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What’s New:  

 

Previous tumor transplantation studies in mice showed that endogenous T cells can 

prevent tumor recurrence after oncogene-inactivation therapy. But, these 

experiments neglected the long-term, usually tolerogenic, interaction of de novo 

malignancies with the immune system. Here, we found that during autochthonous 

tumor regression surviving tumor cells were not eradicated by endogenous T cells 

and regrew after therapy cessation. However, adoptively transferred T cell targeting 

the cancer-driving oncogene eradicated relapsed tumors showing a successful 

treatment strategy.  
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Abstract 

Targeted oncogene inactivation by small molecule inhibitors can be very effective but tumor 

recurrence is a frequent problem in the clinic. Therapy by inactivation of the cancer-driving 

oncogene in transplanted tumors was shown to be augmented in the presence of T cells. 

However, these experiments did not take into account the long-term, usually tolerogenic, 

interaction of de novo malignancies with the immune system. Here, we employed mice, in 

which SV40 large T (Tag) and firefly luciferase (Luc) as fusion protein (TagLuc) could be 

regulated with the Tet-on system and upon activation resulted in tumors after a long latency. 

TagLuc inactivation induced profound tumor regression, demonstrating sustained oncogene 

addiction. While tumor relapse after TagLuc inactivation was prevented in immunocompetent 

mice bearing transplanted tumors, autochthonous tumors relapsed or recurred after therapy 

discontinuation indicating that the immune system that coevolved with the malignancy over 

an extended period of time lost the potency to mount an efficient anti-tumor immune 

response. By contrast, adoptively transferred CD8+ T cells targeting the cancer-driving 

oncogene eradicated recurrent autochthonous tumors, highlighting a suitable therapy option 

in a clinically relevant model.  
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Introduction 

Small molecule inhibitors, designed to inactivate specifically a cancer-driving oncogene have 

been proven to be highly effective against a variety of cancers in the clinic, e.g. imatinib 

against BCR-ABL-driven leukemia [1]. Despite the revolutionary success of small molecule 

inhibitors, drug resistance and, hence, tumor recurrence, is a frequently observed problem in 

the clinic. Various preclinical animal models revealed that abrogation of the cancer-driving 

oncogene provokes tumor cell apoptosis, necrosis, senescence, autophagy, and/or 

differentiation, collectively proving oncogene addiction [2-9]. These cell autonomous 

mechanisms were long thought to be the primary mechanism responsible for tumor 

regression. However, recently, it was discovered in a c-myc-driven tumor transplantation 

model that CD4+ T cells contribute to sustained tumor regression upon oncogene inactivation 

by release of chemokines like thrombospondins that remodel the tumor microenvironment, 

showing that cell extrinsic mechanism, namely cells of the adaptive immune system, 

contribute to the therapeutic effect of oncogene inactivation [10].  

The finding that cancer cell-targeting drugs are not solely tumor cell autonomous but involve 

T cells was already described for cancer cells equipped with suicide genes that conferred cell 

death in vivo after application of the corresponding prodrug. T cell-competent mice rejected 

transplanted cancer cells following prodrug treatment, while tumors relapsed in T cell-

deficient mice [11]. Later, it was found that cancer cell death was immunogenic when 

induced by certain chemotherapeutic drugs, e.g. anthracyclines, and that so treated cancer 

cells induced T cell-dependent tumor immunity in transplantation models [12, 13]. We 

showed in a model of large established transplanted tumors that therapeutic efficacy of 

oncogene inactivation was increased when immunodeficient hosts were reconstituted with T 

cells [5]. 

So far, the therapeutic effect of drug-driven anticancer therapies and the contribution of the 

immune system were mainly analyzed in experimental models with transplanted tumors. 

These models do not recapitulate the clinical situation because transplanted tumors, 
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although histologically not to discriminate from autochthonous tumors [14], grow in a short 

time to large tumors so that the interaction between cancer and immune cells is limited to few 

weeks. Mouse transplantation models do therefore not recapitulate the long-lasting interplay 

between cancer and the immune system as it occurs during autochthonous tumor 

development, which is usually sporadic, clonal and may last for decades in humans. 

Importantly, the process of cancer cell inoculation is associated with an acute inflammatory 

response facilitating T cell activation as it unlikely occurs during autochthonous tumor 

development. It remains therefore questionable if the results obtained from mice transplanted 

with cancer cells are predictive for cancer patients presenting in the clinic. Here, we 

established a model in which autochthonous tumors can be induced and treated by 

oncogene inactivating drugs. With this model we wanted to answer the question whether the 

immune system eradicates drug resistant cancer clones during oncogene inactivation 

therapy and prevents cancer recurrence after therapy discontinuation.  

Material and Methods 

Mice  

Rag-1-/- or Rag-2-/- (Rag-/-) mice and TCR-I mice, which are transgenic for the H2-Db-restricted 

Tag epitope I-specific (Vβ7) T cell receptor [15], were obtained from The Jackson Laboratory. 

LoxP-TagLuc-pA mice [16], TREloxPstoploxPTagLuc mice [5], CAG-rtTA mice expressing the 

reverse transactivator rtTA2S-M2 [17], TCR-I x ChRLuc mice [18], all generated on a C57Bl/6 

genetic background, and Tyr::Cre mice [19], were described elsewhere. Homozygous 

TREloxPstoploxPTagLuc mice were crossed to Tyr::Cre+/-/CAG-rtTA+/- mice to obtain TTC mice 

that were heterozygous for all three transgenes. To obtain mice with albino phenotype, mice 

were bred to C57BL/6-Tyrc-Brd mice [20]. All animal experiments were conducted in 

accordance with institutional and national guidelines and regulations, after approval by the 

Landesamt für Gesundheit und Soziales (Berlin). 
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Cancer Cell Lines 

Cells were cultured in Dulbecco’s modified eagle medium (GIBCO), supplemented with 10% 

heat-inactivated fetal calf serum (PAN, Biotech) and 50 µg/ml gentamicin (GIBCO). For in 

vitro analyzes, cancer cell lines from primary tumors grown in TTC triple transgenic mice 

were established by collagenase digestion (type II, 1mg/ml, Invitrogen) of small tumor 

fragments. Obtained cell lines were cultured in the presence of dox (1 µg/ml). Additionally, 

the mouse melanoma cell line B16 was used to detect tyrosinase transcripts by RT-PCR. For 

tumor challenge experiments, 1x106 Tet-TagLuc tumor cells or 50 to 100 µl fragments (about 

1 x 1 x 1 mm cubes) derived from Tet-TagLuc tumors grown in Rag-/- mice were injected 

subcutaneously into indicated mice. Tumor growth and regression, respectively, were 

analyzed by BL imaging and determination of tumor volume by caliper measurement 

according to the formula (xyz)/2. 

Doxycycline Treatment 

Dox (0.2 mg/ml; Sigma) was administered by light-protected drinking water supplemented 

with 5% sucrose changed twice a week, or 1 µg/ml dox was added to the cell culture medium 

twice a week. 

Bioluminescent Detection 

Mice were anesthetized by isofluran inhalation using the XGI-8 Gas Anesthesia System 

(Xenogen) and received 3 mg of D-luciferin (Biosynth) intravenously dissolved in PBS (30 

mg/ml) to detect TagLuc (firefly luciferase) tumor signal or received intravenously 100 µg 

coelenterazine (Biosynth), dissolved in 30% DMSO (Sigma-Aldrich) and 70% PBS (MgCl2 

and CaCl2 free (Invitrogen)) to detect RLuc T cell signal. Mice were directly subjected to BL 

imaging (IVIS 200, Xenogen). The exposure time for BL image acquisition was 1 or 60 

second, depending on the signal strength. The BL imaging data were analyzed with Living 



 7 

Image software (Caliper Life Science). BL signal was quantified by placing a region of 

interest (ROI) around individual tumors. 

Adoptive T Cell Transfer 

Spleen cells of TCR-I x ChRLuc mice were isolated seven days after immunization with 1x107 

Tag+ 16.113 cells [21] and spleen cells containing 5 x 106 Vb7+ cells were injected 

intravenously into mice that were irradiated with 4 or 5 grey on the same day.  

Flow cytometry and antibodies 

TCR-I x ChRLuc transgenic spleen cells were stained with following anti-mouse antibodies 

before transfer at a final concentration of 1:100: CD3 (145-2C11, Phycoerythrin (PE), 

BioLegend), CD8 (53-6.7, allophycocyanin (APC), BioLegend), and Vb7 (TR310, fluorescein 

isothiocyanate (FITC), BioLegend). Blood samples were stained with H2-Db tetramers 

loaded with peptide I (SAINNYAQKL) (PE, MBL), CD8 (53-6.7, APC, BioLegend) and CD3 

(17-A2, FITC). Erythrocytes from blood samples and spleen cells were lysed by BD™ Lysing 

solution (BD) and ammonium chloride treatment, respectively. Samples were washed in PBS 

and acquired using FACSCalibur (BD). Data analysis was performed using FlowJo software 

(TreeStar, Ashland, OR, USA) 

Histology 

H&E staining of sections from paraffin embedded tumors were performed according to 

standard techniques. Pathological analyses were performed by ECVP certified veterinary 

pathologists (OK, ADG). 
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PCR 

To determine recombination status of tumors developed in TTC mice, the following primer 

pairs were used: #1 forward primer: 5’-CGAGGTAGGCGTGTACGGTGG-3’, #1 reverse 

primer: 5’-GCAAATTTAAAGCGCTGATGATCC-3’, 

#2 forward primer: 5’-CGAGGTAGGCGTGTACGGTGG-3’, #2 reverse primer: 5’-

CGGATGAGCATTCATCAGGCGGG-3’. 

RT-PCR 

RNA was isolated using the RNA isolation kit from Stratec. After DNase treatment, cDNA 

was reverse transcribed using SuperScriptIII reverse transcriptase and oligo (dT) primer (life 

technology). To detect tyrosinase transcripts, the following primers (exon spanning) were 

used: forward primer: 5’-TGTACAGAGAAGCGAGTCTTGA-3’; reverse primer: 5’-

ACAAATGATCTGCCAGGAGGA-3’. Beta actin cDNA was amplified using following primer 

pair: forward primer: 5’-ACCACACCTTCTA-CAATGAG-3’, reverse primer: 5’-

GTAGATGGGCA-CAGTGTGGG-3’. 

Results 

Prevention of transplanted tumor relapse after oncogene inactivation in 

immunocompetent mice 

Tet-TagLuc is a fibrosarcoma cell line derived from a TREloxPstoploxPTagLuc transgenic 

mouse (see below) and has been described (5). Tet-TagLuc cells express a fusion protein of 

SV40 large T (Tag) and firefly luciferase (TagLuc) as cancer-driver under tetracycline 

promoter control, which can be regulated by doxycycline (dox). Previously, we observed that 

the frequency of tumor relapse after oncogene inactivation therapy could be reduced in the 

presence of an intact immune system. [5]. To extend the data, we exploited LoxP-TagLuc-pA 

[16] x CAG-rtTA [17] double transgenic mice to enable growth of Tet-TagLuc cells, a 
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regressor cancer cell line in wildtype mice. Although LoxP-TagLuc-pA x CAG-rtTA mice are 

tolerant for TagLuc and transactivator antigens, Tet-TagLuc cells injected subcutaneously as 

single cell suspension were rapidly rejected (Figure 1A), indicating the presence of at least 

one additional transplantation rejection antigen. Transplantation of Tet-TagLuc tumor 

fragments into LoxP-TagLuc-pA x CAG-rtTA mice prevented tumor rejection and tumors 

grew progressively in all mice. After an average tumor growth period of 28 days (range 22 to 

34 days), tumors reached a size of at least 500 mm3 and TagLuc inactivation by dox 

application was started (Figure 1B and C). TagLuc inactivation resulted in rapid decline of 

bioluminescence (BL) signal and tumors regressed as followed by BL imaging and caliper 

measurement, respectively (Figure 1B and C). Tumors of all Rag-/- mice initially regressed 

but then relapsed around 1 month after therapy. In contrast, tumors from 6 out of 7 

immunocompetent LoxP-TagLuc-pA x CAG-rtTA mice did not relapse, although, a small, soft 

lump at the tumor side remained but did not progress. These results suggested that 

therapeutic efficacy of oncogene-inactivation therapy depends on the presence of an intact 

adaptive immune system in a tumor transplantation model, similar as has been reported by 

Rakhra et al. [10]. Furthermore, tumors in LoxP-TagLuc-pA x CAG-rtTA mice, although 

grown for more than one month in the presence of the adaptive immune system, seemed not 

to have induced tolerance of endogenous tumor-reactive T cells. 

TTC mice develop autochthonous tumors  

The previous experiment utilized transplantation of cancer cells under the skin that progress 

in a relatively short period to full-blown tumors. To analyze whether our observations can be 

extended to tumors initiated and evolved in a primary host with a much longer coevolution 

between cancer and T cells, we utilized TREloxPstoploxPTagLuc transgenic mouse lines 

described previously [5]. Like Tet-TagLuc cells, TREloxPstoploxPTagLuc transgenic mice 

contain the TagLuc fusion gene under control of the Tet-promoter, but due to a loxP-flanked 

stop cassette located between the Tet-promoter and the TagLuc transgene, and the 

requirement of an active transactivator, expression was prevented in TREloxPstoploxPTagLuc 
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single transgenic mice (Figure 2A). We aimed to achieve TagLuc expression under control of 

the Tet-on system in a melanocyte-restricted fashion to establish an autochthonous 

melanoma model. To this end, we crossed TREloxPstoploxPTagLuc mice derived from two 

founder lines (F7 and F10) to CAG-rtTA and Tyr::Cre [19]transgenic mice, which express the 

rtTA and Cre transgenes under the CAG and tyrosinase promoter, respectively (Figure 2A). 

TagLuc expression was not detectable by BL imaging in the absence of dox in 

TREloxPstoploxPTagLuc single (T), TREloxPstoploxPTagLuc x CAG-rtTA double (TC), and 

TREloxPstoploxPTagLuc x CAG-rtTA x Tyr::Cre triple transgenic (TTC) mice of both founder 

lines, as shown for F7 in Figure 2B. Dox administration via the drinking water (200 µg/ml) 

resulted in profound induction of TagLuc expression in TTC triple transgenic mice (Figure 2B 

and C). Low TagLuc expression was detected in TC double transgenic mice (mean average 

radiance TC F7 vs TTC F7, 5.17E+03 ± 1.48E+03 vs 3.79E+04 ± 3.62E+04; TC F10 vs TTC 

F10, 3.91E+03 ± 6.3E+02 vs 6.56E+05 ± 1.74E+06), most likely due to weak leakiness of the 

stop cassette. No tumor formation was observed in TC double transgenic mice with one 

exception for each founder line (F7: 1 out of 16 observed mice; F10: 1 out of 13 observed 

mice; average observation period: 42 and 36 weeks, respectively) (data not shown). TTC 

triple transgenic mice treated with dox since birth developed primarily non-pigmented skin 

tumors and visceral tumors (Figure 2D) with an average tumor latency of 42 weeks (F7) and 

35 weeks (F10), respectively (Figure 2E). Histological analysis of 14 tumors isolated from 

eleven TTC mice revealed that the majority of tumors (8/14) were spindle cell tumors, but 

also pancreatic exocrine adenocarcinomas (n=2), mammary adenocarcinomas (n=2), 

papilloma (n=1) and a round cell tumor were identified (Figure 2F and Table 1). In all 

analyzed tumors, deletion of the stop cassette was detected (Figure 2G), however, none of 

the isolated tumors showed tyrosinase promoter activity as analyzed by detection of 

tyrosinase expression (Figure 2H). These results suggest that tumors arose from progenitor 

cells that deleted the stop cassette due to transient tyrosinase promoter activity but these 

cells did not commit to the melanocyte lineage. We assume that cells from these progenitor 
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cells transformed with higher penetrance than melanocytes so that mice succumbed to non-

melanoma tumors before melanomas could develop. 

Autochthonous tumors regress long-term following oncogene inactivation but 

dormant tumor cells regrow after therapy discontinuation 

Tumor-bearing TTC mice with one (n=6), two (n=3) or more tumors (n=1) were subjected to 

oncogene inactivation therapy by withdrawal of dox-containing drinking water. The average 

age of mice at the time point of treatment was 298 days (range 166 to 584 days) (Table 2). 

Dox cessation resulted in a rapid decrease of BL signal in all treated mice (n=10), declining 

to less than 2% (range 0.009 to 10.5 %) of the original signal strength after an average 

observation period of eight days as shown for seven mice (Figure 3A and B and Figure S1). 

Decline of BL signal was followed by tumor regression, suggesting abundant cell death 

(Figure 3C). From in vitro analysis of cancer cell lines derived from the transgenic mice we 

know that TagLuc inactivation results in apoptotic cell death in a high proportion of cells (up 

to more than 50%) (unpublished observation). To analyze whether TagLuc inactivation in 

autochthonous tumor-bearing mice resulted in complete tumor cell eradication, eight of the 

ten mice with stably low BL signal over time (average observation period 83 days; range 19 

to 203 days) were subjected again to dox-containing drinking water. Surprisingly, BL signal 

increased rapidly in all mice after dox reapplication and tumors developed at the primary 

tumor site as shown for six mice in Figure 3D-F and Figure S1. Together, oncogene 

inactivation in autochthonous tumor-bearing hosts resulted in relatively durable tumor 

regression, but, more importantly, in all treated mice some tumor cells survived and 

remained dormant for several weeks and up to six months, able to resume proliferation as 

soon as TagLuc was reactivated. These results suggest that massive tumor cell death 

induced by oncogene inactivation does not elicit an immune response potent enough to 

prevent tumor progression upon oncogene reexpression.  



 12 

Adoptively transferred TE cells eradicate autochthonous tumors that relapsed after 

oncogene inactivation  

To analyze antigenicity of dormant cancer cells that persisted after oncogene inactivation in 

the autochthonous host, two tumor-bearing TTC transgenic mice were subjected to TagLuc 

inactivation therapy (Figure 4A). A relatively low but stable Tag-Luc signal at the former 

tumor site was detectable more than one month after TagLuc inactivation indicating the 

presence of dormant tumor cells. These mice were irradiated (5 grey) and received 

monospecific CD8+ T cells (5x106 cells) directed against Tag epitope I (TE cells) isolated from 

immunized TCR-I x ChRLuc double transgenic mice. Expansion and migration of transferred 

T cells were followed by detection of Renilla luciferase (RLuc, which can be distinguished 

from firefly luciferase in TagLuc) T cell signal by BL imaging over time (Figure 4A). Two days 

after TE cell transfer, an RLuc T cell signal was localized predominantly in cervical lymph 

nodes and between day 5-16 also at the previous tumor site indicating that dormant tumor 

cells were antigenic and recognized by TE cells in the primary host.  

Regularly, we observed mice with reappearing BL signal despite continuous oncogene 

inactivation therapy indicating tumor relapse due to drug resistance. To ask whether 

transferred TE cells could eradicate autochthonous tumors that escaped oncogene 

inactivation therapy, we irradiated nine mice with drug resistant tumors and injected 5x106 TE 

cells. Tumor rejection by transferred TE cells was monitored by detection of TagLuc tumor 

signal over time. A reduction in TagLuc activity at the tumor site was observed starting at day 

four after TE cell transfer and no tumor TagLuc signal was detectable after 12 days in all mice 

(Figure 4B and C and Figure S2). Irradiation alone did not result in tumor eradication (n=1, 

data not shown). Tumor rejection was accompanied by robust TE cells expansion, reaching 

TE cell counts of up to 89 % of the total T cell population at day ten after transfer (average 

46.2 %) as shown in Figure 4D (n=5). While one mouse died seven days after TE cell transfer 

and decline of TagLuc tumor signal, the remaining eight mice were observed long-term (54 to 

180 days) and tumors did not relapse (Figure S2). Together, dormant tumor cells are 

antigenic and recognized by transferred TE cells. Furthermore, TE cell therapy proved to be 
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effective to eradicate tumor variants that escaped destruction by oncogene inactivating 

therapy in primary tumor-bearing hosts. In conclusion, immunogenic cell death after 

oncogene inactivation therapy, if at all operative, could neither prevent eventual tumor 

relapse nor tumor progression after therapy discontinuation in autochthonous tumor bearing 

hosts. 

Discussion 

In the present study, we analyzed the role of the host immune system for sustained tumor 

regression after oncogene inactivation therapy. In mice with transplanted tumors we found a 

substantial improvement of the therapeutic outcome of oncogene inactivation therapy 

dependent on the presence of an intact immune system, confirming earlier studies (5, 10). 

Since the mice were tolerant for TagLuc and rtTA and Tet-TagLuc cancer cells were rejected 

as single cell suspension but grew as fragments [22], we can postulate additional, yet 

unknown, tumor transplantation rejection antigen(s). These data strongly indicate that cancer 

cell death induced by oncogene inactivation can be immunogenic under special conditions 

(the artificial process of cancer cell injection causing acute inflammation) and elicits T cells 

that reject transplanted cancer cells. However, when the same therapeutic approach was 

analyzed against autochthonous tumors, tumors frequently relapsed under therapy or 

recurred after therapy discontinuation. This contrasting effect might be due to the different 

time period the immune system interacted with the tumor and its microenvironment in the 

transplanted versus the autochthonous tumor model. The period was relatively short in mice 

with transplanted tumors but long during autochthonous tumor development. An extended 

period of time in which T cells encounter their cognate antigen can result in T cell exhaustion 

that might have hampered the contribution of T cells to the therapeutic effect of oncogene 

inactivation in mice with autochthonous tumors. This assumption is supported by clinical data 

and an autochthonous cancer model, demonstrating therapeutic effects by so-called 

checkpoint inhibitors like anti-PD-1 (ligand) antibodies that unleash tumor-reactive T cells 

from suppression [24-26]. In addition, the inflammation created by tumor cell injection in the 
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transplanted tumor model might have increased the number of pre-existing tumor infiltrating 

T cells facilitating anti-cancer activity after oncogene inactivation in an artificial manner. 

Like for other oncogenes including ras, myc, bcr-abl [2, 4, 27], the growth and survival of 

cancer cells in the current model remained long-term dependent on the expression of 

TagLuc. These data are at variance with previous data suggesting that tumors at advanced 

stage progress independent of Tag expression [28]. However, in this model a version of the 

transactivator was used that did not allow as tight regulation as rtTA used here. Also in 

common with other oncogenes, TagLuc inactivation resulted in complete regression of large 

tumors, yet some cancer cells escaped elimination in a dormant state and could rapidly be 

reactivated upon drug discontinuation [2, 8, 29] or became drug-resistant, e.g. through 

mutations in the rtTA conferring dox-unresponsiveness [5, 30]. Identifying cancer specific 

point mutations in tumor samples taken prior oncogene inactivation and engineering T cells 

with receptors that target these mutations might be a promising approach to combat 

relapsing tumors after oncogene inactivation therapy in the clinic. In conclusion, in a clinically 

relevant model, adoptive T cell therapy but not therapy targeting a cancer-driving oncogene 

can prevent autochthonous tumor recurrence occurring spontaneously or upon treatment 

discontinuation. 
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Figure 1.  Sustained regression of transplanted tumors after oncogene inactivation 

therapy in immunocompetent hosts. (A) LoxP-TagLuc-pA x CAG-rtTA mice (n=5) were 

injected with Tet-TagLuc cancer cells and BL signal was followed over time. Data represent a 

single experiment. (B) LoxP-TagLuc-pA x CAG-rtTA mice (n=7) or Rag-/- mice (n=6) were 

injected with Tet-TagLuc tumor fragments, and, when tumor reached a size of >500 mm3, 

mice were treated with dox or were left untreated (n=1). FLuc tumor signal was followed over 

time by BL imaging. (C) Tumor growth kinetics of mice shown in (B). Data in (B) and (C) are 

combined from three experiments. 

Figure 2.  Autochthonous tumor model allowing oncogene-inactivation therapy. (A) 

Scheme of the breeding strategy to generate mice that conditionally express TagLuc fusion 

protein in the presence of dox. (B) Mice transgenic for TREloxPstoploxPTagLuc (T) (n=5), 

TREloxPstoploxPTagLuc and CAG-rTA (TC) (n=7), or TREloxPstoploxPTagLuc, CAG-rtTA and 

Tyr::Cre (TTC) (n=16) were subjected to BL imaging before and after induction by dox 

(acquisition time 60 seconds). One representative example for each genotype is shown. (C) 

Average light signal of TC and TTC mice of founder line 7 and 10 before (white circle) and 

after induction (black triangle) by dox. Light signals of B6 mice denote background. Each 

symbol indicates an individual mouse. Mice with albino phenotype are indicated with hatched 

symbols in the “after dox” situation. (D) Photographs of seven tumor bearing TTC mice. In 

one mouse (top left), the abdominal wall was opened to reveal the visceral tumor (white 

arrow) that shows firefly luciferase activity (adjacent picture). (E) Tumor-free survival of TTC 

mice of founder line 7 and 10 after dox administration. Mice were counted as tumor bearing 

when a locally increasing signal was detectable by BL imaging with an exposure time of one 

second. Crosses indicate mice that were censored. (F) Light microscopy of H&E stained 

sections from tumors located at the snout (left) or pancreas (right). Scale bar 50 µm. (G) 

Tumors of TTC mice were analyzed for deletion of the loxP site-flanked stop cassette using 

two different primer pairs (#1 and #2). Primer location and expected band size are indicated. 

Two representative results (tumor #6653 and #5276) are shown. Exemplary PCR results of a 
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tumor with (Tet-TagLuc) and without recombination (TC 200.09) of the stop cassette are 

shown. (H) RT-PCR to analyze tyrosinase expression in cell lines (n=5) derived from tumors 

grown in TTC mice. Melanoma tumor cell line B16 served as positive control. Beta actin was 

detected as internal control. 

Figure 3.  Autochthonous tumor regression following oncogene inactivation and 

regrowth of dormant cells after therapy discontinuation. (A) Primary tumor-bearing TTC 

mice (n=10) receiving dox for an average period of 298 days (range from 166 to 584) were 

subjected to oncogene inactivation therapy (dox off). TagLuc expression was followed by BL 

imaging over time (one second acquisition time). (B) Quantified BL signal from mice shown in 

(A). (C) Photograph of a tumor-bearing TTC mouse shown in the lower panel in (A) before 

and 27 days after dox cessation. The same mouse is also shown in Figure 2D. (D) A TTC 

mouse with two primary tumors was monitored over time by BL imaging after dox cessation 

and reapplication 203 days later. (E) Quantified BL signal over time of tumor located at the 

snout (white filled circle) and abdominal cavity (black filled circle) from mouse shown in (D). 

A red filled circle indicates time point of dox reapplication. (F) Photographs of the snout 

tumor from mouse shown in (D and E) before and after dox reapplication. See also related 

supplementary Figure S1 and Table 2. 

 

Figure 4.  Adoptively transferred TE cells recognize dormant tumor cells and 

eradicate tumors that relapsed during target drug therapy. (A) Primary tumor-

bearing TTC mice (n=2) were subjected to oncogene inactivation therapy and tumor 

regression was monitored by detection of tumor TagLuc signal before and after dox 

cessation (left panel). Mice were irradiated, injected with 5x106 RLuc+ TCR-I TE cells 

and RLuc T cell signal was monitored over time by BL imaging (right panel). (B) 

Primary tumor-bearing TTC mice were treated by dox cessation and tumor 

regression was followed by BL imaging. When BL signal was increasing despite 

continued dox cessation that indicated tumor relapse, mice (n=9) were irradiated and 
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received a single injection of TE cells. Kinetic of tumor eradication by T cells was 

monitored by BL imaging of tumor TagLuc activity. (C) Quantified TagLuc signal of 

mice shown in (B). Time point of dox cessation and T cell therapy are indicated by 

blue circle and black arrow, respectively. Two representative examples from nine 

treated mice are shown in (B) and (C). (D) Percentage of TE cells in blood of 

immunized C57BL/6 (n=2) or tumor bearing TTC mice (n=5), respectively, ten days 

after T cell therapy. One representative dot blot is shown (left) and all data are 

summarized (right). See also related supplementary Figure S2 and Table 2. 



Figure 1 
A 

Rag-/-, treated 
LoxP-TagLuc-pA x CAG-rtTA, untreated  
LoxP-TagLuc-pA x CAG-rtTA, treated  

Rag-/-, treated  
LoxP-TagLuc-pA x CAG-rtTA, untreated  
LoxP-TagLuc-pA x CAG-rtTA, treated  

B C 

0 10 20 30 40
105

106

107

108

109

Time post cell inoculation [d]

To
ta

l F
lu

x 
(p

/s
)

0 10 20 30 40 75 90
106

108

1010

1012

Time post therapy (d)

To
ta

l F
lu

x 
(p

/s
)

0 10 20 30 40 75 90
0

500

1000

1500

Time post therapy (d)

Tu
m

or
 s

iz
e 

[m
m

3 ]



before dox 17 days dox 

T TC TTC T TC TTC 

1 2 1 2 

#5276 
not  

recombined recombined 

1650 

500 

5000 
1 2 1 

#6653 

2 bp primer 
pair # 

F 

D E 

Spindle cell tumor 
Pancreatic exocrine 
adenocarcinoma 

TTC F7 #6354 TTC F7 #3055 

B16 TTC tumors H20 

500 

1500 
Tyrosinase 

beta 
actin 

5000 
    bp 

bp 
500 

H 

B 

Figure 2 

TC 

A TyrCre x  
CAG-rtTA 

Tet-TagLuc Tet-TagLuc x 
TyrCre x CAG-rtTA 

-dox 

+dox rtTA/dox 

rtTA 

G 

1926 
457 

TRE stop TagLuc 

expected 
band size (bp) 
recombined 
yes no 

- 
200 

primer 
pair # 

1 
2 

C 

F7 F7 F10 F10 
TC TTC TTC TC 

B6 Av
g 

R
ad

ia
nc

e 
[p

/s
/c

m
²/s

r] 
 

102 

103 

105 

107 

104 

106 

0 

0.2 

0.4 

0.6 

0.8 

1 

0 200 400 600 

Tu
m

or
-fr

ee
 s

ur
vi

va
l 

time in days 

TTC F7 
TTC F10 

 (n=53) 
 (n=41) 

B 



A B 

Figure	3	

C 
on dox 

27d dox off 

195 8 48 time (d) 

20 48 76 2 

D 

314 7 40 

dox off on dox 

time (d) 

2 410 203 20 

on dox again dox off 

76 

on dox 
E 

time (d) 

dox off on dox again 
F 

TTC F7#6354  

TTC F10 #5784 

TTC F7#6354  

TTC F7#3055  



Figure 4 A 

C 

irradiation + 
TE cells 

2 7 9 12 106 

irradiation + 
TE cells 

106 

irradiation + 
TE cells 

B 

time post 
therapy (d) 

time post 
therapy (d) 0 84 

oncogene inactivation 

2 5 7 78 83 0 56 

oncogene inactivation 

#6799	

#6585	

2 5 7 

post  irradiation and T cell transfer  
RLuc T cell signal 

time (d) 

FLuc tumor signal 

42 

dox off 

0 

2 9 16 

post  irradiation and T cell transfer  

time (d) 40 

dox off 

0 

#7091	

#7087	

D	
C57BL/6 TTC #9387 

4.94% 32.5% 

TTC C57BL/6 CD8 

H
2D

b-
pI

 

irradiation + 
TE cells 

0

20

40

60

80

100

%
 H

2D
b-

pI
+  

of
 C

D
3+  T

 c
el

ls

-100 0 100200300
104

106

108

1010

1012

Time post therapy (d)

To
ta

l F
lu

x 
(p

/s
)



Figure	S1	

166 8 48 41 time (d) 
 dox again dox off on dox 

TTC F10 
#6653 

294 6 19 41 time (d) 
 dox again dox off on dox 

TTC F10  
#5785  

311 8 48 41 time (d) 
 dox again dox off on dox 

TTC F7 
#5276 

584 3 98 16 time (d) 
 dox again dox off on dox 

TTC F7  
#3059 

177 8 37 52 time (d) 
 dox again dox off on dox 

TTC F10  
#6587 

0 20 40 60 80100
107

108

109

1010

1011

Time post therapy (d)

To
ta

l F
lu

x 
(p

/s
)

0 20 40 60 80100
106
107
108
109

1010
1011

Time post therapy (d)

To
ta

l F
lu

x 
(p

/s
)

0 20 40 60
105

107

109

1011

Time post therapy (d)

To
ta

l F
lu

x 
(p

/s
)

0 50 100

106

108

1010

1012

Time post therapy (d)

To
ta

l F
lu

x 
(p

/s
)

0 20 40
105

107

109

1011

Time post therapy (d)

To
ta

l F
lu

x 
(p

/s
)

Figure	 S1.	 (A)	 TTC	 mice	 were	 subjected	 to	 oncogene	 inac;va;on	 therapy	 by	 dox	
cessa;on	and	 tumor	 regression	was	monitored	by	BL	 imaging.	Mice	with	stably	 low	BL	
signal	were	exposed	again	 to	dox	containing	drinking	water.	 (B)	Quan;fied	BL	signal	of	
mice	shown	in	(A).	Time	point	of	dox	re-administra;on	is	indicated	by	a	red	filled	circle.	
Related	to	Figure	3.	

A	 B	
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Figure S2. Autochthonous tumor development in TTC mice was monitored by BL imaging. 
Mice with tumors received oncogene inactivation therapy (blue circle). After recurrence of 
light signal despite continuous dox cessation, mice were irradiated and received TE cells 
(red circle). Seven individual mice are shown. Mice #10539 and #9774 received dox-
containing drinking water four days before T cell therapy. Related to Figure 4.
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Table 1: Tumors developed in TREloxPstoploxPTagLuc /CAG-rtTA/Tyr::Cre (TTC) 

transgenic mice  

# Tumor 
number 

Tumor 
location Origin Mitotic 

rate 
Local 

invasion Diagnosis 

1 TTC 
#7496 Rectum M ++ + Spindle cell tumorA) 

2 TTC 
#7679a Abdomen E +++ - Mammary 

adenocarcinoma 

3 TTC 
#7679b Subcutanous E +++ - Mammary 

adenocarcinoma 

4 TTC 
#6653 Abdomen E +++ + Pancreatic exocrine 

adenocarcinoma 

5 TTC 
#3055a Snout M ++ + Spindle cell tumorA) 

6 TTC 
#3055b Abdomen E + + Pancreatic exocrine 

adenocarcinoma 

7 TTC 
#3059 Armpit M ++ + Spindle cell tumorA) 

8 TTC 
#5785 Abdomen M +++ + Spindle cell tumorA) 

9 TTC 
#6354a Snout M ++ + Spindle cell tumorA) 

10 TTC 
#6354b Ear E - - Papilloma 

11 TTC 
#5276 Ear M ++ + Spindle cell tumorA) 

12 TTC 
#6412 

Head, 
cutanous 

Round 
cell + +/- Desmoplastic small-

round cell tumor 

13 TTC 
#5650 Rectum E +++ + Spindle cell tumorA) 

14 TTC 
#6654 Limb E +++ + Spindle cell tumorA) 

A) Most likely differentials: Peripheral nerve sheath tumor, leiomyosarcoma or fibrosarcoma 

M = mesenchymal morphology 

E = epithelial morphology 

 



Table 2: ATT but not oncogene inactivation therapy result in tumor eradication 

# Mouse 

Age at 
oncogene 
inactivation 
therapy (d) 

Time 
before 
oncogene 
on again 
(d) 

Time 
until 
spontan
eous 
relapse 
(d) 

Tumor 
reappeara
nce after 
dox 
cessation 

Age at 
ATT 
(d) 

Outcome of ATT 
(observation period) 

1 TTC F7 #5276 311 48 - yes - - 

2 TTC F10 #6653 166 48 - yes - - 

3 TTC F7 #6354 195 48 - yes - - 

4 TTC F10 #5785 294 19 - yes - - 

5 TTC F7 #3059 584 98 - yes - - 

6 TTC F10 #6587 177 37 - yes - - 

7 TTC F10 #5784 314 40 - yes - - 

8 TTC F7 #3055 410 203 - yes - - 

9 TTC F7 #7087 265 - - - 307 T cell signal 

10 TTC F7 #7091 265 - - - 307 T cell signal 

11 TTC F10 #6125 366 - 43 - 434 BL decrease but 
death 

12 TTC F7 #6585 289 - 78  - 400 Rejection (96 d) 

13 TTC F7 #6799 213 - 84  - 352 Rejection (154 d) 

14 TTC F10 #10172 262 - 113  - 430 Rejection (113 d) 

15 TTC F10 #10539 248 - 51  - 384 Rejection (180 d) 

16 TTC F10 #9978 342 - 65  - 456 Rejection (113 d) 

17 TTC F10 #9774 350 - 45 - 486 Rejection (56 d) 

18 TTC F7 #9387 422 - 99  - 548 Rejection (56 d) 

19 TTC F10 #P8157 223 - 64  - 434 Rejection (54 d) 

 



Tabelle 2: 

Mouse 1-8: group of mice was subjected to oncogene-inactivation therapy and received dox 
again after indicated time period. 

Mouse 9-10: group of mice was subjected to oncogene-inactivation therapy and received TE 
cells prior developing tumor relapse. RLuc T cell signal was followed. 

Mouse 11-19: group of mice was subjected to oncogene-inactivation therapy and received 
TE cell therapy after developing drug-resistant tumors. Mouse 15 and 17 were set on dox 
again starting four days prior T cell therapy. 
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