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Congenital deafness is associated 
with specific somatosensory 
deficits in adolescents
Rabih Moshourab1,2, Valérie Bégay1, Christiane Wetzel1, Jan Walcher1, Steven Middleton1, 
Manfred Gross3 & Gary R. Lewin   1,4

Hearing and touch represent two distinct sensory systems that both rely on the transformation of 
mechanical force into electrical signals. Here we used a battery of quantitative sensory tests to probe 
touch, thermal and pain sensitivity in a young control population (14–20 years old) compared to age-
matched individuals with congenital hearing loss. Sensory testing was performed on the dominant hand 
of 111 individuals with normal hearing and 36 with congenital hearing loss. Subjects with congenital 
deafness were characterized by significantly higher vibration detection thresholds at 10 Hz (2-fold 
increase, P < 0.001) and 125 Hz (P < 0.05) compared to controls. These sensory changes were not 
accompanied by any major change in measures of pain perception. We also observed a highly significant 
reduction (30% compared to controls p < 0.001) in the ability of hearing impaired individual’s ability 
to detect cooling which was not accompanied by changes in warm detection. At least 60% of children 
with non-syndromic hearing loss showed very significant loss of vibration detection ability (at 10 Hz) 
compared to age-matched controls. We thus propose that many pathogenic mutations that cause 
childhood onset deafness may also play a role in the development or functional maintenance of somatic 
mechanoreceptors.

The ability of humans to perceive different modalities of cutaneous sensory stimuli can be accurately assessed 
using quantitative sensory testing. Indeed, quantitative sensory testing is an integral part of the clinical examina-
tion in patients with sensory disorders including pain1–4. Psychophysical testing reveals that human performance 
in specific sensory tasks is in part determined by the sensitivity of the sensory receptors activated by the stimu-
lus5–7. The skin is equipped with a wide variety of mechanoreceptors and nociceptors that are tuned to respond 
optimally to different qualities of mechanical or thermal stimuli8–10. Using a classical twin study approach we and 
others have shown that human sensory performance is in large part genetically determined11, 12. Thus in healthy 
subjects up to 67% of the variation in vibration detection threshold sensitivity measured for a 125 Hz stimulus 
could be shown to be due to genetic factors12. Similarly high heritability was also found for cold and warm detec-
tion thresholds12. Quantitative sensory testing for pain modalities like heat pain threshold, acid induced pain and 
hyperalgesia have also been shown to exhibit high levels of heritability11. It is well known that single gene defects 
can, in rare cases, lead to a complete loss of pain sensation in man13, 14. More recently, it has been shown that single 
gene defects are also associated with loss and gain of function in human touch sensation15–18. For both pain and 
touch it is striking that mechanistic studies have revealed that often the genes associated with human sensory 
disorders code for ion channels involved in the transduction and transformation of sensory information at the 
peripheral endings of specific sensory neurons15, 19–21. It is clear that there are probably still many genes and gene 
variants that influence somatosensory performance whether the stimuli are tactile, thermal or painful.

As well as genetic factors, human performance in quantitative sensory testing is also influenced by sex and 
importantly performance often decreases with age3, 4, 12, 22. We have shown previously that there are likely com-
mon genetic factors that influence hearing and touch12. Thus measurements of vibration detection thresholds and 
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tactile acuity showed a correlation with hearing sensitivity and acuity12. In addition, children with congenital hear-
ing impairment performed on average worse than controls with higher vibration detection thresholds and poorer 
tactile acuity12. In our previous study we did not make any measurements of pain sensitivity in hearing impaired 
children. Vibration detection thresholds in humans are known to be dependent on the frequency of the vibro-
tactile stimulus6, 15. In most studies a high frequency vibration is used (125 Hz) a stimulus that primarily probes 
sensations initiated by specialized rapidly-adapting mechanoreceptors that innervate Pacinian corpuscles6, 18, 23.  
In this study we also wished to probe tactile sensation mediated by mechanoreceptors that are selectively activated 
by low frequency vibration. Such receptors include rapidly-adapting mechanoreceptors innervating Meissner’s 
corpuscles in the glabrous skin, hair follicle afferents and slowly-adapting mechanoreceptors innervating Merkel 
cells8, 10, 15. Here we have used a broad battery of quantitative sensory tests, to probe variation in tactile, thermal 
and pain sensitivity in a highly homogenous population of adolescents (14–20 years old) (Fig. 1). We primarily 
asked whether children with congenital hearing impairments have altered somatosensory performance in specific 
sensory tasks compared to their age-matched controls.

Results
One hundred and twenty-five healthy (125) and 39 hearing impaired participants, aged between 14 and 20 years, 
underwent quantitative sensory testing. Data obtained from 14 healthy participants were excluded due to incom-
plete testing (e.g. for logistical reasons not all tests in the battery completed), technical problems, or due to incon-
sistencies (e.g. high performance variability) during testing. Three of 39 hearing impaired subjects were excluded; 
one due to insufficient information on the probable cause of the hearing impairment and the other two due to a 
non-genetic origin of the hearing deficit. Therefore, data obtained from 111 healthy subjects (58 females and 53 
males, mean age 16.0 and range 14–19 years) and 36 hearing impaired subjects (18 females and 18 males, mean 
age 16.7 and range 14–20 years) were included in the study. Thirty-one subjects from the hearing impaired cohort 
had non-syndromic hearing loss, 4 had Usher’s syndrome (3 with type 2 and one with type 1), and one Alport 
syndrome (probably autosomal recessive type). One hearing impaired subject had coeliac disease. Nine subjects 
had cochlear implants and 27 used hearing aids for moderate to severe hearing loss. Seven subjects had a positive 
family history of hearing loss. One hearing impaired subject reported difficulties perceiving wetness.

Psychophysical measures of sensory performance are often strongly influenced by age and gender12, 24. We 
controlled for age by selecting a young adolescent population with a narrow age range. Gender was controlled 
for by balancing the proportion of males to females in both groups. Comparison of psychophysical parameters 
between males and females in the control cohort revealed statistically significant differences in vibration detec-
tion thresholds (VDT) at 10 Hz but not at 125 Hz; mean VDT (mean ± SD, µm) for females 3.68 ± 1.48 versus 
4.28 ± 1.57 in males (one-way ANOVA, F(1,109) = 4.2, P = 0.04). Mechanical detection thresholds (MDT) were 
also significantly lower in female subjects compared to males (mean ± SD, mN; females: 1.1 ± 0.7, males 1.7 ± 0.9; 

Figure 1.  Overview of the sensory testing battery employed to generate the sensory profile for each tested 
subject. VDT, vibration detection threshold; MDT, mechanical detection threshold; MPT, mechanical pain 
threshold; CDT, cold detection threshold; WDT, warm detection threshold; CPT, cold pain threshold; HPT, heat 
pain threshold, 2-AFC; 2 alternative forced choice.



www.nature.com/scientificreports/

3Scientific Reports | 7: 4251  | DOI:10.1038/s41598-017-04074-0

one-way ANOVA, F(1,109) = 16.2, P = 0.0001). Finally, warming detection thresholds were lower in control females 
(mean ± SD, Δ°C; females: 1.6 ± 0.4, males 1.8 ± 0.6; one-way ANOVA, F(1,109) = 4.7, P = 0.03). There were no 
significant differences in performance between the two sexes for any of the other test parameters (Table 1).

Hearing impaired subjects showed a robust and highly significant impairment in vibration detection ability 
compared to the control cohort (Table 1, Fig. 2). Vibration detection thresholds were significantly elevated for 
both the 10 and 125 Hz tasks, but the difference between the cohorts was largest for the 10 Hz task. The mean 
amplitude detected by hearing impaired subjects was shifted almost 2 fold to 7.24 µm compared to 3.66 µm in 
healthy controls and this was highly statistically significant (two-way ANOVA F(1,143) = 68, P < 0.0001) (Fig. 2, and 
Table 1). Post-hoc tests revealed that both deaf males and females had higher vibration detection threshold than 
healthy males and females respectively (Post hoc Tukey test; P < 0.05). Since the performance of males and female 

Deaf Control ANOVA

Mean 95% CI Mean 95% CI

Group  
Deaf/control

Gender  
Male/female

Interaction 
Group:Gender

F P F P F P

VDT 10 Hz µm 7.24 6.10–8.58 3.66 3.40–3.96 69.1 <0.001 5.3 <0.05 0.06 0.8

VDT 125 Hz nm 119 95.0–149 96 87.0–105 4.6 <0.05 0.004 0.95 0.06 0.8

TA mm 1.63 1.52–1.75 1.52 1.45–1.59 2.8 0.09 2.6 0.11 0.7 0.4

MDT mN 1.31 1.10–1.57 1.13 1.01–1.26 1.9 0.17 16.8 <0.001 0.7 0.4

CDT Δ°C 0.92 0.78–1.09 0.66 0.61–0.71 16.7 <0.001 2.9 0.09 0.2 0.6

WDT Δ°C 1.62 1.46–1.80 1.62 1.54–1.71 0 0.99 6.4 <0.05 0.01 0.91

CPT °C 13.4 10.2–16.7 11.79 10.1–13.4 0.9 0.34 1.02 0.31 0.9 0.3

HPT °C 42.6 41.5–43.7 43.9 43.3–44.4 4.65 <0.05 1 0.31 0.9 0.3

MPT mN 75.8 62.8–91.5 73.6 65.8–82.3 0.07 0.79 2.6 0.1 3.0 0.08

Table 1.  Analysis of variance, mean values and confidence intervals for psychophysical tests. Mean values of 
VDT 10 Hz & 125 Hz, TAC, MDT, CDT, WDT, CPT, HPT, MPT were calculated by back transformation from 
the log-means. CI, confidence interval. VDT 10 Hz and 125 Hz, vibration detection threshold at 10 Hz and 
125 Hz; TA, tactile acuity; MDT, mechanical detection threshold; CDT cold detection threshold; WDT, warmth 
detection threshold; CPT, cold pain threshold; HPT, heat pain threshold; MPT, mechanical pain threshold.

Figure 2.  Vibration detection threshold (VDT) at 10 Hz and 125 Hz, mechanical detection threshold (MDT), 
and tactile acuity (TA) in the congenitally deaf cohort (n = 36). Each point represents the threshold for a single 
subject. All values are normalized for gender on a Z-scale. Dotted lines designate the upper (z = 1.96) and lower 
(z = −1.96) boundaries of the 95% confidence interval of the normal standard distribution of healthy subjects 
(n = 111). Z-scores > 0 indicate increased sensitivity. Z-scores < 0 indicate decreased sensitivity to sinusoidal 
vibrations. *P < 0.05, **P < 0.01, ***P < 0.001, unpaired T-test. Box plots characteristics: center lines show the 
medians; box limits indicate the 25th and 75th percentiles; whiskers extend 1.5 times the interquartile range 
from the 25th and 75th percentiles.
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control subjects in the 10 Hz test differ, we calculated z-scores for each male and female hearing impaired partic-
ipant based on the mean and standard deviation of control males and females, respectively. Individual and mean 
z-scores for vibration detection threshold at 10 and 125 Hz (VDT), mechanical detection threshold and tactile 
acuity are presented in Fig. 2. There was no significant difference in mechanical detection threshold between deaf 
and healthy controls (Table 1). The average grating width orientation threshold measured with the tactile acuity 
cube test (TA) was calculated for each individual by averaging the thresholds measured for the index and little 
finger. There was no significant difference in tactile acuity measures between the control and hearing impaired 
cohorts (two-way ANOVA F(1,143) = 2.7, P = 0.09). Nevertheless, there was a small subset of hearing impaired 
individuals with z-scores less than −1.96 indicating loss of function for this test (Fig. 2).

Eighteen of the hearing impaired participants had z-scores for VDT (10 Hz) below −1.96 (~2 standard devi-
ations lower than the control mean; 50% of all tested subjects). The difference in VDT at 125 Hz between hear-
ing impaired and control individuals was also statistically significant (two-way ANOVA F(1,143) = 4.5, P = 0.03), 
but not large; the mean VDT was increased in hearing impaired individuals by ~25% (an absolute difference 
of just 23 nm, Table 1). However, it should be noted that the plot of VDT at 125 Hz shows 4 individuals with 
z-values that clearly reside in a loss of function window (below −1.96). Interestingly, the subject with the worst 
z-score for VDT at 125 Hz (z-score = −3.85) had self-reported difficulty in perceiving wetness. This subject did 
not otherwise exhibit extreme deficits in any of the other tests. We did not systematically ask subjects if they 
had difficulty perceiving wetness, and so it is unclear if this was the only such individual. Because the major 
effect was found for VDT at 10 Hz, we asked if study subjects with z-values lying in a loss of function window 
(below −1.96) also performed poorly in other tests. Hearing impaired subjects who performed poorly in the 
vibration detection task at 10 Hz did not perform poorly with the same test at 125 Hz. Neither did these individ-
uals perform better or worse than the rest of the hearing impaired population in any of the other test batteries 
used (Fig. 3). Interestingly, hearing impaired individuals with an impairment in VDT tested at 125 Hz appear 
to be a different population of individuals than the majority of individuals with a VDT impairment at 10 Hz 
(Fig. 3). However, it can also be seen that the 4 subjects with Usher syndrome all had increased thresholds (z 
scores < −1.96) for 10 Hz vibrations (Fig. 3). The VDT at 125 Hz for these subjects were all below −1 z-unit 
but not below −1.96 which may indicate a moderate impairment that parallels the prominent deficits for 10 Hz 
vibration.

Thermal detection thresholds for warming and cooling were also measured and we noted a strong and robust 
loss of function for cooling but not warm detection in the hearing impaired cohort (Table 1, Fig. 4). Thus the 
mean cold detection threshold was around 40% higher in the hearing impaired cohort compared to controls and 
this was statistically significant (two-way ANOVA F(1,143) = 16.5, P < 0.0001). Post hoc Tukey tests revealed that 
the loss of cold detection was significant for hearing impaired male and females compared to controls (Post hoc 
Tukey test; P < 0.05). Examination of the distribution of z-scores for cold detection appeared to show two broad 
sub-groups: one group with z-values shifted to the loss-of-function direction and the other group with z scores 
around the control mean.

We measured several pain related psychophysical parameters in our cohorts including mechanical pain 
threshold and heat and cold pain thresholds. There was no indication that mechanical pain threshold differs 
between control and hearing impaired individuals (Fig. 4) with mean values in both groups being almost iden-
tical (Table 1). However, heat pain thresholds were significantly changed in hearing impaired individuals so 
that their thresholds were on average 1.3 °C lower than those found in controls (two-way ANOVA F(1,143) = 4.7, 
P = 0.03). Four hearing impaired individuals had very low heat pain thresholds with z-scores that were above 
1.96 (Fig. 4).

Figure 3.  Dot plot of the z-score parameters in the congenitally deaf cohort. In red are deaf subjects with 
z-scores for VDTs at 10 Hz lower than −1.96. Blue represent the rest of the group. Participants with hearing 
impairment who had high threshold in VDT 10 Hz did not consistently have increased thresholds in other tests.
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Discussion
Quantitative sensory testing was used to systematically test whether congenital hearing impairment is associated 
with somatosensory deficits. In agreement with our previous study12, we could confirm in an independent patient 
cohort that many adolescents born with hearing impairment exhibit substantial deficits in touch sensation. The 
touch deficits we observed were most common and most severe for vibration detection at 10 Hz. Indeed 50% of 
the hearing impaired subjects (18/36) had vibration detection thresholds that were more than two standard devi-
ations higher than the control mean (z-score > −1.96), and subjects with similarly impaired vibration detection 
thresholds at 125 Hz, but not at 10 Hz appeared to represent an additional population (4/36) thus at least 22/36 
(61%) of hearing impaired subjects exhibit a severe vibration detection deficit. Thus distinct patient groups were 
found with deficits in vibration detection threshold at 125 Hz and 10 Hz, respectively. This finding strongly sug-
gests that the underlying pathophysiology is specific for the function or connectivity of distinct sets of mechano-
receptors. Thus it is known that a 10 Hz vibration is primarily detected by rapidly-adapting Meissner’s corpuscle 
receptors and slowly-adapting Merkel cell mechanoreceptors6, 25, 26. In contrast, the detection of high frequency 
vibration of 125 Hz primarily requires rapidly-adapting mechanoreceptors that innervate Pacinian corpuscles7, 18.  
In this study we asked whether sensory deficits in subjects with hearing impairments extend to pain. We used 
a standardized testing protocol that included several elements of the QST of the German Research Network on 
Neuropathic Pain (DFNS)2. We found no clear deficits in pain sensitivity amongst hearing impaired individuals 
and this was especially clear for mechanical pain (Fig. 4). There was significantly increased heat pain sensitivity in 
the hearing impaired cohort, but this was a relatively small effect (Fig. 4). In addition to measures of tactile sensi-
tivity, we also found a robust change in the ability of hearing impaired individuals to detect cooling, but no deficit 
was seen in warm detection (Table 1 Fig. 4). Several hearing impaired individuals (8/36) exhibited cold detection 
thresholds that were more than 1.5 standard deviations higher than the control means (z-score > −1.47). There 
appeared to be two groups of hearing impaired individuals those with cold detection thresholds clearly higher 
than the control mean and those with cold detection thresholds more similar to healthy controls. Indeed many of 
the hearing impaired participants with a z-score for CDT below −1.0 also had a z-score for vibration detection 
(10 or 125 Hz) that was below −1.5 (16/18 individuals). Cool objects have a distinct tactile quality compared to 
warm objects as exemplified by Weber’s effect, a cold coin feels heavier than a thermally neutral coin27. There 
is very recent evidence that information on cooling is processed by tactile responsive neurons in the primary 
somatosensory cortex28. Indeed, C-fiber polymodal nociceptors that are sensitive to cooling appear to provide 
information on non-noxious cooling directly to the somatosensory cortex28 and human polymodal C-fibers are 
also responsive to cooling29.

Figure 4.  Sensory profiles in the hearing impaired cohort (n = 36). The z-values were normalized for gender on 
the z-scale. The z-scores for each deaf subject are represented as dot and box plots. Z-scores between 1.96 and 
−1.96 represent the normal range of healthy controls (n = 111). Z-scores > 0 indicate increased sensitivity to 
presented stimuli or in case of pain stimuli, lowered pain threshold. Z-scores < 0 indicate decreased sensitivity 
to presented stimuli, or in case of pain stimuli, higher pain threshold. *P < 0.05, **P < 0.01, ***P < 0.001, 
ANOVA. CDT, cold detection threshold; CPT, cold pain threshold; HPT, heat pain threshold; MDT, mechanical 
detection threshold; MPT, mechanical pain threshold; WDT, warm detection threshold.
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The study participants suffered hearing loss from birth and most of the cohort (31/36) had non-syndromic 
forms of hearing loss. We assume that the vast majority of the study participants suffered from deafness with 
a genetic cause. It is known that there are well over 100 genes that when mutated can cause non-syndromic 
sensorineural deafness30 and many of these genes are known to code for proteins that are essential for hair cell 
mechanotransduction31. We suggest that our data are consistent with the idea that a substantial number of gene 
mutations that lead to hearing loss also play a role in either the development or function of cutaneous mechan-
oreceptors. One surprising aspect of our study is how severe and specific the effects of congenital hearing loss 
are on touch sensation driven by afferents that are tuned to low frequency vibration. This suggests that many 
genes involved in hearing loss also have a role either in the development of rapidly-adapting and slowly-adapting 
mechanoreceptors or in modulating their functional properties or connectivity. The genetics of congenital hear-
ing loss is highly complex as first, many genes are potentially involved and secondly, it is not uncommon that 
deafness is associated with mutations in two different hearing genes (compound heterozygotes)32. Thus even if 
we had detailed genetic information on our hearing impaired study participants, it might be difficult to link a 
specific type of mutation to the touch phenotype in a cohort this size. However, our study shows that by meas-
uring vibration detection thresholds with a 10 Hz stimulus we are likely to identify a very substantial number of 
hearing impaired individuals with touch deficits. We tested a small number of patients with Usher syndrome and 
it is known that many Usher genes are directly involved in mechanotransduction in hair cells33–36. Here we found 
that the small number of Usher syndrome patients all had poor vibration detection thresholds especially at 10 Hz 
(Fig. 3). In our previous study we found an association between mutations in the USH2A gene (Usherin) and 
vibration detection performance at 125 Hz12. Our present data would suggest that using a 10 Hz vibration detec-
tion task may reveal more profound changes in touch sensitivity in patients with Usher syndrome.

Several smaller scale studies have investigated tactile perception in individuals with hearing impairment or 
individuals with deaf blindness37–39. In general these studies did not examine perceptual thresholds but rather 
frequency discrimination (using frequencies > 100 Hz), but in contrast to data on blind individuals12, 37, 40, there 
was little evidence that hearing impaired subjects perform better on tactile tests. There is good evidence that audi-
tory and tactile information may be processed in common cortical areas41, 42, but interactions between auditory 
and tactile channels have been examined for high frequency channels ( > 100 Hz). It remains to be seen if there is 
significant cross-modality interactions for low frequency vibration which was most severely affected parameter 
in our hearing impaired cohort (Fig. 2). In general we would argue that hearing impairment in itself is unlikely to 
reduce vibration detection thresholds by a generalized negative effect on the development of cortical circuits. If 
a cortical development problem caused by hearing loss would underlie the loss of vibration sensitivity we would 
expect that all of our hearing impaired subjects exhibit clear touch deficits which they did not (Fig. 2).

In summary, in a well controlled study using young aged matched individuals we could show highly specific 
deficits in vibration sensitivity in hearing-impaired individuals. Interestingly, congenital hearing impairment was 
not associated with major changes in the detection of noxious mechanical stimuli. The fact that deficits were most 
common and penetrant for a 10 Hz vibration detection task suggest that hearing genes may have a role in the 
development, function, or connectivity of classical mechanoreceptors.

Methods
The study was approved by the ethics committee of the Charité University Hospital. All experiments performed 
with human subjects were approved by Charité ethics committee and were in compliance with German and 
European union law.

Study population.  Two cohorts were studied one consisting of healthy high school children and one of high 
school children with congenital hearing loss. Adolescents were recruited from three Berlin high schools. Study 
participants were tested with a battery consisting of nine psychophysical tests applied to the skin. The hearing 
impaired cohort was recruited from the Margaretha-von-Witzleben School in Berlin (www.witzleben-schule.de). 
All subjects and their parents received written and oral information describing the study and signed an informed 
consent form. The subjects and schools were received compensation for taking part in the study. Because tactile 
sensitivity is known to change with age, we chose subjects with a narrow age range 14 to 20 years24. Eligible 
subjects were between 14 and 20 years of age, did not receive medication, and had no diabetes or hypertension. 
The following subject information was routinely documented: age, gender, handedness, history of ear infections, 
family history of hearing loss, hearing devices (hearing aids, cochlear implants), and comorbidities.

Quantitative Sensory Testing.  Subjects were seated comfortably in a quiet room at the school. Prior to 
testing, the participants were familiarized with the setup and their questions and concerns were addressed. Tests 
were completed in 2 sessions each of 45 minutes duration. Hearing impaired subjects were asked to switch off 
their hearing aids during the vibration detection threshold test. Sensory testing was done on the side of the dom-
inant hand.

Vibration detection threshold.  The test has been previously described43, 44 (Fig. 1a). The device is com-
posed of a linear Piezo actuator (P-602.1 L, Physik Instrument, Germany) whose displacements are driven 
and controlled by an amplifier/controller (E-665, Physik Instrument, Germany). Signals are processed by the 
PowerLab (PowerLab 4/35, ADInstruments, USA) data acquisition system. The vibration stimulus was 1.8 s long 
and the rise and fall time at on and offset were 500 and 600 ms, respectively, independent of the testing frequency 
or amplitude. The duration of the stimulus between the on and offset phases was 700 ms. A set of the vibration 
stimuli were employed that scaled logarithmically between 18 nm to 45 µm. For the 10 Hz and 125 Hz vibration 
test, the starting amplitude was set to 7.18 µm and 2.84, respectively. A monitor was employed to indicate the time 
interval at which the stimulus is presented, and a hand-held control (response box) allowed the subject to choose 
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the interval at which a stimulus was perceived. The stimulating probe was made of a flat circular smoothed edge 
thermoplastic material attached to a screw head that is tightened directly to the moving part of piezoelectric 
actuator. The probe had a diameter of 8.21mm. The Piezo actuator with the probe is mounted on a balanced brass 
bar (weight 15.5 kg) that assures a resting force of 30 grams applied to the skin surface at the probe-skin contact. 
The subjects forearm was placed on a foam cushioned surface to prevent stray vibration. We used medical dough 
under the finger to ensure proper contact between the probe and the skin. The stimulating probe was placed on 
the small finger of the dominant hand just below the nail bed. The test protocol was delivered with a program 
scripted in LabChart software (Labchart 7, ADInstruments, USA) that implements the two-alternative forced 
choice (2-AFC) technique in the down/up staircase paradigm to estimate vibration detection threshold. A vibra-
tion stimulus was randomly presented only once during one of the two intervals, indicated visually to the subjects 
as “1” and “2” on a screen. After each trial the subject indicates with a button press whether the vibration was 
applied during the first or second test interval. The experimental session consisted of a series of trials at stimulus 
strengths that were chosen based on the transformed down-up staircase method. The experimental block ended 
after 8 reversal points were completed. The threshold is determined by calculating the median of the stimulus 
intensity of the last 6 reversals. This adaptive two-interval forced-choice procedure was used to obtain estimates 
of the detection threshold defined as the stimulus intensity at which the proportion of correct responses is 75%. 
Subject data was excluded from the results if performance inconsistencies occurred such as change in reversal 
point values higher than 4 amplitude levels.

Tactile Acuity Test.  Tactile acuity is determined with a two-alternative forced choice grating orientation 
test using the Tactile Acuity Cube (TAC) (MyNeurolab.com/Leica Microsystems) (Fig. 1b)44, 45. The 6 sides of the 
cube each contained a grating (bar and groove) whose widths are 0.75, 1.25, 1.75, 3.0, 4.5, and 6.0 mm. During 
the experiment the test subjects were blind-folded using shielded eyeglasses. The dominant hand is placed on a 
table with the palmar surface facing up. Starting with the widest width, the gratings of the Tactile Acuity Cube 
are applied in each trial for 2 s to the finger pad in one of the two orthogonal directions relative to the long axis 
of the finger (longitudinal or transverse), in a way that the cube exerts its whole weight on the finger (233 g). The 
subject indicated the perceived orientation of the alignment. The orientation of the cube was randomly selected 
by the experimenter. An adaptive method is used: a simple two-down (narrower grating when the subject answers 
correctly) and one-up (wider gratings when the subject answers incorrectly) procedure or algorithm is employed 
which converges to 71% correct response (the point at which the subject reliably perceives groove width). The test 
concluded after thirteen reversal points (perceptual deflection points) were determined and the median of the last 
10 were taken as threshold. Thresholds were determined for the little finger and the index finger and the mean of 
the two values taken as tactile acuity.

Mechanical detection threshold.  Mechanical detection threshold was determined with a standardized 
set of 23 von Frey filaments (Optihair3-Set, Marstock Nervetest, Germany) (Fig. 1c). The filaments had uniform 
size and shape (round, diameter 0.5mm) and exerted discrete forces between 0.25–256 mN. The psychophysical 
method was a simple staircase algorithm (1 up and 1 down rule) that was completed after 5 reversals (change in 
tactile sensation). With the subject blindfolded with shielded glasses, the von Frey filaments were applied in an 
ascending order on the dorsal aspect of the hand for 1 second until the subject perceived a tactile sensation. The 
order was then reversed (descending) until the point where the subject did not perceive a tactile sensation. The 
threshold was calculated as the geometric mean force of the 5 reversals.

Mechanical pain threshold.  Mechanical pain threshold was tested with a set of 7 weighted pinprick stim-
ulators (MRC systems, germany) (Fig. 1c). The tips have a diameter of 0.25 mm. The stimulators apply different 
forces between 8 and 512 mN. The psychophysical method was a simple staircase (1 up and 1 down rule) that was 
completed after 5 reversals that targeted the perception of sharpness that causes the feeling of pricking pain. The 
threshold was calculated as the geometric mean of the 5 reversal of pinprick intensities.

Thermal detection and pain threshold.  The thermal testing device, TSA II Thermosensory analyser 
(MEDOC, Israel), was employed to test for thermal detection and pain thresholds (Fig. 1d). The thermode had an 
area of 9 cm2 and cut off temperatures between 0 °C and 50 °C. The thermode heats up or cools down at a rate of 
1 °C/s. All thresholds were determined using the method of limits. The thermode was placed on the volar aspect 
of the mid-forearm region. Three consecutive trials were done for each thermal sensation with 30 seconds inter-
stimulus interval in the following order: cold detection, warm detection, cold pain and heat pain threshold. Study 
participants are asked to indicate at what point they start experiencing cooling, warming, cold and heat pain while 
the thermode is still in contact with the skin. The average thermode temperature of the 3 trials constitutes the 
above mentioned thermal threshold.

Statistical analysis.  The statistical analysis was done using R Software. Data were tested for normality and 
log-transformed when necessary before further statistical analysis except for raw data of CDT and HPT which 
were normally distributed. Test values were entered as dependent variables and group (hearing impaired and 
control) and gender (male, female) was entered as the independent variable. Differences in sensory parame-
ter data between heraing and control groups were compared by a factorial analysis of variance (ANOVA) with 
the group (2 levels: hearing impaied, control) and gender (2 levels: male, female). Assumptions for error (nor-
mal distribution of residuals) and homogeneity of variance (Levene’s test) were determined before conducting 
the ANOVA. The factorial ANOVAs were obtained with type II sum of squares for sex to test for differences 
in means between males and females in the control data. The main effect for group was studied with type III 
method because the sample sizes were unequal. This was followed with Tukey posthoc tests if significant effects 
are detected. Z-transformations were utilized to compare single individual data profiles with the healthy control 
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(HC) mean. Z-scores for each single parameter referenced to gender was calculated using the following expres-
sion: Z-score = (meanDeaf − meanHC)/SDHC. The algebraic sign of z-score values for each parameter was adjusted 
so that it reflects the individual’s sensitivity for each parameter. Z-values above 0 indicate a gain of function, 
meaning the subject is more sensitive to the tested stimuli compared with HC; a z-value below 0 indicates as loss 
of function, meaning a reduced sensitivity. With this procedure sensory profiles could be generated where all the 
parameters had a standard normal distribution with a mean of 0 and standard deviation of 1 unit. Furthermore, 
individual z-scores lying outside of the 95% confidence interval (ie, z-score < 1.96 or > 1.96 standard deviation) 
of our HC can be identified. Correlation analysis was done with spearman’s correlation test. A P value of less than 
0.05 was considered statistically significant.
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