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Multi-trait mixed models have emerged as a promising approach for joint analyses

of multiple traits. In principle, the mixed model framework is remarkably general.

However, current methods implement only a very specific range of tasks to optimize

the necessary computations. Here, we present a multi-trait modeling framework

that is versatile and fast: LIMIX enables to flexibly adapt mixed models for a broad

range of applications with different observed and hidden covariates, and variable

study designs. To highlight the novel modeling aspects of LIMIX we performed

three vastly different genetic studies: joint GWAS of correlated blood lipid pheno-

types, joint analysis of the expression levels of the multiple transcript-isoforms of

a gene, and pathway-based modeling of molecular traits across environments. In

these applications we show that LIMIX increases GWAS power and phenotype pre-

diction accuracy, in particular when integrating stepwise multi-locus regression into

multi-trait models, and when analyzing large numbers of traits. An open source

implementation of LIMIX is freely available at: https://github.com/PMBio/limix.
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1 Introduction

The goal of genetic analyses of quantitative traits is to determine the sources of phenotypic

variation, attributing it to effects of single loci, polygenic background and confounding factors.

Linear mixed models (LMMs) have emerged as a powerful approach for this purpose and have

been successfully applied to genome-wide association studies (GWAS) in structured popula-

tions [1, 2, 3, 4], quantification of the proportion of heritability that can be attributed to sets of

SNPs [5, 6], prediction of phenotype from genotype [7], and to account for hidden confounding

factors, for example in expression quantitative trait loci (eQTL) mapping [8, 9]. Recently, there

has been increasing interest in methods that combine multiple traits that are correlated due to

shared (but hidden) genetic or non-genetic influences in a single model. By properly modeling

this trait correlation, a study can yield increased power to detect genuine genetic associations

and better interpretation. Consequently, multi-trait LMMs that account for such correlations

have been proposed, first in the field of animal breeding [10] and, more recently, also in the

context of GWAS [11, 12]. In genetics, the use of general-purpose mixed modeling tools is rare

(e.g. ref. [13]), mainly because these lack the computational efficiency that is required to handle

larger sample sizes. Instead, a number of rigid and highly specialized tools have been developed

that speed up the specific computations that are needed for a particular task, such as GWAS

testing [1, 2, 3, 4, 12], or variance component estimation [5, 6].

However, because different multi-trait studies tend to have variable study designs, methods

have to be flexible enough to adapt the model, but still remain tractable for larger datasets.

Multiple trait-variates can for example correspond to repeated measurements of a single phe-

notype over time [14], in different tissues [15, 16], or under different environments [17, 18], but

also to different phenotypes such as expression values for multiple genes [17, 19, 20, 18], or the

variates of a blood profile [21]. Moreover, practical analyses often suggest iterative changes to

the model, both to increase power and to test for specific genetic architectures. Starting from

simple models of single traits, these can be extended to multi-trait models and subsequently to

stepwise multiple loci models [22]. At each stage, it is important to adjust model parameters,

and to objectively guide analysis decisions by rigorously comparing alternative models. This

will require model checking strategies, methods for robust parameter estimation, as well as to

address statistical problems such as overfitting.

Here we present LIMIX, a multi-trait mixed modeling framework that has the flexibility

to perform a broad range of genetic analyses in one tool, without sacrificing computational

efficiency. LIMIX enables modeling genetic or environmental factors by combining different

fixed effects, sample covariances and trait covariances. Thanks to sophisticated parameter
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regularization LIMIX can robustly infer complex covariances between large numbers of traits

without overfitting, thereby enabling joint analysis of tens or even hundreds of phenotypes,

substantially more than previous methods. Finally, LIMIX is computationally efficient, utilizing

speedups to circumvent unnecessary computations in multi-trait modeling that scale as the cube

of the number of traits [23, 24, 12]. At the same time, LIMIX extends efficient association

tests [3, 4] to multi-trait association tests for flexible genetic designs. We analyzed three very

different datasets to highlight novel modeling aspects of LIMIX. We show how to combine

multi-trait modeling and stepwise multi-locus association analyses by considering correlated

blood lipid traits from the Northern Finland Birth Cohort 1996 (NFBC1966) [21]. Next, we

jointly analyze abundance estimates of multiple transcript-isoforms of the same gene, estimated

from RNA-Seq in human [20], thereby improving detection power and interpretation of the

genetic architecture of isoform expression. We also demonstrate how multi-trait LMMs can

readily be extended to the joint genetic analysis of entire pathways consisting of dozens of

genes, both within and between environments [17]. And finally, we assess alternative models in

terms of their ability to predict phenotype from genotype.

2 Results

Improved flexibility and efficiency in multi-trait LMMs

Similar to genetic studies of single phenotypes using established univariate LMMs, LIMIX

represents each phenotype as the sum of a number of fixed effects and random effects. Depending

on the application, LIMIX allows free specification of each fixed and random effect, both for

univariate and multi-trait models. For example, in multi-trait GWAS covariates and the single

nucleotide polymorphism (SNP) tested are modeled as fixed effects and background variation,

such as population structure and noise, as random effects [3, 4, 22, 12] that are modulated using

an additional trait-trait covariance matrix.

Unlike previous computationally efficient single-trait and multi-trait LMMs [3, 4, 12, 11],

models defined in LIMIX are not restricted to rigid designs to achieve speedups. Instead, models

can be built freely and LIMIX automatically determines possible computational speedups [3, 4,

23, 24, 12] depending on the model specification and analysis task.

Combining multi-trait with multi-locus models improves GWAS of lipid related traits

Four lipid-related traits in the NFBC1966 [11, 22, 12] have been analyzed using joint association

tests of single loci to multiple-traits [11, 12] and in a separate study using models involving

3

. CC-BY 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/003905doi: bioRxiv preprint first posted online May. 21, 2014; 

http://dx.doi.org/10.1101/003905
http://creativecommons.org/licenses/by/4.0/


multiple loci effects on single traits [22]. Here, we revisit these data to show the advantages of

combining these two models into a single multiple-trait and multiple-loci analysis (see Online

Methods). This combination enables to explicitly test for allelic heterogeneity [22], i.e. multiple

independent genetic signals from loci that are in linkage disequilibrium (LD), across different

traits. Additionally, we show how additional tests for alternative genetic designs enable further

interpretation of multiple-trait associations.

A single-locus association scan using a four-degrees-of-freedom any effect test across all phe-

notypes, similar to [12], yielded significant associations at ten different loci (α = 5 × 10−8,

λGC = 0.99, Supplementary Table 1); see top panel in Figure 1a. Next, we compared these

associations to the joint multi-trait multi-locus model. At an inclusion cutoff of 5 × 10−8 the

multi-locus model uncovered 14 independent genetic effects, uncovering four independent sec-

ondary effects at four of the ten associated loci. Multiple SNPs selected by the model for each

of the CRP, LIPC and CETP genes and the CEACAM16-TOMM40-APOE region suggest the

presence of genetic heterogeneity in these well-characterized regions, which is in line with pre-

vious findings [25]. Moreover, at two of the regions, CRP and CEACAM16-TOMM40-APOE,

the secondary SNP selected by the model was not significant in the single-locus association

test, indicating an increase in GWAS power (An example is shown in Figure 1b lower panel,

Supplementary Table 1).

To further tease apart effects that are shared between traits from trait-specific effects, we

complemented the analysis with one specific effect test per phenotype and a common effect test

across all phenotypes (see Online Methods). All tests were well-calibrated (see Supplementary

Table 1 for λGC and Q−Q-plots in Supplementary Figure 1). The common effect test identified

significant associations at 9 of the 10 loci detected by the any effect multi-locus test—all but

the LIPC gene and a region on chromosome 8 between PPP1R3B and TNKS that had been

associated with LDL levels in a larger study [26]. Notably, the phenotype-specific effect tests

yielded significant associations at six out of the common effect loci, suggesting that many

effects have both a common and specific component. This trend is also visible in independent

single-trait analyses (Supplementary Table 1), suggesting that pleiotropic effects across all four

phenotypes are scarce, unlike pairwise pleiotropy previously reported on the same dataset [11].

Statistical tests for dissecting isoform-specific genetic regulation of gene expression

Association analyses for alternative genetic designs in LIMIX can also be applied to tease apart

common from differential expression regulation of multiple isoform variants of single genes. Here,

we analyzed deep RNA-Seq profiles for 464 HapMap samples [20], where we estimated the abun-
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dance of multiple isoforms for individual genes [27] (see Online Methods). We considered 9,246

genes with at least two expressed isoforms and used alternative LMMs to test for cis associa-

tions between proximal sequence variants (± 1mb around genes) and alternative isoform levels

of these genes. Hidden confounding factors (beyond population structure) are a major concern

in eQTL analyses [28, 29]. Consequently, we used LIMIX to estimate an extended sample-to-

sample covariance that captures hidden confounding (similar to the PANAMA model [9]; see

Supplementary Figure 2). As expected from previous results for single trait LMMs [9], account-

ing for hidden confounding increased power in multiple trait LMMs. Moreover, the observed

power increase was even marginally larger in the multiple trait case than in the single trait case

(Figure 2a; see Supplementary Table 2 for a list of significant associations).

At a nominal significance level of FDR ≤ 1% (using Q-values [30]), the multi-trait model

identified 3,648 genes (39.5%) with at least one eQTL in cis, 4.8% more than a single-trait

LMM applied to each isoform independently (3,834 genes with an eQTL in cis, Figure 2a).

Additionally, multi-trait testing enabled classifying individual eQTLs into genetic effects that

affect whole-gene expression (common effect test eQTLs) and genetic effects that are isoform-

specific (specific effect test eQTLs) (Figure 2b, Supplementary Figure 3).

Notably, for 29.4% of the genes with a cis eQTL (relative to any effect test, Figure 2b)

the multi-trait model identified both an isoform-specific eQTL and a common effect eQTL in

the same region, suggesting the presence of multiple independent genetic effects within single

genes. To investigate this, we performed multi-locus analysis in the cis region of each gene

jointly across all isoforms, yielding two or more independent associations (test statistics were

calibrated; Supplementary Figure 4) for almost a third of all genes with an eQTL (28.3 %)

and three or more independent associations for 27.8% of these (Figure 2c). A good example

is PRR5L, a gene with four expressed isoforms (out of twenty-one annotated ones), where two

unique eQTLs could be detected. The first lead eQTL corresponds to a common effect and the

secondary eQTL was specific to one of the isoforms (Figure 2d).

Genome-wide, both the primary eQTLs and the independent higher-order associations all

tended to occur near the transcription start site, which gives confidence that the multi-locus

associations found are genuine [28, 20] (Supplementary Figure 5).

Variance component models to characterize genotype-environment interactions on gene

expression

Similar to the definition of flexible testing designs for fixed effects, LIMIX enables constructing

interpretable designs for random effects. To show this, we revisited a yeast genetics dataset
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where gene expression levels have been measured under two conditions [17]. We demonstrate

how to partition phenotypic variance, not only across genetic regions [6], but also within and

between environments.

For this application, we considered an LMM that estimates components of expression vari-

ability for environmental effects, cis genetic effects, trans genetic effects, and their respective

interactions (cis GxE, trans GxE) (see Online Methods). Unlike related methods for cross-tissue

heritability estimation [15], we tease apart individual genetic effects, simultaneously estimating

the phenotypic variation that is due to environment-persistent effects and due to genotype-

environment interactions (GxE).

In genome-wide averages, we found that cis variation generally was more persistent to changes

in environment, indicating that large parts of gene-environment interactions are are due to trans

variation (cis GxE versus trans GxE) (see Figure 3a). Consequently, when grouping genes

by annotated yeast pathways and ranking pathways by their average proportion of variance

explained by GxE effects (the sum of cis GxE and trans GxE) (see Online Methods), we

obtain processes that are enriched for trans variation (Figure 3b). These processes are plausibly

implicated with the environmental stimulus (Supplementary Table 3). For example, Lysine

biosynthesis (sce00300), consisting of 11 genes, has previously been found to be controlled by

an interaction of genetic and environmental factors [31].

Pathway-based genetic analysis across multiple environments

Next, to study how this variance components analysis complements multi-trait GWAS, we used

multi-trait LMMs for association testing of the Lysine biosynthesis pathway, where we jointly

considered all genes in the pathway (11) under both conditions (22 expression levels in total).

Notably, this analysis shows how LIMIX can be used to integrate substantially more traits than

previous applications of multi-trait LMMs [11, 12], and simultaneously spans both the axes of

multiple genes in a pathway and multiple environments. First, we used LIMIX to construct a

multi-trait single-locus model across all 22 traits. While other multi-trait methods, e.g. [12],

can in principle be used to test for associations between single loci and this number of traits, we

found LIMIX to greatly increase GWAS power (Optimally regularized model as in LIMIX versus

an unregularized multi-trait LMM [12], Figure 4a, Supplementary Figure 6). This difference

in power is because LIMIX allows for regularization of trait-trait covariances (Supplementary

Figure 7, Online Methods), which we found to be critical for analyzing datasets with more than

a handful of traits (Supplementary Figure 6; see also the Section below).

Next, turning our attention to the eQTL mapping results from this 22-degrees-of-freedom any
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effect test, the multi-trait LMM identified 4 significantly associated regions on chromosomes

two, three, seven and fourteen (Bonferroni adjusted α = 0.05; see Figure 4b, upper panel).

Analogous to the analysis on the NFBC data, we observed that multi-locus tests in combination

with multi-trait modeling yielded an additional increase in detection power (10 distinct loci, 6

more than single-locus testing), suggesting complex genetic control of this pathway (Figure 4b,

lower panel; Supplementary Table 4). Notably, we found that simpler pairwise multi-trait

LMMs, where individual genes are tested independently but jointly across both environments

(for example as in MTMM [11]), were underpowered (Figure 4c, Supplementary Table 4). The

full multi-trait multi-locus model built in LIMIX uncovered five additional eQTLs that could

not be detected by any other approach, 2 additional cis associations and 3 additional trans

associations (Supplementary Table 4). This shows that multi-trait tests can add power not only

for detecting trans effects, but also for detecting cis eQTLs, which are expected to target a

single gene.

In addition to joint testing across all genes end environments, LIMIX allows to define application-

specific tests to leverage the structure in the data, here phenotypic measurements that span

both multiple genes in a pathway and two environmental conditions. To show this, we con-

structed a specific effect test for one of the two conditions (glucose), jointly testing for genotype-

environment interactions across all genes (11 degrees-of-freedom test, Online Methods). In com-

bination with the multi-locus model above, this test revealed GxE effects at two trans eQTLs,

one on chromosome sixteen and one on chromosome fifteen (see Supplementary Figure 8c). The

latter is located at ATP19, which encodes a subunit of a large enzyme complex (F1F0 ATP)

required for ATP synthesis [32].

Finally, we repeated similar analyses on an even larger pathway (glycine, serine and threonine

metabolism, sce00260, 24 genes), showing how LIMIX can be used for larger problems, and

finding similar increases in mapping power (Supplementary Figure 9).

Assessing and validating genetic models

The covariance models considered in these applications have been fit using out-of-sample pre-

diction performance to adjust regularization and to guide model selection.

To validate this approach and to show that appropriately regularized models improve pheno-

type prediction on independent test data, we assessed the fitted models in a holdout experiment.

First, we compared independent single-trait models (ST) to one joint multi-trait model (MT),

re-estimating the parameters on each set of training data and computing best linear unbiased

prediction (BLUP; see Online Methods) to predict the phenotypes of the test samples. On
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each dataset, we performed multiple repeats of cross validation, resulting in between 10 (human

eQTL data) and 500 (NFBC) independent splits in training and test data (Online Methods).

Without inclusion of fixed effects, the multi-trait model tended to show significant improvements

in prediction over the single-trait model in all three application domains (Figure 5, Supplemen-

tary Figures 10-12). Next, we performed multi-locus modeling in each of the single-trait models

and in the multi-trait model by running forward selection on the training data. Adding the loci

detected in this way as fixed effects in the LMM consistently further improved the predictions

over the corresponding model without fixed effects, both for independent BLUPs (ST multi-

locus versus ST) as well as for the joint multi-trait BLUP (MT multi-locus versus MT). The

improved prediction performance suggests that the SNPs obtained from multi-locus modeling

tag genuine genetic signal.

In the human eQTL study, we considered the largest number of independent prediction ex-

periments, where for each of the 9,246 genes a separate experiment was carried out. When

comparing predictions from a naive single-trait LMM (ST) to the multi-locus multi-trait LMM

(MT multi-locus), the number of genes with correlation coefficient between predicted and true

expression values of at least 0.5 increased from 1 to 73 and the number of genes with correla-

tion coefficient of 0.1 or better went up from 2,370 to 3,438 (Figure 5). Notably, comparing

individual contributions of multi-locus modeling and multi-trait modeling, we observed that for

genes that could be accurately predicted (large ρ), multi-locus modeling was more important

than multi-trait modeling, whereas genes that where hard to predict (low ρ) benefited mostly

from multi-trait modeling (Figure 5). For a comparison of isoform predictions to predictions of

gene-level expression estimates [33] and stratification by the number of isoforms or heritability,

see Supplementary Figure 12).

3 Discussion

We have shown how a flexible mixed model framework allows to systematically extend LMMs

to the genetic analysis of multiple related phenotypes. Whereas so far multi-trait analysis has

been limited to GWAS on small groups of phenotypes [11, 12], due to computational complexity

or overfitting, LIMIX can perform a much wider range of LMM applications on much larger

numbers of phenotypes. We gave several example applications of LIMIX that address important

questions about how genetics affect related phenotypes. These include association tests of

different genetic designs, multi-locus analyses, variance components analysis, modeling of gene-

environment interactions, and phenotype prediction.

In three different analyses we have demonstrated how multi-trait LMMs can be most effective
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in practice. Whereas multi-trait LMMs [12, 11] and multi-locus LMMs [22] have been proposed

in isolation, we find that multi-trait LMMs are particularly powerful if combined with multi-

locus analyses. Owing to fast algorithms [23, 24, 12, 3, 4], it is now feasible to build complex

models with a fairly large number of independent genetic effects that jointly affect a set of

phenotypes in cohorts involving thousands of samples. In all cases these richer genetic models

revealed extensive allelic heterogeneity [22].

Second, we have shown how multi-trait LMMs increase power and interpretation in genetic

analyses of different sets of molecular phenotypes. As one example, we analyzed individual

isoforms in human eQTL studies, where multi-trait analysis was used to dissect traditional gene-

level genetic effects, revealing extensive isoform-specific genetic regulation. The use of LIMIX

enabled to combine important concepts, such as accounting for expression heterogeneity [8, 9]

with multi-trait modeling as well as tests involving multiple loci [22]. In a second example

from yeast genetics, we have shown how multi-trait LMMs can be used to dissect genetic effects

on genes in a pathway along two different axes, genes and environmental conditions. Our

results show how genotype-environment interaction tests can be performed jointly for all genes

in a pathway to increase power. Finally, we found that multi-trait multi-locus models improve

genetic prediction of gene expression, a challenging task that has recently gained considerable

attention [33].

LIMIX implements efficient algorithms that speed up multi-trait LMMs for analysis of larger

numbers of traits [23, 24, 12]. Beyond the challenge of computational scalability, it is a well

known problem in statistics that covariance estimation suffers from overfitting as the dimension

of the trait-covariance increases [34], mainly because the parameters of these models grow

quadratically whereas data only linearly.

Here, we address this problem by an automated model selection approach, which based on

out-of-sample prediction tunes model complexity and regularization, thereby enabling the joint

genetic analysis of even hundreds of traits (Online Methods). We have demonstrated the effec-

tiveness of this approach in the yeast experiments, where we show that non-regularized mod-

els [12, 11] can lead to loss of power and poor prediction performance. The use of regularization

to improve covariance estimation is well established in various different contexts [34, 23, 24],

including its use for estimating genetic covariance matrices [35], however, to the best of our

knowledge has not been used for multi-trait LMMs in GWAS. In our experiments we find that

appropriate regularization of genetic models becomes increasingly important as the number of

phenotype increases.

Finally, multi-trait LMMs should offer the greatest benefits if the phenotypes are correlated
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due to (partially) shared genetic causes or common environmental factors. Choosing the most

effective analysis approach is non-trivial and as discussed in previous work [11, 12], an indepen-

dent analysis of individual phenotypes can often be equally powered or even superior to complex

modeling choices. While there is no silver bullet solution, LIMIX provides a wide range of mod-

els and approaches that can be objectively compared within the same framework. The in-depth

applications of multi-trait modeling in the context of three application domains as presented

here can serve as an example to guide future studies. Moreover, these applications show how the

difficult task of selecting the most appropriate model can be addressed in a principled manner

by out-of-sample prediction, a tool of tremendous value to determine model complexity and to

validate complex genetic models.

Online methods

Multi-trait linear mixed models in LIMIX

Let N and P denote the number of samples and the number of traits in the genetic study. LIMIX

models the N × P matrix of phenotype values as the sum of any number J of matrix-variate

fixed effects Fj and any number I of matrix-variate random effects Ui:

Y =
J∑

j=1

Fj +
I∑

i=1

Ui. (1)

Here, fixed and random effects are denoted by Fj and Ui respectively. This formulation gener-

alizes a wide range of previously proposed LMMs in genetics [1, 3, 12, 36, 37, 11, 22].

Fixed effects Fixed effects represent known phenotypic covariates like gender, age, or ethnicity.

In the case of a GWAS, additionally the SNP being tested is modeled as a fixed effect. For each

sample n and trait p the jth fixed effect Fj,n,p in (1) is given by the product of an effect size βj ,

a sample design Xn,j and a trait design Ap,j :

Fj,n,p = Xn,jAp,jβj . (2)

This fixed effect formulation generalizes the approach taken in single-trait LMMs, where fixed

effects are represented as the product of a sample design matrix and the fitted effect size. The

trait design matrix A is a design parameter that allows to specify alternative fixed effect designs

in multiple trait LMMs (see multi-trait models below).

Random effects Random effects are used to account for hidden influences such as a set of

unknown causal variants, population structure or relatedness between samples. Even though
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these effects are unobserved, the distribution of the corresponding random effect can be de-

scribed in terms of its covariance matrix. In LIMIX the covariance matrix of each random effect

Ui is assumed to factor into an N -by-N sample-to-sample covariance matrix Ri and a P -by-P

trait-to-trait covariance matrix Ci as follows:

Cov(Ui,n,p, Ui,n′,p′) = Ci,p,p′ ·Ri,n,n′ . (3)

Again, this form generalizes random effects models in single-trait LMMs, where covariances are

modeled between samples only.

LIMIX supports a flexible number of random effect terms in the model. For each random

effect, both the trait and sample covariances can be chosen from a comprehensive class of

covariance models, including models for population structure and relatedness [1, 3], models for

hidden confounders inferred from high-dimensional phenotype data as in PANAMA [9], principal

components models [38, 39], non-linear kernel functions [40], as well as combinations like sums

and products of any of the aforementioned [41] (Supplementary Note 1). LIMIX performs

efficient and robust parameter estimation and model checking for each of these covariance

models.

Efficient estimation In general, parameter estimation in multi-trait mixed models would be

cubic in the number of values considered for Y , yielding a runtime of O(N3P 3). Due to

the poor scalability this form of estimation is applicable only to small to medium-sized data

sets. LIMIX utilizes specialized algorithms that, depending on the structure in the data, can

speed up computation. For example in multi-trait analyses with up to two random effects

the runtime of LIMIX is reduced to O(N3 + P 3), whenever the matrix of phenotypes is fully

observed [24, 12, 23, 42, 43] (Supplementary Note 1). For parameter inference, LIMIX uses a

combination of gradient-based parameter inference (for random effects) and closed-form updates

for fixed effects (Supplementary Note 1).

Statistical testing By default LIMIX offers three different statistical tests for fixed effects

using different trait design matrices, which are similar to those proposed in [11]. The any effect

test is a P degrees-of-freedom test, where P is the number of traits, that tests whether there is

at least one effect between the SNP and the phenotypes. The common effect test has 1 degree

of freedom and tests if a SNP has the same effect size (and direction) across all the phenotypes.

The specific effect test for trait p has 1 degree of freedom and tests if a SNP has a different

effect on trait p.
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Tests for designs different from the aforementioned ones can be performed by choosing ap-

propriate trait design matrices both for the alternative and the null models.

Predictions LIMIX implements best linear unbiased prediction (BLUP) [44, 45, 24] for phe-

notype prediction from the model in Equation (1), combining random effects and fitted fixed

effects. Given the wealth of models made available in LIMIX, prediction in combination with

cross-validation is indispensable for monitoring overfitting, model validation, and model selec-

tion (see also Cross-validation below). Moreover, the prediction tool from LIMIX can be used

to impute missing phenotype values.

Multi-trait models used in experiments

Here, we describe the different models built in LIMIX that have been used in this manuscript.

Variance decomposition For the yeast eQTL analysis we jointly modeled the expression levels

of each gene across E = 2 environments and used an LMM with an environment-specific mean

modeled as fixed effect, two genetic random effect terms, accounting for contributions from

proximal (cis) and distal (trans) genetic variation, and a non-genetic random effect term (noise)

Y = [µ1 , µ2]⊗ 1N,1 +Ucis +Utrans + Ψ, (4)

where µ1 and µ2 are environment-specific mean values. The variances of the random effects Ucis,

Utrans, are each decomposed into an environment-persistent and environment specific variance

component, whereas the noise ψ is fitted as free-form covariance

Ucis ∼ N

0,

c2p1P,P +

 c21 0

0 c22

⊗Rcis

 ,

Utrans ∼ N

0,

t2p1P,P +

 t21 0

0 t22

⊗Rtrans

 ,

Ψ ∼ N

0,

 σ21 σ1,2

σ1,2 σ22

⊗ I
 . (5)

The samples-to-sample covariance matrices Rcis and Rtrans are calculated as a genomic related-

ness matrix estimated from the SNP data, where all SNPs within 100kb from the transcription

start site where considered as cis and the remaining SNPs as trans. This model is similar to

previous approaches that estimate persistent heritability values [46, 15] and builds on meth-

ods to estimate genetic variance components [5, 6]. We estimated the mean values µ1, and

µ2, the environment persistent variances and covariances for cis variation (c2p), trans variation
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(t2p), as well as the environment specific variances for all environments and the noise covariance

parameters (σ21, σ
2
2, σ1,2), resulting in a total of 11 parameters, by maximum likelihood.

For each gene, the environment persistent variance component was reported as the variance

of the block covariance (e.g. c2p for cis) and environment specific variance components were

reported as the average of the two corresponding environment-specific variances (e.g. c21 and c22

for cis GxE). The variance explained by direct environmental effects was estimated from the

effect sizes of the fixed effects, µ1 and µ2 and the residual noise variance was estimated as the

average of the noise variances (σ21 and σ22). The overall variance components from both fixed

and random effects were normalized to sum to 1 and subsequently averaged across the different

sets of genes considered in Fig.3.

For the pathway analysis, we considered only pathways for which at least 10 genes are con-

tained in the Kegg pathway datbase [47], resulting in 77 pathways.

Genome-wide association studies For multi-trait GWAS we used an LMM with trait-specific

means modeled as fixed effects, a fixed effect containing the SNP being tested, a random effect

accounting for genomic relatedness, and random noise:

vec(Y ) ∼ N
(
[µ1 , . . . , µP ]⊗ 1N,1 + (A⊗ x)β, σ2g (C ⊗R+ δ Σ⊗ I)

)
. (6)

Here, vec(Y ) denotes a stacking operation to creating an extended phenotpye vector from the

phenotype matrix. This representation allows to express multivariate normal models as stan-

dard normal models with Kronecker-structured fixed effects and covariances; see Supplementary

Note 1. The parameter µp denotes the mean for phenotype p ∈ (1, . . . , P ) plus covariate effects,

x denotes the SNP being tested, B is the effect size estimate for a model specified by the trait

design matrix A. The random effects are parameterized by the genomic relatedness matrix

computed from genome-wide SNPs R, the trait-to-trait genetic covariance matrix C, the trait-

to-trait noise covariance matrix Σ, and scaling factors σ2g and δ. Statistical testing for models

of form (6) is carried out by comparing the model likelihood under alternative designs A for

alternative (foreground) model and null (background) model in a likelihood-ratio test. Testing

a model without a SNP effect to a model with A = 11,P in the alternative model results in a

common effect test, i.e. a one degree of freedom test to detect associations with shared effect

sizes and directions across phenotypes, comparing a null model with A = 11,P to an alternative

model with an additional degree of freedom results in a specific effect test to detect phenotype-

specific regulation, and an any effect test with P degrees of freedom is achieved by comparing

a null model without a SNP effect to an alternative model with A = IP . Examples of more

complex designs are considered for the pathway-based genetic analysis across environments.
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Here, a joint environment-specific effect test for P genes across two environments is achieved

by comparing a model with A = IP ⊗ 11,2 to an alternative model with A = IP ⊗ I2, resulting

in a P degrees-of-freedom test.

For the transcript eQTL analysis in humans, the sample covariance matrix R was estimated

estimated using the LIMIX-implementation of PANAMA [9], thereby accounting for hidden

covariates and expression heterogeneity [29].

In all experiments, the trait-to-trait covariance matrices C and Σ, as well as the sample

covariance matrix R, have been estimated on the null model only. In genome-wide tests, the

fitted matrices C and R were kept constant, however the scaling factors σ2g and δ were refit for

each test, extending previous fast LMM algorithms [3, 4] to multi-trait analysis. More complex

fits where all parameters are updated are possible as well [12], however at the price of additional

computational cost.

Multi-locus models We used LIMIX to implement multi-trait multi-locus LMMs, which

combine concepts from the multi-locus LMM for single phenotypes [22] and single-locus LMMs

for multiple traits [11]. Similar to [22], we employ forward selection however using a multi-trait

LMM, iteratively including SNPs as fixed effect covariates into the model. In each iteration,

the most significant SNP using the any effect test is included into the model as a covariate for

the next iteration (we again consider the any effect design for each covariate). The single-

trait multi-locus model considered in the analysis is the special case P = 1 of the general

model. For experiments on the NFBC1966 data, we used the canonical GWAS significance

threshold of α = 5 × 10−8, both for single-locus and multi-locus models. Similarly, for the

genome-wide yeast eQTL mapping experiment, we employed a Bonferroni-adjusted significance

level of α = 0.05. For the human eQTL study, association tests were carried out in a local

cis-window around each gene (1mb up and downstream of genes) and significant eQTLs across

genes were called at a nominal significance level of 1% FDR (estimated using Q-values [30]).

For some analyses, we also considered a multi-trait multi-locus model using an alternative

genetic design for forward selection. Similarly, in the yeast eQTL analysis we employed an

interaction-test as forward-selection step (specific effect test for one of the two environmental

conditions) to classify included SNPs as genotype-environment interactions (Figure 4b lower

panel, Supplementary Figure 8).

Cross-validation We validated the models used in each experiment by cross-validation, pre-

dicting phenotype values on holdout samples by BLUP. In prediction experiments, we considered

a single-trait BLUP model (ST) and a multiple-trait BLUP (MT), performing joint predictions
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across phenotypes. Both models were extended by multi-locus approaches, where significant

SNPs identified by the model were included as additional fixed effect terms (ST multi-locus

& MT multi-locus). For the human eQTL analysis, prediction experiments were carried out

using the genetic covariance, ignoring PANAMA [9] (see genome-wide association studies), as

PANAMA random effects cannot be evaluated out-of-sample. For models that required tun-

ing of regularization parameters we performed a separate round of cross-validation using the

training data only to avoid in-sample estimation.

Datasets and preprocessing

NFBC1966 We used results from the NFBC1966, consisting of phenotypic and genotypic data

for 5,402 individuals [21]. We followed the normalization procedure described in [12], focusing

on the four phenotypes CRP,LDL, HDL and TRIGL.

GEUVADIS eQTL dataset We used the official release of genotype and raw RNA-Seq dataset

from the GEUVAVIDS consortium [20]. First, raw RNA-Seq reads were mapped to the GRCh37.69

reference transcriptome using Bowtie [48], followed by isoform abundance estimation using Bit-

Seq [27]. The MCMC samples of the BitSeq abundance estimates were processed in the natural

log-scale, resulting in mean isoform abundance estimates for 39,211 genes. Considering only

transcripts that were significantly expressed. We determined expression above background us-

ing a z-score cutoff, requiring that at least 5% of the samples were expressed 50% above the

noise background (standard deviation). This filter led to the identification of 16,278 genes that

express at least 1 transcript isoform. For the multi-trait analyses in Figure 2, only genes with

2-10 transcripts were used for analysis (9,246 genes). We ignored genes with more than 10 tran-

scripts from the analysis (952 total), as the transcript reconstruction in BitSeq was found to be

unstable for these genes [27]. For additional prediction experiments where gene-level abundance

estimates were considered (Supplementary Figure 12), the full set of of 15,220 genes with at

least one expressed transcript was used.

Yeast eQTL dataset We used preprocessed gene expression and genotype data as provided

by the authors [17]. The final dataset consisted of 109 individuals with 2,956 marker SNPs and

2 · 5, 493 expression levels, profiled in glucose and ethanol growth media respectively. For the

variance decomposition and multi-trait eQTL mapping, we considered Kegg pathways [47] with

at least 10 annotated genes.
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b

a

CEACAM19
CEACAM16

TOMM40

Friday, 7 February 14

Figure 1 Multi-trait GWAS on four correlated phenotypes from the Northern Finish Birth

Cohort (NFBC1966) [21]. a, upper panel: Manhattan plot of P -values from an any effects test in

a multi-trait LMM. 34 SNPs have significant associations at 10 distinct loci (α = 5×10−8, λGC =

0.99). lower panel: Manhattan plot showing the results of the novel multi-trait multi-locus LMM,

using an any effects test. 14 SNPs with distinct genetic signals are included, each marked with

a vertical bar. The numbered stars mark the P -values at the respective iteration of inclusion.

b, Example zoom-in for a region with two independent effects included in the multi-locus LMM.

Shown are several different association tests for the CEACAM-TOMM40 region before (upper

panel) and after (lower panel) inclusion of the lead SNP (step 5, rs2075650) into the multi-trait

multi-locus LMM. While SNPs that are associated purely due to LD to the primary associated

SNP become insignificant after inclusion, a secondary association locus around rs2919842 (step

13) becomes more significant, pushing it above the genome-wide significance threshold for the

any effect test (red) and the common effect test (black) (see also Supplementary Table 1).
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PRR5L - Chromosome 11

ENST00000378867
ENST00000530639
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Any effec test [PANMAA]
Any effec test [no PANMAA]

Saturday, March 8, 14
Figure 2 Isoform-specific eQTL analysis in the human eQTL dataset [20], considering 9,246

genes with at least two isoforms. a, Comparison of the number of genes with at least one

significant cis eQTL (1mb upstream or downstream of each gene) as a function of the permitted

false discovery rate (FDR) and for different association tests and models. Considered were an

independent association test on each isoform (single-trait test) and a multi-trait LMM using the

any effect test, both with and without accounting for hidden confounding factors (PANAMA).

b, Overlap of genes having at least one significant cis association at an FDR cutoff of 1% when

considering alternative tests in a multi-trait LMM: any effect tests, common effect tests and

(isoform-)specific effect tests. c, Number of independent cis eQTLs (at 1% FDR), identified using

the multi-locus multi-trait model, either with or without confounding correction (PANAMA).

Bar plots denote the cumulative number of genes with at least (1, 2, 3 or 4) distinct cis eQTLs.

d, Manhattan plot for a selected region around the gene PRR5L. The multi-trait multi-locus

LMM applied to the region identified two independent associations. upper panel: P -values from

an any effect test before inclusion of the lead SNP are shown in grey. P -values from an any effect

test after inclusion of the lead SNP (grey asterisk) are shown in pink. lower panel: P -values from

a common effect test and (isoform-)specific effect tests indicate that the lead association has a

gene-level effect whereas the secondary association is specific to one isoform (ENST00000527487).
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Figure 3 Variance component analysis of yeast gene expression levels in two environments [17].

For each gene, an LMM with variance components for local cis effects, genome-wide trans effects,

environmental effects, and interaction effects between the environment and genetic variation

(GxE) in cis as well as trans was fitted. a, Average variance component estimates for all genes

grouped by the total proportion of variance explained by genetics (cis + trans). b, Average

variance estimates for components of genes in the top six KEGG pathways with the largest

average proportion of variance explained by GxE effects grouped by pathway membership; (cis

GxE + trans GxE).
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Figure 4 eQTL analysis of yeast gene expression in two environments [17], considering the

Lysine biosynthesis pathway. a, Power comparison of alternative multi-trait LMMs on 11 genes

in the pathway (22 measurements per sample). We considered an unregularized multi-trait

LMM (P -values on the x-axes) versus the corresponding results obtained from an optimally

regularized model (y-axes). Tests below the significance cutoff in both methods (Bonferroni

adjusted α = 0.05) are shaded out. b, Joint multi-trait GWAS on the 11 genes in the pathway

(22 measurements per sample). Upper panel: An any effect test finds 4 loci with significant

associations (Bonferroni adjusted α = 0.05). Lower panel: A multi-locus multi-trait LMM with

an any effect test identifies 10 SNPs with distinct genetic signals, each marked with a vertical

bar. The P -value at iteration of insertion is marked by an asterisk. Two of the ten SNPs

inserted also have a significant association in a joint test for gene-environment interaction effects

(iterations 2 and 8 in the multi-locus model, see Supplementary Figure 8). c, A single-gene

multi-locus LMMs, considering independent tests across genes but jointly across environments

(pairwise multi-trait) identified 5 out of the 10 loci found using the multi-trait multi-locus model,

and one additional association.
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Figure 5 Prediction performance of alternative mixed models on the human eQTL dataset.

Comparison of single-trait (ST) and multi-trait (MT) LMMs by out-of-sample prediction of iso-

form expression levels (all 9,246 genes, 10 fold cross validation). Multi-locus LMMs consistently

achieved better prediction performance than the corresponding LMMs without fixed effects (ST

multi-locus vs ST & MT multi-locus vs MT). On the whole, multi-trait LMMs predicted iso-

form levels more accurately than single-trait models. The combination of the multi-locus and

multi-trait LMM achieved best prediction performance overall.
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