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ABSTRACT

Motivation: Set-based variance component tests have been identified

as a way to increase power in association studies by aggregating

weak individual effects. However, the choice of test statistic has

been largely ignored even though it may play an important role in

obtaining optimal power. We compared a standard statistical test—

a score test—with a recently developed likelihood ratio (LR) test.

Further, when correction for hidden structure is needed, or gene–

gene interactions are sought, state-of-the art algorithms for both the

score and LR tests can be computationally impractical. Thus we de-

velop new computationally efficient methods.

Results: After reviewing theoretical differences in performance be-

tween the score and LR tests, we find empirically on real data that

the LR test generally has more power. In particular, on 15 of 17 real

datasets, the LR test yielded at least as many associations as the

score test—up to 23 more associations—whereas the score test

yielded at most one more association than the LR test in the two re-

maining datasets. On synthetic data, we find that the LR test yielded

up to 12% more associations, consistent with our results on real data,

but also observe a regime of extremely small signal where the score

test yielded up to 25% more associations than the LR test, consistent

with theory. Finally, our computational speedups now enable (i) effi-

cient LR testing when the background kernel is full rank, and (ii) effi-

cient score testing when the background kernel changes with each

test, as for gene–gene interaction tests. The latter yielded a factor of

2000 speedup on a cohort of size 13 500.
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Contact: heckerma@microsoft.com

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on January 13, 2014; revised on July 8, 2014; accepted on

July 18, 2014

1 INTRODUCTION

With next-generation sequencing data from larger and larger

cohorts now being collected, the possibility of detecting even

weaker genetic associations with disease is increasing. Such

weak signal could provide invaluable insights into biological

and disease mechanisms, as well as yield biomarkers for

diagnosis and personalized treatment. However, even with

large datasets becoming available, studies to detect important

genetic signal remain underpowered, especially those rare vari-

ants—the most underpowered type of association whose signal

lies in tests.

One approach to help alleviate this power problem is to group

together genetic markers and then to test them jointly in a single

test. Such an approach helps increase power in two ways. First, it

can reduce the number of tests performed and hence the multiple

testing penalty incurred. Second, the test aggregates weak signal

within a set, and can also tag unmarked variants. Although a

variety of competing methods for set tests have been proposed

(Bhatia et al., 2010; Han and Pan, 2010; Ionita-Laza et al., 2011;

Li and Leal, 2008; Liu and Leal, 2010; Madsen and Browning,

2009; Morgenthaler and Thilly, 2007; Neale et al., 2011; Price

et al., 2010; Schwender et al., 2011, Wu et al., 2011; Zawistowski

et al., 2010), some of the most influential and widely used meth-

ods are those that use a sequence-based kernel in a variance

component model (Chen et al., 2013; Ionita-Laza et al., 2013;

Lee et al., 2012a; Listgarten et al., 2013; Liu et al., 2007, 2008;

Oualkacha et al., 2013; Schifano et al., 2012; Wu et al., 2011).

Improving power in these kernel-based models is the focus of this

article. In particular, the main contribution of this article is im-

proving power in two ways:

(1) the statistical test used, showing that the non-standard

likelihood ratio (LR) test in this setting can yield substan-

tially more associations, and

(2) several exact algebraic reformulations that yield dramatic

improvements in runtime for certain classes of set tests,

enabling far larger datasets to be analyzed. For example,

on data from the Wellcome Trust Case Control

Consortium (WTCCC), a gene–gene interaction score-

test speedup achieved running time �2000 times faster

than na€ıve computation of the test.

In the statistical genetics literature to date, practically no con-

sideration has been given to the choice of statistical test for

kernel-based set association tests. In particular, the choice of

(frequentist) statistical test in this setting has uniformly been

the score test (Ionita-Laza et al., 2013; Lee et al., 2012a; Liu

et al., 2007, 2008; Oualkacha et al., 2013; Wu et al., 2011),

with the one exception being our recent work on how to conduct

set tests in the presence of confounders, where an LR approach

was used (Listgarten et al., 2013). Band et al. (2013) also used an*To whom correspondence should be addressed.
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approximate Bayes Factor as a complement to the use of a score

test. From a purely computational perspective, use of the score

test would seem more convenient and efficient, as it requires

parameter estimation only for the null model, whereas the LR

test requires parameter estimation for both the null and the al-

ternative model. In terms of power, various theoretical results

claim the superiority of either the LR test or the score test, under

different conditions. However, because these conditions are

rarely met for real data, and because it is unclear how robust

the theoretical results are to deviations from the required condi-

tions, there is no clear theoretical guidance on which test to

choose in practice. Therefore, here we conducted a systematic

comparison between the two tests, using synthetic data, rare

and common variants, with both case-control and continuous-

valued phenotypes, and under various types of model misspeci-

fication. In so doing, we were able to assess the relative perform-

ance of the score and LR tests across a wide variety of settings

when the ground truth was known. Finally, we applied the two

tests to real data for 17 phenotypes to determine which of our

synthetic settings were most likely applicable, finding that, over-

all, the LR test performed substantially better than the score test.

In addition to our systematic comparison of the score and LR

tests in the standard setting, we also consider richer scenarios in

which, for example, one may want to correct for confounding

factors arising from family relatedness or population structure

(Listgarten et al., 2013), or testing for gene–gene interactions

between variants from pairs of sets (e.g. genes) (Li and Cui,

2012). In such settings, there are two variance components—

one consisting of a background kernel (e.g. to correct for con-

founding factors, or for main effects in a test for gene–gene

interactions) and an additional component in the alternative

model built from the set of interest. When the null model in-

cludes a background kernel, the time to run tests can be prohibi-

tive. In particular, for the case where (i) the background kernel

has full rank (as has been done traditionally when correcting for

confounding factors), and (ii) where the background kernel is

low rank but changing with each test (as in testing for gene–

gene interactions), runtimes of state-of-the art LR and score

tests can be dramatically decreased. Thus, we developed compu-

tational improvements and demonstrate their effectiveness

through timing experiments.

2 RESULTS

2.1 Comparison of the score to the LR test

For genome-wide set tests based on a variance components

model, the choice of statistical test has focused on the score

test (Ionita-Laza et al., 2013; Lee et al., 2012a; Liu et al., 2007,

2008; Oualkacha et al., 2013; Wu et al., 2011), with one exception

being our recent work on how to conduct set tests in the presence

of confounders in which an LR test was used (Listgarten et al.,

2013). As mentioned earlier, there appears to be no universally

compelling reason to use one test over the other, as theoretical

results are limited to specific situations that are not generally

applicable. Next, we review some of the motivations and the-

orems that are often given for the use of one test over the

other, as well as reasons that these arguments may not hold.

The usual reasons cited for use of the score test are that it is the
locally most powerful test [e.g. (Chen et al., 2013; Wu et al.,
2011)] and that it is fast to compute because the parameters of

the alternative model need not be estimated—this computation is
usually the most expensive one. However, rarely does there seem
to be a discussion about why the ‘locally’ most powerful test is

the desired one—locality here refers to hypotheses that are close/
local to the null hypothesis. Sometimes, the argument is made
that hypotheses further away from the null have such strong

signal that any statistical test will find them. As we will show
and explain, this is not an argument that the score test will have
the most power in practice. On the other hand, for so-called

simple hypotheses, the LR test is the uniformly most powerful
test according to the Neyman–Pearson lemma. A simple hypoth-
esis is one in which a null hypothesis (e.g. some parameter of

interest, �=0) is compared with a single alternative hypothesis
(e.g. �=�0). However, in most applications, including set tests in
genetics (and those examined herein), the alternative hypothesis
is a composite one—consisting of a range of viable parameter

values (e.g. � 4 0), so the Neyman–Pearson lemma does not
apply.
One connection between the score and LR tests is that the

score test can be interpreted as an approximation to the LR
test in the neighborhood of the null hypothesis. In particular,
if one fits a parabola to the log likelihood at the null hypothesis

(a good approximation locally), then the resulting LR test stat-
istic is equal to a score statistic, for a score statistic that uses the
observed rather than the more traditional expected information

(Buse, 2007). (Note that the observed information is asymptoti-
cally equivalent to the expected information, and therefore the
LR test, in a local region, is asymptotically equivalent to the

traditional score test (Buse, 2007), as well as the variant of the
score test used in this paper.) However, because the LR test is not
limited to a parabolic approximation of the likelihood surface,

the LR test can, in principle, discover parameter values yielding
larger likelihoods than those implied by the score test. If such a
discovery happens for tests that are truly non-null (and happens

less so for true nulls), then the LR test statistic will yield more
power. If, however, this discovery happens for many truly null
tests, creating relatively large LR test statistics under the null

(effectively shifting the critical region towards larger test statis-
tics), then the score test could yield more power. As a conse-
quence, one can see intuitively why the score test may

sometimes yield more power than the LR test and vice-versa.
In addition to these theoretical arguments for and against

each test, there are further complications in that a variety of

options are available for the score test. In practice, the so-
called ‘score-based’ test is often used [e.g. SKAT (Wu et al.,
2011] rather than a more traditional version of the one-sided

score test (Molenberghs and Verbeke, 2003). Theoretically,
these two versions of the score test are asymptotically equivalent
except that the traditional variance component score test uses a

mixture of two distributions as an asymptotic null distribution
(Molenberghs and Verbeke, 2003), whereas the score-based test
can use a finite-sample null distribution, as used in SKAT. The

latter null distribution can be derived analytically under the
assumption that all nuisance parameters are known (see
Supplemental Section 5.1 and (Davies, 1980; Goeman et al.,

2006)). In our experiments, we chose to use a score-based test
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as in SKAT because this is the standard in the genetics commu-
nity (Chen et al., 2013; Lee et al., 2012a and 2012b; Oualkacha
et al., 2013; Wu et al., 2011).

In summary, it is not clear whether one should use the score
or the LR test to achieve maximal power. Therefore, we investi-
gated this issue empirically, finding that on synthetic phenotype

data, indeed, either test could outperform the other. For
extremely small effect sizes, the score test offered greater
power, while for larger effect sizes, the LR test offered better

power. Analyzing 17 real datasets, we found that the LR test
substantially outperformed the score test (Table 3). Next, we go
in detail through these experiments. For simplicity, in the syn-

thetic experiments, we focus on experiments that do not use
a background kernel. However, when analyzing the real data,
we analyze the datasets both with and without a background

kernel for completeness.

2.2 Synthetic experiments

First, using real SNPs and synthetic phenotypes, we examined
power and control of type I error across a variety of settings,
including exclusively either common (based on WTCCC) or rare

variants (based on BMI), and either Gaussian or binary pheno-
types. For power experiments, the causal signal was precisely
from all SNPs in the set being tested (except as noted in the

section on model misspecification).
For binary phenotypes, theoretically, a generalized linear

model (e.g. logistic) is a more appropriate choice than a linear

model. However, exact inference for logistic models in this
setting is generally intractable, requiring approximations (e.g.

Le Cessie and van Houwelingen, 1995). One approximation
that is commonly used for the logistic score (Wu et al., 2011) is
derived from the Laplace approximation to the quasi likelihood

(Breslow and Clayton, 1993) . The utility of this approximation
compared to use of a linear model, which is less appropriate but

can be evaluated without approximations, has not, to our knowl-
edge, been fully investigated. Therefore, we included in our

experiments, both a linear and an approximate logistic score
test, finding little, if any, difference between the two.

As shown in Tables 1 and 2, the type I error was controlled for
all methods in all settings (i.e. no significant deviations from

expectation were found). Each entry in the table is estimated
from �1 million tests from the null distribution. We examined
thresholds for which it remained practical to run experiments,

which was as low as �=1�10–5.
After establishing control of type I error, we then systematic-

ally investigated power, using four different levels of effect size
for the causal SNPs (which were precisely those SNPs being

tested), of h2=0:001; 0:01; 0:1; 0:5, and across a range of signifi-
cance thresholds 10�5, 10�4 and 10�3 (the same thresholds used

for the type I error experiments). We found that for the lowest
signal strength (h2=0:001), the score test yielded slightly more
power than the LR test, consistent with the notion that the score

test is locally optimal (Fig. 1). For the other signal strengths
(h2=0:01; 0:1; 0:5), we found that the LR test yielded more

power than the score test at each level (Fig. 2, Supplementary
Figs S1 and S2), and in aggregate (Supplementary Fig. S3). The

setting with the largest gain for the score test
(h2=0:001; �=10�3; common variants, binary phenotype)

showed a 25% relative gain in power for the score test over
the LR test. However, this setting has so little signal that even

Fig. 1. Power on synthetic data for each method in each setting, for the

lowest signal strength, h2=0:001. Fraction of tests deemed significant

across various significance levels for each method is shown on the vertical

axis. The threshold for significance is shown on the horizontal axis.

Other signal strengths are shown in Figure 2 and Supplementary

Figures S1 and S2

Table 2. Type I error for rare variant sets

Algorithm �=10�5 �=10�4 �=10�3

Gaussian phenotype

Linear score 9.9� 10–6 1.0� 10–4 9.7� 10–4

Linear LR test 6.9� 10–6 1.1� 10–4 1.0� 10–3

Binary phenotype

Linear score 1.4� 10–5 9.6� 10–5 9.7� 10–5

Linear LR test 1.6� 10–5 1.0� 10–4 9.8� 10–4

Logistic score 1.4� 10–5 9.9� 10–5 1.0� 10–3

No statistically significant deviations from expectation according to

binomial test with significance level of 0.05.

Table 1. Type I error for common variants sets

Algorithm �=10�5 �=10�4 �=10�3

Gaussian phenotype

Linear score 1.3� 10–5 1.1� 10–4 1.0� 10–3

Linear LR test 1.4� 10–5 1.1� 10–4 1.0� 10–3

Binary phenotype

Linear score 7.0� 10–6 1.1� 10–4 9.7� 10–4

Linear LR test 1.0� 10–5 1.1� 10–4 1.0� 10–3

Logistic score 7.0� 10–6 1.1� 10–4 9.7� 10–4

No statistically significant deviations from expectation according to

binomial test with significance level of 0.05.
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for the score test, power was only 4%. The setting with the

largest gain for the LR test (h2=0:01; �=10�5; common vari-

ants, Gaussian phenotype) showed a 12% relative gain in power

for the LR over the score test, consistent with our real-data

experiments.

It is interesting to note that in all settings, the logistic score test

performed nearly identically to the linear score test. Thus,

although use of a score test allows one to use an approximate

logistic model, our results suggest that in practice this logistic

model approach confers little benefit over the linear model. It

is possible that an approximate logistic LR test may confer some

advantage, but we have not yet examined this possibility.
In all of our experiments, we used a prevalence of 50%, and

strong deviations from this prevalence could change the results.

In our real data experiments (see below, and Section 4), we found

that h2 was typically on the order of a few percent (in the regime

where, on synthetic data, the LR test tends to outperform the

score test).

2.3 Real data

After establishing type I error control and regimes of superior

power for each of the score and LR tests, we next applied these

two tests to several real datasets: all seven phenotypes from the

WTCCC, and eight phenotypes from the Atherosclerosis Risk in

Communities (ARIC) dataset, counting the number of associ-

ations found to be significant at the Bonferroni threshold

(Table 3, Supplementary Figs S6 and S7). We additionally ana-

lyzed a dataset for Warfarin dosing, and a rare variant body

mass index (BMI) dataset, neither of which yielded many signifi-

cant associations, and in both cases, yielded the same number for

both the score and LR tests when using no background kernel:

Warfarin yielded five associations, whereas BMI yielded none

(Supplementary Fig. S8).

Although one can never be certain about what are true-posi-

tive results and true-negative results on real data, we conducted

our experiments with the knowledge that in our simulations, the

type 1 error was controlled, and therefore, reasonably assumed

the same for these real datasets. This assumption, however, re-

quires that the correct background kernel (perhaps none) be

used. Thus, for these experiments, we performed a sensitivity

analysis, applying our methods both with no background

kernel, and with one (based on all SNPs). There were few differ-

ences between these two extremes (Table 3), indicating that on

these data, there is little sensitivity to the choice of background

kernel. This lack of sensitivity is unsurprising, as we originally

chose these datasets with the intent of using only models with no

background kernel for simplicity, and then added the back-

ground kernel analysis to verify our assumption that no kernel

was needed.
The LR test identified as many or more significant sets than

the score test on all but two of the real phenotypes (Table 3).

Although one cannot make definitive conclusions from this lim-

ited number of datasets, our results suggest that the regime in

which the score test outperforms the LR test is not commonly

seen, and that in this regime, the difference in performance is

minimal. This lies in contrast to the large differences sometimes

seen when the LR test outperformed the score test.
As an added validation for analysis of the three WTCCC

immune-related datasets (Crohn’s disease, T1 diabetes and

Rheumatoid Arthritis), we downloaded known disease-asso-

ciated loci from http://immunobase.org to see how many sets

for each method were already known. For two of the datasets,

the LRT test found more validated hits than the score test. For

Fig. 2. Power on synthetic data for each method in each setting, for

signal strength, h2=0:01. Fraction of tests deemed significant across vari-

ous significance levels for each method is shown on the vertical axis. The

threshold for significance is shown on the horizontal axis. Other signal

strengths are shown in Figure 1 and Supplementary Figures S1 and S2

Table 3. Number of significant associations on real datasets

Dataset Phenotype Score

(1K)

LRT

(1K)

Score

(2K)

LRT

(2K)

WTCCC CD 16 30 4 4

WTCCC T1D 62 82 56 79

WTCCC RA 32 43 27 41

WTCCC T2D 3 3 2 1

WTCCC CAD 1 1 1 1

WTCCC BD 1 2 0 1

WTCCC HT 1 5 1 3

ARIC trgsiu01 13 22 13 20

ARIC hdlsiu02 2 4 2 1

ARIC hd3siu02 7 9 9 9

ARIC hd2siu02 5 4 5 5

ARIC mi04 1 11 1 9

ARIC inc_by04 1 14 1 14

ARIC A in_by04p 2 26 2 24

ARIC A calc 3 4 3 4

Number of significant associations on several real datasets using a Bonferroni-

corrected threshold �=0.05, when no background variance component is

applied (1K), and when a background variance component computed from

all SNPs is used to correct for potential confounding factors (2K). Grayed

boxes denote cases where the score test found more associations than the LR test.
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the third dataset, the number was the same for both tests
(Supplementary Table S2).
One interesting point is that the increase in the number of

associations when using the LR test over the score test on the
real datasets (Table 3) is somewhat larger than that suggested by
the increase in power observed on synthetic data (Figures 1 and

2). Thus, we conducted additional experiments under various
forms of model misspecification to investigate whether we

might identify the source of this difference.

2.4 Synthetic data experiments under various types of

model misspecification

The first form of model misspecification we considered is related
to the fact that, on real data, there is often a broad polygenic

background signal. In such a setting, our variance component
model becomes misspecified because the polygenic background

would not be identically and independently (iid) Gaussian-dis-
tributed. To investigate how the presence of a polygenic back-
ground signal might influence the difference between our two

statistical tests, we generated real-valued phenotypes from the
WTCCC SNPs. Now, rather than adding iid Gaussian noise to

the phenotype as in the previous experiments, we added a non-iid
polygenic background signal. In particular, we used all of the
even chromosome SNPs to generate effects drawn from a zero-

mean Gaussian with variance 1.0, and tested only gene sets on
the odd chromosomes. Then, we checked to see if the type 1 error

was still controlled for each statistical test—it was
(Supplementary Table S1). Next, for power experiments, we
added in gene-specific signal (all SNPs within a gene, as before,

and only from odd chromosomes) to this polygenic background,
with gene SNP effects drawn from a zero-mean Gaussian with
variance equal to 0.001, 0.01 and 0.1 (yielding, respectively, gene-

specific foreground h2=0.001, 0.01, 0.1). In this setting, we
observed similar trends to those in Figures 1 and 2

(Supplementary Fig. S5).
Having identified differences in performance because of poly-

genic background model misspecification, we next investigated

how other forms of model misspecification might affect deviation
between the two tests. First, we repeated the experiments
from Figures 1 and 2 for h2=0:5, but reducing the proportion

of causal SNPs from all SNPs within a gene, down to 50%, 10%
and 1% (always using at least one SNP). In this setting, we

observed that the LR test yielded increasingly more power
than the score test as the percentage of causal SNPs was
decreased (Supplementary Fig. S4). The type 1 error was still

controlled in this setting, as the null hypothesis was the same
as in Table 1.

In both cases of model misspecification investigated, with
increasing misspecification, the improvement of the LR test
over the score test increased (Supplementary Fig. S4 and S5).

2.5 Computational speedups for score and LR tests

We now describe methods for improving the computational ef-
ficiency of both the LR and score tests. When testing one vari-

ance component in a one-component model, the asymptotic time
complexity for the score and the LR tests are the same (O N3

� �

individuals when k1 SNPs are being tested with k1 � N, and

otherwise OðNk21Þ). Additionally, the computation times are the

same in practice (Table 4). However, in many settings, one needs

to use a second variance component, which can change the ab-

solute and relative computational cost of the two tests. Examples

of settings with a two-variance components model include (i) a

null model that contains a background kernel to correct for con-

founding factors (owing to, for example, family relatedness and

population structure) (Listgarten et al., 2013), and (ii) gene–gene

interaction tests where the null model contains a background

kernel for the additive gene terms (Li and Cui, 2012). There

are two settings where computations are extremely expensive,

and where we have developed new algorithms to improve their

computational cost:

(1) The first is when the background kernel is full rank, such

as would occur when using a background kernel computed

from all SNPs, when that number of SNPs is greater than

the number of individuals. Here we have made the LR

test dramatically more efficient, even while correcting for

proximal contamination (Lippert et al., 2011; Listgarten

et al., 2012).

(2) The second case is when both the background kernel and

the foreground (alternative model) kernel are jointly low

rank. Here, we sped up the score test, dramatically so

when the background kernel changes with each test.

We now briefly give some intuition on the speedups and refer

the reader to the Supplementary Methods Sections S2 and S5 for

details.

Full rank background kernel speedups For the case where pre-
cisely one of the two variance components is full rank (has more

Table 4. Runtimes and time complexity for the 13,500 WTCCC dataset

Algorithm Time Time complexity

One variance component model

SKAT (Wu et al., 2011) 0.03 s OðNk21Þ

FaST-LMM-set score 0.03 s OðNk21Þ

FaST-LMM-Set LR test 0.04 s OðNk21Þ

Two variance component model full rank background kernel

FaST-LMM-set score 2 s OðN2k1Þ

FaST-LMM-set LR test 1.6 h OðN2k1Þ

LMM-Set LR test (before improvement) 150h OðN3Þ

Two variance component model low rank background kernel

FaST-LMM-set score See text OððN+kgÞk
2
1)

LMM-set score (before improvement) See text OðN2k1Þ

FaST-LMM-set LR test See text OðNðkg+k1Þ
2
Þ

Runtimes on a single core and time complexities for various linear set tests, both

without a background kernel (one variance component model) and with (two vari-

ance component model) after applying our improvements with exceptions noted.

The time reported is the time per test averaged over 13850 tests from the WTCC1

type 1 diabetes dataset. Runtimes and complexities for the two-variance full rank

cases exclude the O(N3) computations shared across all tests and done upfront (2 s,

when amortized over the 13850 tests). The logistic score model had approximately

the same timing as the linear score, and so here we report only the linear score. For

the LR test, the time includes the 10 permutations that are required. Regarding the

notation for time complexity, kg and k1 refer to the size of the background and test

components, respectively.
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SNPs than individuals, as might happen when correcting for

family-relatedness and population structure), we have developed

a new approach for the LR test in which expensive computations

(matrix inverses and determinants) are replaced by cheaper low-

rank-update versions of them. For example, when

D=�2eI+�2gKg+�21K1, where Kg and K1 are the background

and test kernels, respectively (see Section 4), and the number

of SNPs in K1, k1; is less than N, then, rather than taking the

inverse of D (an N�N matrix)—a computation with time com-

plexity O N3
� �

—one can instead use the matrix inversion lemma

(assuming that the inverse of Kg is known, as it might be when

re-using it for every SNP when correcting for population struc-

ture, for example) so that the time complexity becomes only O

N2k1
� �

: This approach is particularly useful in settings where the

background kernel remains constant across all or many or all

tests (Table 4). However, even when this full-rank background

kernel changes in a low rank manner with every test (as it would

when correcting for proximal contamination), our improvement

still allows the bottleneck computation to be performed only once

per dataset. Furthermore, even when the background kernel

changes entirely with every test (as in gene-gene interaction

tests), our computations restrict the bottleneck computations to

occur just once per test, rather than J times, where J is the number

of optimization iterations. We also provide an efficient algorithm

for the two kernel score test when the background kernel has full

rank, although, others have developed similar methods for this

case (Chen et al., 2013; Oualkacha et al., 2013), but these do not

correct for proximal contamination.

Combined low rank variance component speedups When the
combined variance components are low rank in that the com-

bined components have fewer SNPs than there are individuals,

we previously showed how to make the LR test linear in N

(Lippert et al., 2011; Listgarten et al., 2013). This algorithmic

improvement can have a dramatic result on timing (see low

rank versus full rank LR test under the ‘Two Variance

Component’ header in Table 4), but, even with these computa-

tional improvements to the LR test, there are situations where

computations are impractical—for example, when testing for

gene–gene interactions (Li and Cui, 2012) with large N.

Consequently, we have in addition developed a low rank algo-

rithm for the score test. For large cohort sizes (e.g. the 13,500

individual WTCCC dataset used in the two-component timing

experiments, which used all phenotypes as controls and included

related individuals), the time (and memory) savings were sub-

stantial. For example, when testing a set of size 14 for gene–

gene interactions using a low rank background kernel containing

150 SNPs, our low rank score test was �2000 times faster than

the na€ıve implementation (1 s versus 32 min). Our efficient LR

test in that same setting took 3.5 min.

It is worth noting that when using these low rank speedups,

the time complexity for the score test remains the same between

one-component and two-component models. However, this is

not the case for the LR test, which requires an additional

factor I—the number of optimization steps used to fit the alter-

native model. A typical number for I in our experience is around

20. Furthermore, because the LR approach requires on the order

of 10 permutations (see Section 4), the LR test is expected to be

around 200 times slower than the score test in this case (without

specialized caching of expensive computations), and as we
observed in practice (see previous paragraph). For the one-com-
ponent model, caching permutations for the LR test is trivial,

and is reflected in the timings in Table 4.
Previous work in speeding up the score test for two-compo-

nent variance component models are somewhat limited—for ex-

ample, requiring that the null model (and variance parameter)
remain constant across all tests (Oualkacha et al., 2013)—a con-
dition not always met, such as in testing for gene–gene inter-

action (Li and Cui, 2012). These methods also cannot account
for proximal contamination (Lippert et al., 2011; Listgarten
et al., 2012) efficiently. Furthermore, these approaches cannot

reduce the dependence on the number of individuals studied to
a linear time; rather they can at best reduce it to a quadratic one
(Chen et al., 2013; Oualkacha et al., 2013) even when the simi-

larity matrix is low rank. Finally, their methods are quadratic in
memory, whereas ours are linear in both time and memory in the

low rank setting.

3 DISCUSSION

We have presented two strategies for increasing power in gene-set
association studies. First, we investigated the difference in power
between an LR and a score test, finding that, although on syn-

thetic data, the score test outperformed the LR test when effect
sizes were small, the LR test found more associations when effect

sizes were larger, as it did also on real data. Second, we have
developed computational speedups for both the LR and score
tests—the former when the background kernel is full rank and

the latter when the background and foreground kernels are low
rank. For particularly onerous runs (e.g. gene–gene interaction
set tests), where it may not be practical to run the more compu-

tationally expensive LR test, our efficient (and exact) score test
can run about 2000 times faster on WTCCC data than score test
algorithms currently available in statistical software, and �200

times faster than our efficient LR test.
One assumption underlying some of our efficient algorithms is

that some of the kernels have a particular form (e.g. one which

factors as an inner product, and generalizations of this).
However, this assumption is reasonable, as it encompasses
most of the kernels currently being used for set tests.

Directions for further consideration include incorporation
and exploration of different measures of genetic similarity,
and investigation of other score tests, beyond the one used

here. Also, SKAT has been extended to encompass more ‘op-
timal’ settings of genetic similarity (Lee et al., 2012a), for which

our methods could likely be adapted. Another fruitful direction
may be to use a hybrid LR-score approach for large datasets
with a large number of hypotheses where the LR test may

become impractical. For example, one might consider a full
scan using the score test, and then scanning from the top of
the resulting ranked list using the more powerful LR test, going

as far down the list as resources permit. Modeling the null
distribution of the score-based test statistic can be done in a
variety of ways, including using Davies (1980) or Imhof’s

method (Imhof, 1961) with a sum of �1-distributed variables
as we and SKAT have done, using Kuonen’s saddlepoint
method (Chen et al., 2013; Kuonen, 1999), or various types

of moment matching (Li and Cui, 2012; Wu et al., 2011). To
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our knowledge, a systematic comparison of these approaches

has not been done, although, judging from our preliminary

comparisons, we do not expect these variations to alter the

overall story of how the LR test performs relative to the

score test. Finally, further investigation into the robustness of

each statistical test to model misspecification would be of prac-

tical interest.

4 METHODS

4.1 Statistical models and tests

Let Nðu;DÞ denote a multivariate Normal distribution with mean u and

covariance D. For the no-background-variance-component set test, the

distribution of the phenotype is defined by a variance components model,

y � N bX; �2eI+�
2
1K1Þ

�
ð1Þ

where y is a 1�N vector of phenotype values for N individuals; b

(of dimension D� 1) is the set of the D fixed effect for the covariates

contained in the design matrix X; I is an N�N identity matrix; �2e is the

residual variance; K1, given by K1 =G1G
T
1 , is a covariance matrix com-

puted from the variants contained in the design matrix G1 (dimension

N� k1 and normalized for the number of SNPs in it) to be tested and has

an associated variance �21.

Conditioned on the restricted maximum likelihood estimates for the

nuisance parameter of fixed effects, b, the log restricted likelihood for

model (1) is as follows

L �2e ; �
2
1

� �
=�

1

2
N�Dð Þlog 2�ð Þ �

1

2
yTPy�

1

2
logjDj+

1

2
logjXTXj

�
1

2
logjXT

D
�1Xj;

ð2Þ

where the covariance D � ð�2eI+�21K1Þ is defined as in Equation (1) and

where P=ðD�1 � D
�1X XT

D
�1X

� ��1
XT

D
�1Þ is a matrix that projects out

the fixed effects.

When an additional background covariance matrix Kg weighted by �2g
is present (for example, to correct for confounding or include main effects

in an interaction test), then the covariance is defined as

D � ð�2eI+�
2
gKg+�21K1Þ. The restricted log likelihood (2) forms the

basis of both the score and LR tests, as described later and in the

Supplementary Information.

The set test is formally defined as having a null hypothesis,H0 : �21=0,

and alternative hypothesis H1 : �21 � 0. In the statistical genetics commu-

nity, this test is exclusively performed using a score test (Chen et al., 2013;

Ionita-Laza et al., 2013; Lee et al., 2012a; Listgarten et al., 2013; Liu

et al., 2007, 2008; Oualkacha et al., 2013; Schifano et al., 2012; Wu

et al., 2011), except for (Listgarten et al., 2013), which uses an LR test.

For simplicity, we here describe the LR test for a single-variance compo-

nent model, leaving the two-component model for the Supplementary

Methods.

4.1.1 One Variance Component Likelihood Ratio test For the LR

test, Equation (2) is maximized twice, once under the alternative hypoth-

esis H1 : �21 � 0, and once under the null hypothesis H0 : �21=0. Twice

the difference in these maximum values is the LR test statistic. For this

statistic, we assume a null distribution (Listgarten et al., 2013) of the form

��20+ 1� �ð Þa�2d, which is a mixture between a zero-degree of freedom �2

distribution (�20) and a scaled d-degree of freedom �2 distribution, where

d � 0 is a continuous number, scaled by a, and with mixture parameter �.

To obtain the parameters of this null distribution, we permute the pheno-

type (and covariates) a small number of times (e.g. 10) to obtain a null

distribution of test statistics. Using this empirical distribution, we then

use a log-quantile regression of the top 10% of these to their theoretical

expected values (conditioned on an estimate of �, which is estimated as

the proportion of empirical null test statistics greater than zero). Now,

given the fitted null distribution, we can apply it to the real distribution of

test statistics to obtain P-values (Listgarten et al., 2013). For the one-

variance component model, the permutations can be done extremely

cheaply by caching all the expensive computations from the real data

(computations related to the matrix determinant and inverse), thereby

reducing the computational complexity from quadratic to linear in the

size of the gene sets.

4.1.2 One variance component score test For our one-variance

component score test, we re-implemented the score-based approach, as

used in SKAT (Wu et al., 2011) (using equal weighting on all SNPs). The

score-based test statistic, Q, is the phenotype-independent portion of the

score (the first derivative of the restricted log likelihood (2) with respect to

the parameter of interest, �21 as shown in the Supplementary Information)

and is (in the one kernel case) given by the following:

Q=
1

2�4e
yTK1y;

where S � IN � X XTX
� ��1

XT. As in (Goeman et al., 2006; Wu et al.,

2011) and as proven in the Supplementary Information, the distribution

of Q under the null hypothesis is given by a weighted sum of one-degree

of freedom �2 variables,

Q�

XN

i=1

�i�
2
1;i;

where the weights, �i, are given by the eigenvalues of 1
2P

1
2G1G

T
1P

1
2, where

P
1
2 is any matrix square root of P. Given this distribution, several meth-

ods can be used to obtain its cumulative distribution, required for com-

puting P-values. As in SKAT, we used the Davies exact method (Davies,

1980), which is exact up to numeric precision. The logistic version of the

score-based test was re-implemented based on the Laplace approximation

to the quasi likelihood, as used in (Breslow and Clayton, 1993). When

K=G1G
T
1 (such as when a linear covariance matrix in G1 is used), one can

implement both the one- and two-variance component tests efficiently.

Methods for two-component tests and for improving the computa-

tional efficiency of the LR and score tests are given in Supplementary

Methods.

4.2 Datasets

The WTCCC 1 data (Burton et al., 2007) consisted of the SNP and

phenotype data for seven common diseases: bipolar disorder, coronary

artery disease, hypertension, Crohn’s disease, rheumatoid arthritis, type-I

diabetes (T1D) and type-II diabetes. Each phenotype group contained

�1900 individuals. In addition, the data included a set of �1500 controls

from the UK Blood Service Control Group (NBS). The data did not

include a second control group from the 1958 British Birth Cohort

(58C), as permissions for it precluded use by a commercial organization.

SNPs were filtered more stringently than as described by the WTCCC

so as to minimize the impact of assay artifacts. A SNP was excluded if

its minor-allele frequency (MAF) was51%, it was missing in41% of

individuals or its genetic distance was unknown. After filtering, 356 441

SNPs remained. Analysis of real data consisted of the controls and the

cases for just the disease being analyzed, yielding roughly 3500 individuals

for each analysis. Simulated WTCCC datasets were based on the SNP

data for these individuals, and referred to as the common-variant setting.

All experiments for WTCCC used 13850 gene sets (using any SNPs

within the promoter or coding region of a gene). For the real data ana-

lysis, and synthetic power experiments, we used 10 permutations for the

LR test approach (described next). For synthetic type I control experi-

ments with the LR test, 72 runs of the 13 850 gene sets were performed,

for 997 200 P-values generated from the null per method. A separate 10

permutations were used to fit the null distribution.
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For the timing experiments on the WTCCC data, which used a two-

variance component model, the dataset was augmented in several ways.

First, the filtering of related individuals and different ancestral back-

grounds was omitted, so that the two-variance component model

would be needed. Second, for the analysis of a given phenotype, controls

were taken to be the NBS controls as well as the cases for all other

phenotypes. This setup resulted in 1984 T1D cases and 12 941 controls

(and still 356 441 SNPs). Kernels with both all SNPs (full rank) and 150

SNPs (low rank case) were used.

For the experiments with rare variants, we used data from a BMI

dataset (dbGap phs000169.v1.p1), which consisted of data for 2802 unre-

lated individuals from a 1M Illumina chip. Keeping SNPs with MAF

between 1 and 4% yielded 19 708 SNPs, from which 2030 non-singleton

gene sets were formed (using any SNPs within the promoter or coding

region of a gene). For the real data analysis and synthetic power experi-

ments, we used 100 permutations for the LR test approach. For synthetic

type I control experiments with the LR test, 500 runs of the 2030 gene sets

were performed, for 1 015 000 P-values generated from the null per

method. A separate 100 permutations were used to fit the null distribution.

The two datasets above were used both for analyzing their real data,

and also using their real SNPs to generate synthetic phenotypes

(as described below). In addition to these, when examining the perform-

ance of real datasets, we also analyzed a Warfarin phenotype dataset and

an Atherosclerosis risk dataset.

The Warfarin dataset (Cooper et al., 2008), processed as in (Tatonetti

et al., 2010), used LD thinning for SNPs with more than r2=0:2, yielding

509 250 SNPs for 181 individuals, and 22 793 gene sets. The same gene

sets as in (Tatonetti et al., 2010) were used, which consisted of SNPs

either contained within a given gene or within 5 kb upstream of down-

stream of that gene). Stable warfarin dosages were used as the phenotype.

Covariates used in the analysis were sex, age, ancestral background,

weight, treatment with amiodarone, and treatment with losartan. We

used 10 permutations to get P-values for the LR test.

The ARIC Cohort (dbGaP Study Accession: phs000280.v2.p1) data

were filtered as follows. First, any individual with more than 5% missing

datawas removed. Then, a SNPwas excluded if itsMAFwas less than 1%,

or it was missing in more than 2% of individuals. After processing, there

were 12 751 individuals, 717 492 SNPs and 25 659 gene sets (using any

SNPs within the coding region of a gene). We used age, sex and the com-

munity fromwhich the individual came as covariates. We used eight of the

ARICphenotypes (trgsiu01, hdlsiu02, hd3siu02, hd2siu02,mi04, inc_by04,

in_by04p, calc) that yielded similar genomic control factors (all less than

1.05) with and without a full background kernel to correct for population

structure and family relatedness; these phenotypes also showed association

signal (judging from the quantile–quantile plot of univariate –log(P)

values. We used 10 permutations to get P-values for the LR test.

When a background kernel composed of all SNPs was used, we exclu-

ded any SNPs from the same chromosome as those being tested to avoid

proximal contamination (Lippert et al., 2011; Listgarten et al., 2012). When

the background kernel was low rank, we excluded any SNPs from the

background kernel that were within 2million bases of the SNPs being tested.

SNPs in all datasets, for both real and synthetic experiments, were

encoded as 0,1,2 for the number of minor alleles, before being zero-

meaned and whitened (SD set to 1.0).

4.3 Simulation experiments

All synthetic experiments comparing statistical tests used a standard vari-

ance components model in which there was only one kernel—the one

used to test a set of SNPs, as in all of the SKAT papers (Lee et al.,

2012a and 2012b; Wu et al., 2011). Real SNP data were used for the

synthetic experiments, and only the phenotype was simulated. For experi-

ments measuring control of type I error, continuous phenotypes were

sampled independently from a Gaussian distribution and, therefore,

contained no genetic signal. Binary phenotypes were obtained by

thresholding the Gaussian phenotype such that the case:control ratio

was 50:50. For power experiments, a new phenotype was sampled for

each gene in turn, using all SNPs in that gene, over a variety of effect

strengths. The phenotype was sampled from the LMM, using

�2g=1:0; 0:1; 0:01; 0:001 and �2e=1:0, which is equivalent to sampling

from a linear regression fixed effects model (Listgarten et al., 2012)

with noise �2e and fixed effect weight parameters identically and independ-

ently distributed from a Gaussian with variance �2g. In the text, we often

describe these relative effect sizes using h2 � �2g=ð�
2
e+�

2
gÞ. For each value

of �2g, five random seeds were used to generate five phenotypes.

To examine robustness to model misspecification (which was not pre-

sent in the setting just described), we also altered the experimental set-up

above, by variously using each of these, independently:

(1) using all SNPs on all even-numbered chromosomes (in WTCCC)

to generate a background polygenic signal with SNP effects drawn

from a zero-mean Gaussian with variance 1.0 (and no other noise),

and then testing each gene set on only the odd-numbered chromo-

somes, having generated either with no additional phenotypic

signal (for type 1 error), or having added in gene-set specific effects

(for all SNPs) drawn from a zero-mean Gaussian with variance set

to each of 10�4; 10�3; 10�2; 10�1, or

(2) the same as above, but using only 50, 10 or 1% of the SNPs in a

gene as causal for the power experiments.
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