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Figure S1. Intrinsic properties of reelin-positive and calbindin-positive cells in layer II of the 

entorhinal cortex, Related to Figure 1. Included are successfully stained cells, for which all nine 

intrinsic electrophysiological properties were recorded (n = 115 reelin-positive cells, blue, and n = 26 

calbindin-positive cells, red). For details concerning the analysis of the respective parameter see 

Supplemental Experimental Procedures below. Box edges indicate the first and third quartiles, the 

median and the mean are given by the grey line and ‘plus’ symbols, respectively. Percentages spanned 

by the whiskers correspond to 9% and 91%, respectively. 
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Figure S2. Absence of further categorization among reelin- and calbindin-expressing principal 

neurons in layer II of the MEC, Related to Figure 1. (A) For layer II stellate cells (n = 180) the 

distribution of three intrinsic parameters is plotted (as in Fuchs et al., 2016): the depolarizing 

afterpotential (dAP) amplitude, the latency to first spike, and the ratio of interspike interval 1 and 

interspike interval 2 (ISI 1 / ISI 2). Based on these criteria no further categorization of stellate cells 

was detected. (B) Similarly, the distribution of three intrinsic parameters in 27 identified (calbindin-

expressing) layer II pyramidal neurons: depolarizing afterpotential (dAP) amplitude, latency to first 

spike, and sag potential amplitude, as in Fuchs et al., 2016. Based on these criteria, no further 

categorization of stellate cells was observed. (C) Principal component analysis performed on all nine 

intrinsic electrophysiological parameters. The projection on the first two principal components shows 

a clear separation between the two classes. Included are successfully stained cells for which all nine 

intrinsic electrophysiological properties were recorded (see also Figure S1 for display of all 

parameters).  
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Figure S3. Properties of excitatory synaptic connections in the superficial layers of the MEC, 

Related to Figure 4. (A) Paired-pulse ratios (EPSP2/EPSP1) for the different groups. (B) AP time 

to peak for the different groups, measured as time from the peak of the presynaptic AP to the peak of 

the postsynaptic EPSP. (C) Distance of the connected cells, measured from the centers of the somata. 

(D) Connection probability between stellate cell – stellate cell (SS) and layer II pyramidal cell – 

stellate cell (P2S) at different ages. Age range from p21 to p29: (SS) 2.0% (seven out of 356 

connections tested) and (P2S) 15.2% (12 out of 79 connections tested). Age range from p30 to p60: 

(SS) 2.9% (15 out of 526 connections tested) and (P2S) 10.6% (five out of 47 connections 

tested). Statistical significance of displayed differences was assessed by Dunn’s test of multiple 

comparisons. * P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001; **** P ≤ 0.0001. Properties are shown only for 

contacts with more than one connection found. (E) Compilation of excitatory connectivity values in 

superficial layers of MEC based on previous studies. Numbers are gathered from Dhillon and Jones 

(2000), Couey et al. (2013) and Fuchs et al. (2015), and the present study. Abbreviations: SC: Stellate 

cell, Im SC: intermediate stellate cells, PC: pyramidal cells, Im PC: intermediate pyramidal cells, L2: 

layer II principal cells, L3: layer III pyramidal cells. 
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Figure S4. Improvement of grid tuning in a feed-forward network model, Related to Figure 4. 

(A) Model schematic. In a target principal-cell population, each output neuron (example: grey disc) 

receives feed-forward excitation (red discs) from Nin spatially tuned inputs and inhibition (blue disc) 

from spatially-untuned interneurons. At the top row, four examples of the input rate maps are shown 

(dark blue: 0 spikes/s, dark red: peak rate reported at the top, gridness score reported at the bottom 

left corner). Input rate maps are noisy hexagonal grids with common spacing and orientation but 

different phases. An example of the trajectory covered by a virtual-rat is shown at the bottom right 

(10 minutes of exploration). (B) Gridness scores of the excitatory inputs (Nin = 400, see examples in 

A). (C) Gridness scores of the outputs before learning, i.e., with random feed-forward weights (Nout 

= 400). (D) Development of the excitatory synaptic weights (top row, weights from 0 to wmax in grey 

scale) and corresponding output firing rate maps (bottom row) for one example output neuron. Four 

snapshots are shown (see simulation times at the top). Nearby pixels in the synaptic weight maps 

correspond to inputs with similar grid phases. Output rates are color-coded as in A. (E) Gridness 

scores of the outputs at the end of the simulation (t = 240 min). The red vertical lines in B, C, and E 

denote median gridness score values. 

 

 



5 

 

Supplemental Experimental Procedures 
 

Cell classification. To differentiate layer II principal neurons, we made use of the differential 

immunoreactivity of these cells, i.e. stellate cells expressing the glycoprotein reelin and pyramidal 

neurons expressing the Ca2+ binding protein calbindin (Varga et al., 2010). Immunolabeling revealed 

238 reelin-positive and 48 calbindin-positive cells, enabling us to classify them as stellate- and 

pyramidal neurons, respectively. We further analyzed nine electrophysiological parameters in all 

cells, if possible (Figure S1; see also Alonso and Klink, 1993; Canto and Witter, 2012): Resting 

membrane potential values represent initial voltages recorded after arriving in the whole-cell 

configuration. The input resistance was calculated from the deviation from baseline of steady-state 

voltage responses evoked by intracellular current injections (50 pA). The latency to first spike at 

rheobase was determined as the time from the onset of the depolarization step current to the onset of 

the action potential (threshold: dV/dt  90 V/s). The spike duration at rheobase was found as the 

duration from spike onset to the time point where the decaying slope of the action potential crossed 

the onset voltage level again. The adaptation ratio was calculated both as the ratio of the last and the 

first interspike intervals (last ISI / ISI 1) or as the ratio of the first two interspike intervals (ISI 1 / ISI 

2) at current steps of +500 pA and 1000 ms. The depolarizing afterpotential (dAP) for spikes at 

rheobase was determined by calculating the voltage difference between the local minimum of the fast 

afterhyperpolarization (fAHP) and the following depolarizing peak (Alonso and Klink, 1993). 

Amplitude and half-width (i.e., the duration at 50% of the amplitude) of the sag potential were 

measured in response to -750 pA (or -100 pA) current injection. We observed that the half-width of 

the sag potential -750 pA current injection predicted best the immunoreactivity to reelin and calbindin 

of layer II principal cells (Fig. S1). This enabled us to define a threshold for the classification of cells 

with non-sufficient staining. To find the best separation value, we used a linear 1d support vector 

machine (SVM, from the Python scikit-learn package, version 0.18.1) taking into account the class 

imbalance of reelin-positive and calbindin-positive cell numbers. The weighted SVM for the half-

width of the sag potential was 37.2 ms (accuracy: 0.93; 10-fold cross validation) at -750 pA current 

injection (in some of the recorded cells we injected only -100 pA, yielding a weighted SVM of 45.2 

ms with a slightly reduced accuracy: 0.85; 10-fold cross validation). Finally, we classified neurons 

that were non-sufficiently stained as follows: cells were classified as reelin-positive and therefore as 

stellate cells, if the half-width of the sag potential was 36 ms for -750 pA current injection (or 42 

ms for -100 pA current injection) and as calbindin-positive and therefore as pyramidal cells if the 

half-width of the sag potential was 38 ms (-750 pA) or 48 ms (-100 pA). Layer III pyramidal cells 

could be easily distinguished from both layer II pyramidal and stellate cells based on clear differences 

in input resistance (mean  SD: 124  32 M) and resting membrane potential (mean  SD: -67  5 
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mV) in layer III pyramidal cells (see Fig. S1 for comparison with layer II stellate and pyramidal 

neurons). 

 

 

Modeling. Here we show that feed-forward excitatory projections could support the inheritance of 

grid-cell activity across distinct neuronal populations, and that grid patterns could become more 

regular through this inheritance process. To this end, we model the activity of a population of weakly-

tuned grid cells projecting to a target principal-cell population as a virtual rat explores a square 

enclosure. Input firing-rate maps were obtained by distorting with noise hexagonal grids with 

common spacing and orientation, but different spatial phases (Fig. S4A, B), similarly to what is 

observed within a grid-cell module (Hafting et al., 2005). The feed-forward connectivity was sparse 

and initially random, that is, each neuron in the target principal-cell population received input from a 

set of noisy grids with random spatial phases.  Such a random connectivity slightly decreased the grid 

tuning of the output spatial maps (Fig. S4C). Indeed, in a feed-forward network, the output grid tuning 

could be improved only by selecting input grids with similar phases. But how to obtain such an input 

selection that crucially depends on the behavioral correlates of neural activity?  

We suggest that Hebbian plasticity could drive this selection. In Fig. S4D we illustrate this hypothesis 

for one example output neuron in the target principal-cell population. Initially, the output neuron was 

driven by a random set of inputs, and the corresponding output firing-rate map was spatially irregular 

(Fig. S4D, left-most panels). With experience, however, inputs with similar grid phases increased 

their synaptic strength, and, as a result, a more regular grid pattern emerged at the output (Fig. S4D, 

right-most panels). The spatial phase of the output grid depended on the initial state of the synaptic 

weights and on the trajectory of the virtual rat, which were both random. Nevertheless, regardless of 

the initial conditions, the firing-rate maps at the output (Fig. S4E) were consistently more regular 

than the ones at the input (Fig. S4B). 

In summary, we demonstrate with a computational model that grid tuning could be inherited and even 

be improved via feed-forward projections across distinct principal-cell populations. We assumed that 

the experimentally observed feed-forward connections (Figs. 1-3) were also representative for grid 

cells and that cells with weak grid tuning (same period, same orientation, but different phase) in an 

input layer projected to a target grid cell in an output layer.  Note that inheritance requires only weak 

grid tuning at the input layer (see input gridness scores in Fig. S4B).  

A connectivity pattern suitable for the inheritance was learned from the activity correlations already 

present at the input. We suggest that such learning could happen concurrently with the development 

of grid cells in the first ~3 weeks of age (Langston et al., 2010; Wills et al., 2012, 2010), and that 

grid-field inheritance could take place in feed-forward projections from pyramidal cells in layer II or 

III to stellate cells in layer II. This is in line with recent reports that both stellate and pyramidal cells 
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show grid spatial tuning (Sun et al., 2015), although it remains unclear which principal-cell population 

contains the most-regular grids (Sun et al., 2015; Tang et al., 2014). 

 

 

Model implementation. 

We model a feed-forward network of 𝑁in excitatory inputs with rates { 𝑟𝑗
in ∶ j = 1, 2, ..., 𝑁in } 

projecting to  𝑁out excitatory outputs with rates { 𝑟𝑖
out ∶  i = 1, 2, ..., 𝑁out }, where 

 

𝑟𝑖
out(𝑥⃗) = [∑ 𝑤𝑖𝑗 𝑟𝑗

in(𝑥⃗)𝑁in

𝑗=1 − 𝑟0]
+

. (1) 

 

The vector 𝑥⃗ = [𝑥1, 𝑥2 ] is the position of the virtual rat in the environment, 𝑤𝑖𝑗 is the synaptic weight 

from input neuron  𝑗 to output neuron 𝑖, 𝑟0 > 0 spikes/s is a spatially-homogeneous inhibitory rate, 

and the function [𝑧]+ = z  if  z > 0, = 0 if 𝑧 ≤ 0 is a static non-linearity. The input rates are modeled 

by distorting with noise hexagonal grids with common spacing and orientation, but different spatial 

phases:  

𝑟𝑗
in(𝑥⃗) = [𝑎𝑔𝑗(𝑥⃗) + (1 − 𝑎)𝜉𝑗(𝑥⃗)]

+
 , (2) 

  

where 𝑔𝑗(𝑥⃗) is a hexagonal grid with phase 𝜑⃗⃗𝑗, 𝜉𝑗(𝑥⃗) is a realization of a 2-dimensional noise 

process, and the parameter 0 < 𝑎 < 1 weights the strength of the grid signal in relation to the noise. 

The grid signal 𝑔𝑗(𝑥⃗) is the sum of three planar waves with wave vectors {𝑘⃗⃗𝑛 ∶ 𝑛 =  0, 1, 2 } that are 

60 degrees apart: 

 

𝑔𝑗(𝑥⃗) = 𝐵 [ ∑ cos (𝑘⃗⃗𝑛 ⋅ (𝑥⃗ + 𝜑⃗⃗𝑗 ))

𝑛=2

𝑛=0

 ]

+

    with      𝑘⃗⃗𝑛 =
4𝜋

𝑇√3
[
 cos( 𝑛𝜋 3⁄ +  𝛽 )

 sin( 𝑛𝜋 3⁄ +  𝛽 )
 ] , 

 

(3) 

where 𝐵 > 0 controls the grid amplitude, 𝛽 sets the grid orientation, and 𝑇 is the grid spacing. The 

spatial phases {𝜑⃗⃗𝑗} are sampled to cover the entire phase space evenly. The input noise is uncorrelated 

across neurons but correlated across spatial locations such that it varies smoothly in space. 

Specifically, the noise is generated by low-pass filtering 2-dimensional white Gaussian noise with a 

circularly-symmetric Gaussian filter: 𝐺(𝑥⃗)= exp(−|𝑥⃗| 2⁄ 𝜎𝑥
2), where 𝜎𝑥 controls the filter width. The 

mean and the variance of the noise are normalized to match the ones of the input signal 𝑔𝑗(𝑥⃗). 

The excitatory synaptic weights {𝑤𝑖𝑗} are changed according to the following Hebbian learning rule:  
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d𝑤𝑖𝑗

d𝑡
= 𝜂(𝑟𝑗

in − 𝛾)𝑟𝑖
out, 

 

(4) 

where 𝜂 is a small learning rate and 𝛾 > 0 spikes/s sets the threshold between long-term potentiation 

and long-term depression. Additionally, the synaptic weights {𝑤𝑖𝑗} are bounded between 0 and 

𝑤max at each time point. At the initial condition, a random subset of  𝑁up < 𝑁in synaptic weights are 

set at the upper bound 𝑤max > 0 whereas all the other weights are set to 0.  

 

The virtual rat explores a square arena of side-length 𝐿 with a correlated random walk with movement 

directions that vary smoothly in time. Precisely, the rat’s trajectory is a sample of the 2-dimensional 

stochastic process 

d𝑋⃗⃗𝑡

d𝑡
= 𝑣 [ cos(𝜃𝑡), sin(𝜃𝑡) ]      with         𝜃𝑡 = 𝜎𝜃𝑊𝑡 , (5) 

where 𝑋⃗𝑡 is the position of the virtual rat at time 𝑡, the process 𝜃𝑡 sets the direction of motion, and 𝑊𝑡 

is a standard Wiener process. The parameters 𝑣 and 𝜎𝜃 control the speed of motion and the tortuosity 

of the trajectory. At the boundaries of the environment, only movement directions towards the interior 

of the arena are retained.  

Parameter values: 𝑁in = 𝑁out = 400, 𝑟0 = 3 spikes/s, 𝑎 = 0.27, 𝐵 = 6, 𝛽 = 0, 𝑇 = 1.4 m, 𝜎𝑥 =

0.15 m, 𝜂 = 2 ⋅ 10−51/s, 𝛾 = 3.8 spikes/s, 𝑤max = 0.067, 𝑁up = 15, 𝐿 = 4 m, 𝑣 = 0.2 m/s, 𝜎𝜃 =

0.7. 

Gridness scores of input and output firing-rate maps were computed with the algorithm proposed by 

(Stensola et al., 2012). 
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