inner retinal area. Using these parameters, the authors could show that the healthy
foveal structure strongly correlates with its neurovascular structure [14].
Similarly, Chiu et al. introduced the parameters foveal photoreceptor thickness and foveal

width, and found a large individual variation of FAZ size and shape in healthy retinae and a
negative correlation between FAZ diameter and foveal thickness [15].

Other studies investigated the way retinal structures change in the context of prematurity [16]
or albinism [17] using fovea shape parameters like pit depth.

                                                                              Vol. 8, No. 9 | 1 Sep 2017 | BIOMEDICAL OPTICS EXPRESS 4183 



Model-driven approaches One of the first attempts to mathematically describe the foveal
shape was published by Barak et al. [18]. Their approach employs an automated symbolic
regression software that fits a section of the foveal profile around the center which was able
to detect different patterns in the premacular hole foveal configurations and normal foveal
configurations. A similar approach was used by Nesmith et al. to characterize changes that occur
in the foveal anatomy with aging in a large number of OCT scans [19].
The first more general mathematical model was created by Dubis et al., who used Difference

of Gaussians (DoG) function for a 2D fit of several radial scans passing through the lowest point
of a macular scan [20]. The method derived three pit metrics (diameter, depth and slope) from a
fitted model, which was symmetrical with respect to the fovea center. The model’s symmetry was
problematic, because of the fovea’s asymmetry, which stems mostly from differences between
the nasal and temporal retinal nerve fibers [14, 21]. The model was thus not accurate enough for
modeling the asymmetric nature of the fovea and had problems covering the wide range of fovea
shapes in the healthy population, due to other model fitting constraints, which were e.g. not able
to model an extended flat part at the foveal pit in many healthy foveae [14, 21].
Scheibe et al. applied a different approach to overcome these drawbacks by creating a more

flexible 2D model, which is fitted to each supporting direction in a circular region around the
foveal center [22]. This method used a Gaussian like basis function (exp(−xγ)), when γ = 2, it
would be a Gaussian basis function otherwise it would be an exponential function. The parameter
γ defines the shape of the exponential basis function. The authors derived five parameters
analytically: mean retinal thickness inside a radius of 1mm, foveal bowl area, retinal radius, and
maximum height of the foveal rim. By applying this model to a large cohort of healthy subjects,
the authors were able to confirm and further investigate the asymmetric nature of the fovea.
Although, capable of modeling a large variety of data, and having a smaller root mean square
error (RMSE) than previous approaches, the method has difficulties deriving 3D parameters such
as volume due to the complexity of the computation because of the parameter γ. The RMSE is a
standard metric to measure the model error. The low RMSE value indicates the high fidelity of a
model.

Wilk et al. [23] used a similar algorithm described in [20] and applied it on a volume scan by
extracting 180 radially oriented slices through the foveal center. In addition to the parameters
defined in [20], the foveal pit volume was computed by calculating the space between the internal
limiting membrane surface and the top of the foveal pit.
Liu et al. created a different 2D model, which uses a sloped piecemeal Gaussian function

(SPG) to model the asymmetry and the foveal flatness [24]. The authors tested their method on a
large number of macular scans and showed good RMSE compared to other 2D methods. The
main drawback consists in the use of only two scans for each subject, a vertical and a horizontal
one, which limits information on only these sections and prohibits generation of 3D metrics like
volume.

Ding et al. developed an approach, which intends to model the surface of inner retinal layers
using a 3D model-fit based DoG and a second order polynomial [25]. The authors used the model
coefficients to discriminate between Parkinson patients and a control group. As a drawback, the
model coefficients’ relation to foveal shape itself is difficult to interpret. Additionally, although
the model takes into account the difference in the slope for horizontal and vertical directions, it
does not model the asymmetry in the anatomical ones (temporal-nasal), nor does it capture fovea
shapes with very flat pits accurately.

Objective Against this background, the goal of this study was to develop a robust, model-
driven 3D macula shape analysis method, which can be computed from standard macular volume
OCT scans and from which foveal and macular shape metrics can be derived. In addition to
available macular thickness measurements, our approach allows a detailed analysis of foveal
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Fig. 2. Various shapes of the foveal pit

shape, including depth, diameter, slope, area and volume of different regions, as well as pit shape
analysis.

2. Method theory

Most of the model driven state of art methods assume that the foveal pit shape is quite similar
to the Gaussian function. Therefore, these methods use the Gaussian basis function for the
mathematical modeling of the foveal pit [20, 22, 24, 25]. However, this assumption is not entirely
true as we can see in Fig. 2 that the pit shape varies a lot from the Gaussian shape. Modeling the
flatness of foveal pit is difficult with Gaussian basis function. The two regions of the Gaussian
function (around and away from mean value) are dependent on each other and on the standard
deviation of the given Gaussian function. However, the shape of the interior (pit area) and exterior
(rim area) regions of fovea are independent of each other. For example, similar kinds of foveal pits
can have significantly different rim heights. In summary, we can say that the Gaussian function is
not an optimal basis function to describe macular and foveal shape.
To overcome these problems, we introduce a cubic Bézier based robust and flexible basis

function, which is able to encounter all possible variations of the fovea shape. We fit the cubic
Bézier polynomial in interior and exterior regions independently using a least square optimization
with invariant features of fovea which will be discussed in the coming sections.

2.1. Invariant features of the fovea

Foveal shape in healthy population varies [21]. Figure 2, shows a selection of different foveal
pit shapes from our cohort to exemplify this. In order to reconstruct all these variations, some
invariant features of the shape are needed. Tangents at critical points of macula represent reliable
and stable features. The critical points refer to the lowest point of the pit and the highest point
around this region as shown in Fig. 3. The slope at these critical points is always zero and macula
will have horizontal tangents at these points.

2.2. Cubic Bézier

Bézier curves were introduced by Dr. Pierre Bézier in early 1960s. A parametric Bézier curve of
polynomial degree n is defined as:

Q(t) =
n∑
i=0

Pi,nBi,n(t), 0 ≤ t ≤ 1, (1)

where the Pi,n are the control points and Bi,n are the Bernstein polynomials.

Bi,n(t) =
(
n
i

)
ti(1 − t)n−i, i = [0, 1.., n]. (2)

For a Bézier curve of degree n, there are n + 1 control points. From Eq. (1), one can see that the
Bézier curve is a weighted average of control points where weights are defined using Bernstein

                                                                              Vol. 8, No. 9 | 1 Sep 2017 | BIOMEDICAL OPTICS EXPRESS 4185 



polynomials. For n = 3, Eq. (1) becomes the cubic Bézier equation:

Q(t) =
3∑
i=0

PiBi,3(t), 0 ≤ t ≤ 1. (3)

Cubic Bézier curve will have four control points and is tangent to the first and last control
points P0 and P3 respectively [26]. The relationship between control points, in terms of distance
α, β and unit tangent directions T01 and T23 can be written as:

P1 − P0 = α · T01,

P2 − P3 = −β · T23.
(4)

Distance parameters α and β represent the distances between end control points (P0, P3) and
inner control points (P1, P2) respectively. In our curve fitting algorithm, parameters α and β of
each Bézier segment are used as shape parameters for an optimal curve fitting. The direction of a
Bézier curve at its endpoints is uniquely determined by the tangent vector. Thus, by choosing the
same tangent vector for two adjacent Bezier segments tangent continuity (geometrical continuity
G1) at each junction is assured, and thus throughout the whole composite spline curve.

2.3. Least squares optimization

A least squares fitting approach is applied for each B-scan/radial scan using a cubic Bézier curve
and tangents at critical points, which are derived from the invariant features of the macular shape.
Let us consider c(x) as a central B-scan, which contains the minimal retinal thickness point as
shown in Fig. 3(a).

T

T

T

(x0,c(x0))

(x1,c(x1))

(xm,c(xm))

(x2,c(x2))

(xe,c(xe))

c0(x)

c1(x) c2(x)

c3(x)

(a)

cI(x)

(xm, c(xm))

(x2, c(x2))

(xe, c(xe))

cE(x)

T

P0

T

P3
TP0

P3

P1

P2

P1

P2

(b)

Fig. 3. (a) The central B-scan of a volume with invariant tangent at critical points. Red dots
= critical points. (b) The interior and the exterior segment of the corresponding right half of
the B-scan. The inner (P1, P2) and end (P0, P3) control points are shown in green and red,
respectively.

The central B-scan can then be decomposed into two interior (c1(x), c2(x)) and two exterior
(c0(x), c3(x)) segments, where the right half of the central B-scan is defined as the segment
between the points (xm, c(xm)) and (xe, c(xe)) as shown in Fig. 3(a). The maximum point of the
right half of the central B-scan can be computed, as represented by (x2, c(x2)). Two segments can
be made using the critical point (x2, c(x2)) and each segment was denoted as cI : [xm, x2]→ R
for the interior, and cE : [x2, xe]→ R for the exterior segment as shown in Fig. 3(b).
For interior segment (cI ), end points, P0 and P3, have horizontal tangent lines T = [1, 0]

and inner control points, P1 and P2, which are lying opposite to each other w.r.t. their tangent
direction, as shown in Fig. 3(b). Thus, Eq. (4) can be modified to give:

P1 = P0 + α · T,
P2 = P3 − β · T .

(5)
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For the exterior segment (cE ), only one of the end points has a horizontal tangent and one
of the inner control points (P1) lies in the same horizontal tangent direction. Equation (4) for
exterior segments then becomes:

P1 = P0 + α · T . (6)

The other inner control point, P2, for the exterior segment does not have a horizontal tangent
direction (T = [1, 0]); therefore the value of P2 is optimized without using any invariant feature
of the macula. In this proposed method, control points Pi are defined in R2 space.
Next, the optimized values of α and β are computed to achieve the best-fit cubic Bézier for

each segment of the scan. The optimization process begins from the interior segment. By using
Eq. (3) and 5, the cubic Bézier equation for interior segment (cI ) can be modified as follows:

(7)QI (t, α, β) = αT B1(t) − βT B2(t) + P0(B0(t) + B1(t)) + P3(B2(t) + B3(t)).

If the corresponding segment has m data points and is represented by DI then the least squares
energy function can be expressed as:

E(t, α, β) =
m∑
i=1
‖DI

i −QI (ti, α, β)‖2, (8)

where ti represents discrete values of t corresponding to the data points DI
i and it is computed

using the uniform parametrization (ti = i/m ∀i ∈ [0, 1, ...,m]). Equation (8) shows a quadratic
energy function in α and β for a given parametric value of t and higher order polynomial in
t for a given α and β. The minimization of the above energy function then becomes a multi-
space optimization, since there are three different variables to be minimized. The multi-space
optimization procedure for t, α and β occurs using the following steps:

1. First, Eq. (8) is a quadratic energy function in α and β for a given t, so it can be solved by
using the linear system of equations. An initial value is given to t ∈ [0, 1/m, 2/m, · · · , 1]
using the uniform parametrization and corresponding α and β values are calculated by
computing the first derivative of the given energy function w.r.t. α and β.

∇αE = 0, ∇βE = 0. (9)

To compute the gradient of the given energy in terms of α:

∇αE = 2
m∑
i=1

(DI
i −QI (ti, α, β)) · B1(ti) · T . (10)

By using Eq. (9), we can conclude by stating the following relation:

m∑
i=1

B1(ti) · QI (ti, α, β) =
m∑
i=1

DI
i · B1(ti), (11)

where the left hand side of Eq. (11) shows only α as an unknown variable, since the terms
of β are omitted due to differential operations. However, β can also be computed using
Eq.(9) in the same manner.

2. Second, the optimized value of t is calculated using the gradient descent method with the
values for α and β that were computed in the previous step.

∇tE = 0. (12)
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Similar to Eq. (10), the derivative of the given energy function w.r.t t is computed as
follows:

∇tE = −2
m∑
i=1

(DI
i −QI (ti, α, β)) · Q′I (ti, α, β), (13)

where Q′I (ti, α, β) represents the first derivative of cubic Bézier in terms of t. The optimized
value of t is computed using the following equation:

t̃i = ti + s · ∇tE, (14)

where s represents the step size of the gradient descent method and t̃i is the optimized
value of t. In the next iteration, t̃i will be used as the initial value of t to compute the new
α and β. Throughout the whole experimentation the step size was fixed to s = 0.1.

These two steps are iterated until the stable minimum of the energy function in Eq. (8) is obtained.
Equation (13) depends not only on t but also on α, β, thus allowing stable minimum to be reached.
The minimum of the given energy can be achieved in 400 iterations. After 400 iterations, there is
no significant change in the optimization result.

For the exterior segment (cE ), our optimization procedure is different compared to the interior
segments as only one end point has a horizontal tangent. Using Eq. (6) and Eq. (3), we can have a
modified equation for optimization:

(15)QE (t, P2, α) = αT B1(t) + P0(B0(t) + B1(t)) + P2B2(t) + P3B3(t)).

Similar to the energy function in Eq. (8), here we have an energy function, which depends on t,
P2 and α and which is defined as:

E(t, P2, α) =
m∑
i=1
‖DE

i −QE (ti, P2, α)‖2, (16)

where DE represents data points corresponding to the external segment. The minimization of this
given function is performed in a similar fashion as the interior segment parameter optimization.
First, the derivative of the energy function w.r.t. P2 and α, for a given initial uniform parameterized
t, is computed. Then, the optimized t with newly obtained values for P2 and α is determined.

3. Materials and methods

To evaluate the proposed method macular volume scan (25◦ × 30◦, 61 vertical or horizontal
B-scans, 768 A-scans per B-scan, with each B-scan being the result of 9-15 averaged B-scans)
captured with Spectralis OCT (Heidelberg Engineering, Heidelberg, Germany) were used. The
voxel dimensions in horizontal and, axial directions and distance between B-scans in this data
set were approximately 11.69, 3.87, and 125µm respectively. A total of 187 OCT scans, 95
from healthy controls (HC) and 92 from patients with different autoimmune neuroinflammatory
diseases, were selected from the NeuroCure Clinical Research Centers’ imaging database. All
scans underwent quality control by an experienced rater. Automatic layer segmentation was
performed with the device’s software (Eye Explorer 1.9.10.0 with viewing module 6.0.9.0). The
institute’s imaging database only contains images derived from local studies that were approved
by the local ethics committee at the Charité - Universitätsmedizin Berlin and were conducted
following the Declaration of Helsinki in its currently applicable version.
All computations were carried out using MATLAB 2016b (MathWorks, Inc., Natick, MA,

USA). The statistical analysis was conducted using R version 3.3.2 [27]. ICC (inter class
correlation) and GEE (Generalized estimating equation) were used for statistical measurements.
The ICC measures the repeatability of the proposed parameters and GEE (p-value) shows the
significance between the two groups of data for each of the proposed parameters.
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Fig. 4. The pipeline of the proposed algorithm.

3.1. Method pipeline

Figure 4 shows the pipeline of our algorithm. In order to import data into MATLAB, Heidelberg
Spectralis OCT raw data format was exported from the device. This data contains additional
to the image information, the coordinates of the inner limiting membrane (ILM) and the lower
boundary of the retinal pigment epithelium layer denoted throughout our paper for simplicity
reasons as RPE. The whole algorithm is implemented in the following steps:

1. ILM-RPE Computation and Minimal Foveal Point Detection: In the first step, the
height difference between the ILM and the RPE of each volume scan is extracted. This
represents the macular thickness surface. Using this difference has the advantage of
removing the slant of the scan created at the measurement and/or by the curved shape of
the eye. Let us consider a volume scan and the corresponding thickness profile represented
as the graph functionM : (x, y)→ R, where (x, y) ∈ Ω and Ω represents our region of
interest. A volume scan is the combination of A-scans and B-scans obtained from the OCT
scanner. We assume that x and y represent A-scans and B-scans directions respectively.
To determine the fovea’s center, a region Ω of 1 mm radius is taken from the surface
centered at the fovea automatically detected by the OCT device. The information about
this center point is included in the raw data export. In order to detect the lowest point of
foveal surface, we look at the minima of this region.

Mm =M(xm, ym), (17)

where xm, ym are the coordinate of the minimum valueMm of the volume scan. If several
minimas are detected, then the median point of them is taken as the center of foveal pit.

2. Volume to Radial Sampling: This is the second step of the proposed method as shown in
Fig. 4. For 3D shape analysis of fovea, information from the whole volume is needed, and
therefore the scan is re-sampled into a radial one. The radial scans capture the foveal pit
shape accurately as they have more samples near the center compared to the outer region.
Sampling from volumeM to radialMp can be done in the following steps:

(a) Create a polar gridMp(r, θ), centered at (xm, ym) with zero height value. Radius and
angle between the radial lines will be defined by the user.

(b) Compute the height value ofMp(r, θ) using bilinear interpolation between the nearest
four points of theM(x, y) which are closest to the corresponding (r, θ).

(c) Now, there are n = (2π/θ) radial scans represented as:

c(r, θi) ∈ Mp(r, θ) where i = 1, · · · , n.

These radial scans approximate the original volume scan as shown in Fig. 5(a).

In our experimentation, we choose r = 2mm and θ = 15◦ for radial sampling.

3. Segmentation of the Radial Scans: Each of the radial scans c(r, θi) is segmented into
interior cI and exterior cE regions at corresponding maximum (critical) point, as shown in
Fig. 3(b).
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4. Cubic Bézier Fitting using Least Square Optimization: For each of the segments of
the radial scan, a cubic Bézier with least square optimization as explained in section 2.3
is fitted. For the interior segment, Eq. (8), (9) and (12) is used to compute optimized α,
β and t. Then, the interior segment using the optimized parameters is reconstructed by
assigning these to Eq. (7). Similarly, for exterior segment, Eq. (16) is used and optimized
α, P2 are computed. Then the exterior segment is reconstructed by using Eq. (15). To get a
complete 3D parameterized modeling of the fovea, a cubic Bézier has to be fitted to each
of the re-sampled radial scans. Figure 5(b) shows the 3D parameterized model with 24
radial scans.
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(b) Cubic Bézier parameterization for each radial scans

Fig. 5. 3D shape reconstruction procedure. (a) Shows a volume scan with 61 B-scans and
768 A-scans and corresponding 24 radial directions (blue) using the bilinear interpolation.
(b) Represents the 24 fitted radial scans (green) using the least square optimization. The red
points show the critical points for each radial scan.

5. Parameters Computation: This is the last step of the algorithm. Now, we have a cubic
Bézier parameterized 3D radial scans of a volume scan. By using this parameterization,
several parameters for the volume scan are computed. The analytical formulations of these
parameters are shown in the next section.

4. Parameters

In this section, we present several shape parameters for a volume scan using a cubic Bézier
parameterization. Rim point of a radial scan is defined as the maximum height point in the
corresponding radial scan. Let us consider that there are n number of radial scans re-sampled
from a volume scan and (p1, p2, · · · , pn) ∈ R3 are the corresponding rim points. Figure 6 shows
re-sampled radial scans from a volume scan divided into two parts: c(r, θi) and c(r, θi + π). The
notation used to denote the corresponding least square optimization fitted radial scan parts is
Q(t, θi) and Q(t, θi + π) for all i = 1, · · · , n. A visual representation of some of the 3D parameters
is shown in Fig. 8 and 9. Figure 7 shows two parameterized radial scans (Q(t, θi) and Q(t, θi + π))
of a volume scan which differ by the angle π. Several basic parameters are defined based on these
two radial scans. QI and QE represent parameterized interior and exterior segments respectively.
Most of the 3D parameters are computed by first computing the values for each radial scans and
then taking the average over these scans.
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(b) Cubic Bézier parameterization for each radial scans

Fig. 6. 2D shape reconstruction (a) Shows re-sampled radial scans from a volume scan
divided in two parts: c(r, θi) and c(r, θi +π) (b) Shows corresponding fitted radial scans using
least square optimization. These are represented by Q(t, θi) and Q(t, θi + π) and i = 1, · · · , n.
A full radial scan can be consider as a combination of c(r, θi) and c(r, θi + π) and is shown
in different colors and corresponding parametrized curves are shown in the same color.

Central Foveal Thickness (hc f t ): refers to the central foveal thickness which is defined as the
minimum height of fovea at the center of the pit. From Eq. (17), hc f t can be written as:

hc f t =M(xm, ym). (18)

The hc f t of each radial scan is the same because (xm, ym) is the center of radial and represents
the beginning as well as the lowest point for each radial scan.
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Fig. 7. Visualization of 2D parameters on the central B-scan.

Average Rim Height (hr ): is defined as average of maximum height in each radial scan of a
volume (as shown in Fig. 3). Average rim height is written as:

hr =
1
n

n∑
i=1

max(c(r, θi)). (19)

Rim Disk Area (Ar ): To compute the rim disk area, the normal to the disk plane is calculated as
shown in Fig. 8. The covariance analysis of all the rim points provides not only the disk normal
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but also shape information as described below. Rim points covariance matrix can be computed as:

Cr =
1
n

n∑
i=1

(pc − pi)T (pc − pi),

pc =
1
n

n∑
i=1

pi .
(20)

Rim Area
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(a) Top view

A2D
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Z
λ1,v1

λ3,v3

λ2,v2

(b) 3D area

Fig. 8. a: Top view of rim disk. b: Normal vector of rim disk plane and corresponding
covariance eigenvalues and eigenvectors.

Eigen analysis of matrix Cr provides shape information about the rim disk. Let us consider
the vector λ = [λ1, λ2, λ3] representing the eigenvalues sorted in decreasing order: λ1 ≥ λ2 ≥ λ3
and [v1, v2, v3] are the corresponding eigenvectors. The most dominant eigenvalues λ1 and λ2
represent Major and Minor axis of the rim disk respectively. The least dominant eigen direction
will be the disk normal so np = v3. Now, Rim Disk Area can be computed as:

A3D =
A2D
cosθ

, θ = 6 (np, nz), (21)

where nz = [0, 0, 1] and A2D : R2 → R is the area of the projection of A3D on XY-plane.
Average Rim Disk Diameter (dr ):Let us consider pθi and pθi+π are two rim points corresponding
to two parameterized opposite radial scans(Q(t, θi) and Q(t, θi + π)) then average rim diameter is
written as:

dr =
2
n

n/2∑
i=1
‖pθi − pθi+π ‖. (22)

Average Pit Depth (hp): represents the depth of foveal pit and can be computed as the difference
between the average rim height and central foveal thickness:

hp = hr − hc f t . (23)

Average Maximum Pit Slope (sm): Average maximum pit slope measures the steepness of
foveal pit. It is defined as the average of the maximal slope of each radial scan. The slope of a
parameterized radial scan Q(r, θi) is defined as:

si =
dQy

I (t)/dt
dQx

I (t)/dt
i = 1, · · · , n,

                                                                              Vol. 8, No. 9 | 1 Sep 2017 | BIOMEDICAL OPTICS EXPRESS 4192 



(a) Rim disk (b) Inner rim disk - all points
are at 0.5 mm from the foveal
center used for the inner rim
volume computation

(c) Slope disk (d) Pit disk

Fig. 9. A visual representation of the 3D parameters. The rim and the inner rim volume is
defined as the volume covered by the corresponding disk area. The radius for the inner disk
area and the volume is defined by user.

where Qy
I (t) and Qx

I (t) represent parameterized x and y coordinates for the interior segment. To
calculate the maxima of the above equation, the gradient, ∇t si = 0 is computed. This gives the
value of tmi for the maximal slope (smi ):

smi = −
Py

3 − Py
0

α − β −
√
αβ − (Px

3 − Px
0 )
,

tmi =
√
α

√
α +
√
β
,

(24)

where Py
3 and Py

0 are the y coordinates of the end control points of QI (t, θi). Similarly, Px
3 and

Px
0 are the x coordinates of the end control points of QI (t, θi). Average maximum pit slope of a

volume is defined as:
sm =

1
n

n∑
i

smi . (25)

Average Slope Disk Diameter (ds): Average slope disk diameter is computed similar to average
rim diameter dr . Slope width is computed between two opposite parameterized radial scans:
Q(t, θi) and Q(t, θi + π) and the corresponding maximum slope points are psθi and psθi+π such that:

psθi (x) = Qx(tm, θi),
psθi (y) = Qy(tm, θi),

psθi+π(x) = Qx(tm, θi + π),
psθi+π(y) = Qy(tm, θi + π),

(26)

where tm represents maximum slope point in parametric domain as shown in Eq. (24) and
Qx(tm, θi), Qy(tm, θi) are the corresponding x and y coordinate. Average slope width of a volume
is defined as:

ds =
2
n

n/2∑
i=1
‖psθi − psθi+π ‖. (27)

Slope Disk Area (As): Slope disk area can be computed similar to the rim disk area. Let us
consider (ps1, ps2, · · · , psn) ∈ R3 are maximum slope points corresponding to each radial scan and
are computed using Eq. (24) and (26). Covariance of maximal slope points can be computed
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using Eq. (20) to obtain the normal vector, major and minor axes of the slope disk.
Pit Flat Disk Area(Af ): Pit flat disk area measures the flatness of foveal pit around the center
and is computed using a threshold value τ for each of radial scan. In each radial scan, a point p f

θi
where retinal thickness is smaller than τ is computed. Then the corresponding segment from
center (xm, ym) to the computed point p f

θi
is treated as flat. This can be done in following two

steps:

1. First of all, the parametric value t f corresponding to threshold value τ is calculated:

τ −Qy
I (t f , θi) = 0. (28)

2. Now, the x value corresponding the parameterized value t f is computed:

dfi = Qx
E (t f , θi). (29)

Point p f
θi

= (dsi , τ, θi) corresponds to the pit flat point for a single radial scan. Similarly, let us
consider (p f

1, p f
2, · · · , p f

n) ∈ R3 as pit flat points. The area, major and minor axis of the pit flat
disk can be computed similar to rim disk area.
Average Pit Flat Disk Diameter (df ) is computed using dfi from Eq. (29):

df =
2
n

n∑
i=1

dfi . (30)

Rim Volume (Vr ): In general, the volume under a surface in Cartesian and Polar domains and
can be computed using the following equation:

Vr =
∫ ∫

A

f (x, y)dxdy =
∫2π

0

∫R

0
c(r, θ)rdrdθ.

After the discretization process of the whole volume into n radial directions, the above equation
will become:

Vr =
2π
n

n∑
i=1

∫R

0
c(r, θi)rdr .

The above equation is modified using the following substitution. The interior parameter-
ized curve QI (t, θi) is defined between center and rim points. So the parametric value
t → {Qx

I (t, θi),Qy
I (t, θi)} is t = 0 and t = 1 at center and rim points respectively. Simi-

larly, r = Qx
I (t, θi), R = Qx

I (1, θi), c(r, θi) = Qy
I (t, θi) and dr = dQx

I (t,θi )
dt dt. After the substitution,

rim volume can be written as:

Vr =
2π
n

n∑
i=1

∫1

0
Qy

I (t, θi)Qx
I (t, θi)

dQx
I (t, θi)
dt

dt. (31)

In the above equation, R = Px
3 and at end point of the parametric curve t is equal to 1. R might

have different values for different radial scans because of asymmetry of foveal pit.
Inner Rim Volume (VIR): Is defined as the volume of fovea within a fixed radius from center.
The radius is given by the user. Let us consider tu to be the parametric value corresponding to the
user input radius ru for each radial direction. Now, Eq. (31) can be modified as follows:

VIR =
2π
n

n∑
i=1

∫ tu

0
Qy

I (t, θi)Qx
I (t, θi)

dQx
I (t, θi)
dt

dt. (32)
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Before using the above equation, it has to be tested whether radius R will be equal to the minimum
of Px

3 from all radial directions. In case that R is bigger than any of Px
3 , the exterior segment has

to be introduced into the integration as well.
Pit Volume (Vp): The total volume (Vt ) under the rim disk is calculated, Vt = A3Dh, where h is
the average height of rim points. Then the pit volume can be defined as:

Vp = Vt − Vr . (33)

Table 1. Repeatability test for the 3D parameters. Abbreviations: ICC - intra-class correlation
coefficient, LCI - lower confidence interval and UCI - upper confidence interval.

Parameters ICC LCI UCI
Avg. Pit Depth (hp) (mm) 0.981 0.966 0.990

Central Foveal Thickness (hc f t ) (mm) 0.989 0.980 0.994
Avg. Rim Height (hr ) (mm) 0.976 0.957 0.987

Avg. Rim Disk Diameter (dr ) (mm) 0.925 0.868 0.960
Rim Disk Area (Ar ) (mm2) 0.919 0.858 0.957

Major Axis Rim Disk (λr3) (mm) 0.909 0.843 0.952
Minor Axis Rim Disk (λr2) (mm) 0.906 0.838 0.950

Avg. Slope Disk Diameter (ds) (mm) 0.930 0.878 0.963
Slope Disk Area (As) (mm2) 0.946 0.905 0.972

Major Axis Slope Disk (λs3) (mm) 0.936 0.888 0.966
Minor Axis Slope Disk (λs2) (mm) 0.946 0.905 0.972

Avg. Pit Flat Disk Diameter (df ) (mm) 0.896 0.821 0.945
Pit Flat Disk Area (Af ) (mm2) 0.915 0.852 0.955

Major Pit Flat Disk Length (λ f
3 ) (mm) 0.899 0.825 0.946

Minor Pit Flat Disk Length (λ f
2 ) (mm) 0.913 0.849 0.954

Rim Volume (Vr ) (mm3) 0.895 0.820 0.944
Inner Rim Volume (VIR) (mm3) 0.966 0.940 0.983

Pit Volume (Vp) (mm3) 0.960 0.929 0.979
Avg. Max. Pit Slope (sm) (Degrees) 0.969 0.945 0.984

αm (mm) 0.917 0.855 0.956
βm (mm) 0.810 0.686 0.896

5. Experiments, results and discussion

Scans from 187 eyes consisting of 95 healthy eyes and 92 eyes from patients with autoimmune
neuroinflammatory diseases (with and without previous optic neuritis) were processed. Our
implementation is quite straight forward and follows the pipeline mentioned in section 3.1. The
proposed algorithm is implemented in a single computation thread and it takes around 3 seconds
to compute the parametric 3D model and related parameters.

5.1. Re-test reliability

The proposed algorithm was able to successfully model all the scans; visual inspection of model
results did not suggest modelling failure in any of the included scans. Table 1 shows the test-retest
reliability applied to a group of data including three repeated measurements of 30 healthy eyes.
Intra-class correlation coefficient (ICC) for the 3D derived parameters varied from 0.8102 for βm
to 0.9894 for the Central foveal thickness as shown in Table 1. From Table 1, parameter βm has
the lowest repeatability. Basically, αm and βm are the average of all α and β belonging to radial
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scans of interior region of fovea. As mentioned in Eq. (5), α and β represent the distance between
control points P0, P1 and P3, P2 respectively. The lowest ICC value obtained for βm indicates
that the distance between the P3 and P2 is not consistent. Perhaps, the small inaccuracy in rim
point detection is leading to the low repeatability of the βm. On the other hand, α depends on
center or beginning control point(P0) which is fix for a volume scan. Therefore, αm has a better
repeatability compared to βm.

5.2. Model accuracy

For root-mean-square-error (RMSE) comparison, we have implemented two state-of-the-art
methods for foveal shape analysis, the one proposed by Ding et al. [25], and the one described in
Dubis et al. [20] and compared them with our method. For a better readability, we renamed [25]
as M1 and [20] as M2. In case of M1 the 3D approach was implemented, as presented in the
paper [25]. For M2 the 3D version was modeled by extending the 2D method presented by the
authors on our radial re-sampled volume. In order to visualize the behaviour of M1 vs. M2 vs.
CuBe, we present fitting results on the central B-scan for the same subject in Fig. 10. As shown
in the figure, CuBe is able to capture the exact foveal shape with the lowest RMSE compared to
methods M1 and M2.
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Fig. 10. Comparison of the proposed method with two state-of-the-art methods [25] and [20].
Blue curve is the raw input (ILM-RPE difference) at the central B-scan and black, red and
green are the reconstructed curves with [20], [25] and our method (CuBe) respectively.
The RMSE values show that the proposed method manages to reconstruct the shape with
minimum artifacts, specifically the pit shape.

Methods M1 and M2, both are using Gaussian-based basis function to model foveal shape.
The method M2 [20] uses DoG (difference of Gaussian) as basis function for each radial scan
and derives only three parameters (slope, rim diameter and rim height) to characterize the shape
of the fovea, which is a too small number to encounter all the variation of the fovea shape. The
optimization procedure of the mentioned energy function in this method is complex because of the
two different Gaussian basis and the energy function can have unstable minima quite often. The
method M1 [25] applies a Gaussian along with a quadratic and linear basis function to produce a
3Dmodel of a volume scan. It needs eight parameters (A0, A11, · · · , A22) to reconstruct a 3Dmodel
of a volume scan. However, these parameters do not represent any morphological information of
the fovea, which makes their interpretation in relation to morphological characteristics rather
difficult. Scheibe et al. introduced a stable and accurate modeling of the fovea using double
derivative of an exponential function [22]. This method [22] is applied to re-sampled radial
scans from 3D macula cube scans. There are four parameters used to parametrize a radial scan.
However, the parameter γ in the exponential basis function ( exp(−xγ) [22]) makes the algorithm
more complex and leads to difficulties in optimization and analytical analyses. Additionally, direct
analytical derivation of 3D parameters, e.g volumes presents several computational problems.
Recently, Liu et.al [24] has introduced a sloped piecemeal Gaussian model for characterizing
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Fig. 11. RMSE values for 3D M1 , M2, and CuBe for the whole data set.

foveal pit shape. This method uses a combination of linear and Gaussian basis function along
with an additional parameter which encounters the pit bottom flatness. As this method is using
piecewise basis function, the optimization process is not straight forward. However, this method
only characterizes the foveal pit and not the complete fovea shape.
In Fig. 11, we show different RMSE values for 3D fitting on a volume scan. These RMSE

values are computed between raw ILM-RPE segmented data (as mentioned in section 3.1)
from Heidelberg Spectralis OCT and the corresponding fitted model. The comparison has been
performed between the proposed method, CuBe and methods M1, M2. The RMSE values for our
approach show overall lower values compared to other methods, as our method reconstructs the
foveal pit more accurately as shown in Fig. 10. In the proposed method, the highest RMSE occurs
in regions where the segmentation is mostly influenced by blood vessels. These blood vessels
produce several "jumps" spatially close to each other as shown in Fig. 12 (bottom). These "jumps"
have a strong influence also in the detection of maximum height points (rim points) which can
lead to a higher RMSE because our parametrization scheme depends on these critical points. In
such cases, peaks are representing the vessels and not the retinal tissue, which might induce an
additional noise when investigating differences between healthy and pathological data [28].
An important aspect of the presented method is the ability to utilize characteristic fovea

properties for the whole circular region (re-sampled radial region) because of the flexible
and robust cubic Bezier parametrization scheme. This implies that we derive the discussed 3D
parameters in a completely new fashion. This gives us the possibility to explore newmorphological
features of fovea in terms of Rim Disk, Slope Disk, and Pit Flat Disk by looking at the eigenvectors
of the covariance matrix defined in Eq. (20). By computing pit flatness and its area from the 3D
reconstruction, we are able to provide not only a better visual insight of this region but also a
potentially new diagnostic parameter for further investigations into several diseases e.g. those
characterized by nerve fibers and ganglion cells loss [4, 7, 8]. Another beneficial aspect of the
presented 3D approach is in the flexibility of defining the foveal radius. This can be computed
from the model itself as a specific feature of each radial Bézier curve part, and as such it would
take into account the asymmetric nature of this region, or as a variable radius, defined by the user.

5.3. Application in HC and patients with autoimmune neuroinflammatory disorders

Having all the parameters described in the previous section, a first analysis of the morphological
aspects of the data set can be performed. Table 2 shows all the 3D parameters defined for the HC
and patient groups. The measurements obtained with our method have similar values to the ones
encountered in literature. For characteristics like Rim Disk Area, Slope Disk Area, Pit Flat Disk
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Fig. 12. Two examples of 2D curve fitting results with the lowest (top) and the highest
(bottom) RMSE values selected from the entire data set analyzed. Original data is shown in
blue and fitted curve in green. RMSE values are from top to bottom, 1.0 µm, 7.1 µm.

Area a comparison to existing literature was not possible since this is the first time that these
parameters have been introduced.

We also investigated the capability of the derived parameters to differentiate between HC and
patients. To this end GEE analyses was performed. Table 2 presents that several parameters show
significant differences between HC and patients. These results open new possibilities for further
investigation of fovea shape derived parameters in more specific clinical diseases.

6. Conclusion

In summary, we have developed a reliable, accurate and meaningful approach for fovea shape
analysis, which is able to correctly model the profile of the foveal region and reconstruct its 3D
shape. Our method has been shown to robustly encounter possible variations in foveal shape in HC
but also in foveas that undergo considerable changes during the course of a neuroinflammatory
disease.

Themathematical model created is simple and has the advantage of a straight forward derivation
of parameters. The computed parameters are in direct relation to the geometry modeled, and
therefore provide an intuitive way of interpretation for further medical analysis and clinical
interpretation. A major advancement of the developed method is that it is possible to analyze the
foveal shape in a clinical context, especially from the 3D perspective.

Several derived foveal shape parameters showed statistically, significant differences between HC
and patients with neuroinflammatory diseases of the central nervous system and could potentially
reveal more insights into the foveal morphology and the changes it undergoes especially when
correlated with other clinical information. Further applications in ophthalmologic diseases like
macular degeneration are worth to be investigated as well.
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Table 2. Analysis of all the 3D parameters defined for the HC and patient group. The last
column shows the GEE analysis between the two groups. Abbreviations: HC - healthy
controls. SD - standard deviation, Min - minimum value, Max - maximum value, GEE -
generalized estimating equation models analysis accounting for the inter-eye/intra-subject
dependencies, p - p value

Parameters HC Patients GEE
Mean (SD) Min-Max Mean (SD) Min-Max p

Avg. Pit Depth (hp) (mm) 0.128 (0.019) 0.079-0.165 0.110 (0.022) 0.040-0.150 9.48E-05
Central Foveal Thickness (hc f t ) (mm) 0.224 (0.016) 0.186-0.266 0.223 (0.014) 0.199-0.264 0.628

Avg. Rim Height (hr ) (mm) 0.352 (0.014) 0.319-0.389 0.335 (0.018) 0.285-0.378 5.75E-08
Avg. Rim Disk Diameter (dr ) (mm) 2.130 (0.190) 1.680-2.580 2.140 (0.170) 1.760-2.510 0.608

Rim Disk Area (Ar ) (mm2) 3.580 (0.660) 2.220-5.240 3.510 (0.590) 2.440-4.900 0.570
Major Axis Rim Disk (λr3) (mm) 0.625 (0.110) 0.372-0.867 0.615 (0.100) 0.420-0.860 0.635
Minor Axis Rim Disk (λr2) (mm) 0.535 (0.100) 0.320-0.817 0.524 (0.089) 0.330-0.780 0.576

Avg. Slope Disk Diameter (dr ) (mm) 0.608 (0.015) 0.340-0.955 0.636 (0.160) 0.274-1.010 0.358
Slope Disk Area (As) (mm2) 0.313 (0.120) 0.100-0.710 0.348 (0.170) 0.059-0.839 0.270

Major Axis Slope Disk (λs3) (mm) 0.053 (0.020) 0.019-0.123 0.060 (0.029) 0.010-0.839 0.080
Minor Axis Slope Disk (λs2) (mm) 0.045(0.018) 1.00E-04-0.100 0.049(0.026) 2.00E-05-0.127 0.180

Avg. Pit Flat Disk Diameter (df ) (mm) 0.182(0.031) 0.110-0.295 0.197(0.044) 0.100-0.433 0.083
Pit Flat Disk Area (Af ) (mm2) 0.027(0.010) 0.011-0.068 0.033(0.018) 0.007-0.149 0.061

Major Axis Pit Flat Disk (λ f
3 ) (mm2) 0.004(0.001) 0.002-0.011 0.005(0.003) 0.001-0.025 0.053

Minor Axis Pit Flat Disk (λ f
2 ) (mm2) 0.004(0.001) 0.001-0.010 0.004(0.002) 0.001-0.022 0.069

Rim Volume (Vr ) (mm3) 1.020(0.190) 0.558-1.544 0.944(0.170) 0.597-1.364 0.023
Pit Volume (Vp) (mm3) 0.239(0.044) 0.152-0.366 0.236(0.054) 0.134-0.384 0.766

Inner Rim Volume (VIR) (mm3) 0.110(0.018) 0.060-0.153 0.100(0.019) 0.062-0.147 0.019
Avg. Max. Pit Slope (sm) (Degree) 12.740(2.680) 6.320-20.650 10.650(2.620) 3.400-16.290 1.38E-05

αm (mm) 0.250(0.063) 0.133-0.470 0.250(0.077) 0.100-0.450 0.590
βm (mm) 0.610(0.1) 0.360-0.830 0.560(0.089) 0.335-0.845 0.005
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