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Abstract 

Genome Architecture Mapping (GAM) is a recently developed method for mapping chromatin 

interactions genome-wide. GAM is based on sequencing genomic DNA extracted from thin 

cryosections of cell nuclei. As a new approach, GAM datasets require specialized analytical tools and 

approaches. Here we present GAMtools, a pipeline for analysing GAM datasets. GAMtools covers 

the automated mapping of raw next-generation sequencing data generated by GAM, detection of 

genomic regions present in each nuclear slice, calculation of quality control metrics, generation of 

inferred proximity matrices, plotting of heatmaps and detection of genomic features for which 

chromatin interactions are enriched/depleted. 
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Background 

Over the past two decades, the contribution of three-dimensional (3D) genome folding to the 

regulation of gene expression has become increasingly apparent. The expression pattern of many 

genes is determined by enhancers [1], regulatory DNA elements that can act over long distances (up 

to 1Mb [2]). Transcriptional activation is thought to be mediated by chromatin loops that bring 

enhancers into close physical proximity with target genes [3]. Chromatin loops primarily occur within 

topological domains (TADs), genomic regions which preferentially contact themselves whilst being 

insulated from the chromatin within neighbouring TADs [4]. TADs constrain the possible gene targets 

for any given enhancer by restricting the space of possible looping events. 

Other aspects of chromatin topology may also impact on gene expression. Transcriptionally inactive 

genes generally become de-condensed upon transcriptional activation, subsequently occupying a 

larger nuclear volume [5]. Chromatin also occupies preferential positions relative to the nuclear 

periphery, such that transcriptionally active regions occupy more interior positions whereas inactive 

regions tend to locate towards the periphery and the nuclear lamina [6,7]. These phenomena have 

been observed at the scale of whole chromosomes and for specific loci, yet it remains unclear whether 

transcription is upstream or downstream of changes in either chromatin de-condensation or radial 

positioning [8]. 

In short, there are many important links between chromatin folding and gene expression. Many 

human diseases are associated with disrupted transcription of genes in very specific cell types, where 

the underlying pathology causing transcriptional disruption are unknown. Methods that can assay 

chromatin folding in rare cell types will be invaluable for investigating whether topological changes 

drive the transcriptional defects seen in disease. One recently published method for measuring 

chromatin folding is Genome Architecture Mapping (GAM [9]). GAM depends on sequencing the 

DNA content of thin slices isolated from individual nuclei, known as nuclear profiles (NPs). A large 

number of NPs are collected, each from a different nucleus in a random orientation, and regions that 

are in close proximity are identified based on the number of NPs that contain both genomic regions. 
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NPs are individually laser-microdissected from ultrathin cryosections (Fig. 1) allowing GAM to be 

applied to rare cell sub-populations isolated from complex tissues. As a completely new methodology, 

GAM requires tailored analysis approaches. Here we present GAMtools, a suite of software tools 

specifically designed to enable rapid and reproducible analysis of GAM datasets. GAMtools includes 

a pipeline that automates all stages of analysis from mapping and processing of raw sequencing files 

through to generation of proximity matrices [9]. GAMtools also provides tools for estimating 

chromatin compaction and radial positioning from GAM datasets [9] and producing quality metrics. 

Results 

In a GAM experiment, a thin cryosection is cut through a population of cells and individual nuclear 

profiles (NPs) are identified and isolated into separate PCR tubes by laser microdissection (Fig. 1). 

DNA is extracted, amplified by whole genome amplification (WGA), sequenced and mapped to the 

relevant genome assembly. Genomic regions that were present or absent in each NP are then 

calculated based on the density of mapped reads at each region, generating a segregation table that 

lists the genomic content of each NP (Fig. 1). The GAMtools “process_nps” command automates 

mapping raw sequencing reads, processing mapped reads and calling positive genomic regions for 

each NP. 

The GAMtools raw data processing pipeline uses Bowtie2 for read mapping, although users can also 

provide their own mapping (Supp. Fig. 1). Subsequent steps are performed by well-established tools 

(samtools for duplicate read removal and fastqc/fastq_screen for quality metrics), except for calling 

positive windows. Since a set of consistent genomic regions must be identified as present or absent 

across the whole collection of NPs, GAMtools divides the genome into regularly sized genomic 

windows. It then counts the number of reads overlapping each window and then builds a distribution 

of these counts. GAMtools simultaneously fits a negative binomial (representing noise or “false 

positive” windows [10]) and a lognormal curve (representing signal or “true positive” windows) to the 

distribution of read coverage per window and uses the obtained parameters to determine a threshold 
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given as a number of reads, such that windows with a greater number of mapped reads are called as 

present in the original NP (see Methods). This curve-fitting approach is robust to differences in 

sequencing depth within and between samples (Supp. Fig. 2). 

A final step of processing raw GAM sequencing data is to identify and exclude poor-quality samples. 

GAMtools provides a quality control (QC) module that can calculate 11 different metrics of sample 

quality (Table 1). The user can provide GAMtools with a set of rules to use for automated inclusion or 

exclusion of NPs. By default, GAMtools excludes NPs with less than 15% mapped reads, as this has 

been shown to adequately discriminate good quality from poor quality NPs in a published GAM 

dataset from mouse embryonic stem cells [9]. GAMtools default settings also exclude samples with a 

lower percentage of reads mapping to the reference genome than to common contaminant genomes, as 

low levels of contamination can be difficult to avoid when working with sub-picogram amounts of 

input DNA. Other possible QC measures, including average sample sequencing quality, 

overrepresentation of mono- and di-nucleotide repeats and the percentage of orphaned windows 

(positive windows without positive neighbours, which are more likely to represent noise) are reported 

since sample quality control may present different challenges in different organisms. 

Calling positive windows yields a segregation table, which lists the genomic regions present in each 

NP at a given resolution, and is the basis for all further analyses (Fig. 1). The first task will normally 

be to generate a proximity matrix – a heatmap which gives the relative nuclear distance between loci 

based on the number of NPs that contain each pair of regions (i.e. based on their co-segregation). Raw 

co-segregation matrices which report only the co-segregation of each pair of loci are biased by the 

detection frequency of each locus. If locus A is found in twice as many slices as locus B, then locus A 

will co-segregate twice as often with other loci by chance alone. As calculating the normalized 

linkage disequilibrium (D’ [11] , see Methods section) instead of the co-segregation frequency 

removes most of this bias [9], GAMtools reports D’ matrices by default (Fig. 2a). Generating these 

matrices can be computationally intensive as it takes at least O(N2) time (where N is the number of 

windows at a given resolution), so GAMtools provides Cython optimized versions of these functions 

which run many times faster than pure Python code. 
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Information about chromatin compaction or chromatin radial positioning can also be extracted from 

the segregation table for a GAM experiment. For chromatin compaction, loci that occupy a larger 

fraction of the nuclear volume are intersected more frequently and therefore appear in a larger number 

of NPs than compact loci occupying small volumes [9]. Therefore, the number of NPs in which a 

region is detected (its detection frequency) is a proxy measure that inversely correlates with chromatin 

compaction. For radial positioning, loci which are strongly associated with the nuclear periphery are 

more frequently intersected by apical sections, whereas loci positioned in the centre of the nucleus can 

only be intersected by equatorial sections. Equatorial sections capture a larger fraction of the nuclear 

volume than apical sections, therefore loci which are frequently found in NPs with lots of positive 

windows are more likely to be positioned in the nuclear centre than loci which are frequently found in 

NPs with very few positive windows [9]. GAMtools provides easy commands for estimating 

chromatin compaction and radial position based on these principles, producing bedgraph files for easy 

visualisation in genome browsers and downstream analysis (Fig. 2b). 

In many computational analyses, an appropriate randomized control can be a useful tool for 

determining the threshold between signal and noise. GAMtools provides an easy way to generate 

randomized control datasets by circularly permuting segregation tables (Fig. 2c,d). The GAMtools 

permute command will shift the positive windows in each NP by a certain random number of 

windows. This is done separately for each chromosome (to maintain the distinction between 

intrachromosomal and interchromosomal contacts; Supp. Fig. 3a) and avoids unmappable regions 

such as centromeres (to avoid diluting signal over a larger genomic region). After permutation, 

randomized segregation tables can be used to generate randomized proximity matrices (Fig. 2e), 

chromatin de-compaction (Fig. 2f) or chromatin radial positioning measures. For example, GAM 

detection frequency (an estimator of chromatin de-compaction) correlates with DNaseI accessibility 

before but not after permutation. 
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Discussion 

GAM is a new technique for measuring chromatin folding that is applicable to the analysis of rare cell 

sub-populations within complex tissues, and GAMtools is a software package for automated 

processing, quality control and analysis of GAM datasets. GAMtools streamlines GAM analysis, 

thereby lowering the barrier of entry for users to adapt GAM to their own organisms and systems of 

choice and provides robust and optimized analytical capabilities through a command line interface. 

We hope that other groups will develop new and improved analysis tools for GAM data, as seen for 

Hi-C data since its original publication [12–14]. GAMtools is specifically designed to provide 

building blocks from which to expand and improve analysis of GAM data. To this end, GAMtools 

provides a fully-functional Python API allowing easy re-use of any GAMtools functionality within 

new software. GAMtools is available from PyPi (https://pypi.python.org/pypi/gamtools), github 

(https://github.com/pombo-lab/gamtools) and through the GAMtools website (http://gam.tools). 

Methods 

Raw data processing pipeline 

The GAMtools “process_nps” command first passes each fastq file (one from each NP) to Bowtie2 

[15] for mapping and uses samtools [16] to discard reads that are not uniquely and unambiguously 

mapped (MAPQ score < 20). This mapping stringency is necessary to avoid spurious associations 

between distal genomic regions that share high levels of sequence homology. Most NPs contain only 

one copy of any uniquely mappable DNA sequence, although there may be two copies in a small 

number of cases where either both homologues or both sister chromatids following replication are 

intersected by the same NP. GAMtools therefore uses the samtools rmdup command [16] to discard 

all PCR duplicates after mapping. The unique reads mapping to each genomic window are counted 

using bedtools [17], and the table of sequencing depth per window per NP (the read coverage table) is 

passed to the GAMtools “call_windows” command. 

. CC-BY 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/114710doi: bioRxiv preprint first posted online Mar. 20, 2017; 

http://dx.doi.org/10.1101/114710
http://creativecommons.org/licenses/by/4.0/


NP quality control 

GAMtools uses samtools to calculate the percentage of mapped, sequenced and duplicated reads [16]. 

Fastq-screen is used to calculate percentage multi-mapping reads or reads mapping to other genomes 

(http://www.bioinformatics.babraham.ac.uk/projects/fastq_screen). Fastqc is used to calculate the 

average per-base sequence quality score and the level of mono- and di-nucleotide repeats [18]. 

Calling positive windows 

Positive windows are determined for each NP as previously described [9]. In brief, GAMtools fits a 

composite function (the sum of a negative binomial and a lognormal distribution) to the read coverage 

distribution for each NP (Supp. Fig. 2). The read coverage threshold is set at the point where the 

cumulative probability of the negative binomial part of this function exceeds 0.999 (i.e. where the 

probability of observing a window with greater than that number of mapped reads is less than 0.001 

based on the negative binomial alone). All genomic windows with more reads are marked as present 

in the NP, and all other windows are marked as absent. 

Proximity matrices 

GAM estimates the nuclear proximity between two loci by counting the number of times those two 

loci are co-segregated (found together) across a large collection of NPs. To account for differences in 

the detection frequency between two loci, the normalised linkage disequilibrium (D’) is reported 

instead of the raw co-segregation frequency by default. D’ is calculated as previously described 

[9,11]:  

𝐷" = 	
𝐷

𝐷%&'
 

where D is the linkage between two genomic windows A and B and Dmax is the maximum possible 

value of D given the detection frequencies of A and B. D is defined as: 

𝐷 = 𝑓)* − 𝑓)𝑓* 
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Where fA is the detection frequency of window A (the number of NPs in which A is found divided by 

the total number of NPs), fB is the detection frequency of window B, and fAB is the number of NPs in 

which A and B are found together divided by the total number of NPs. 

Finally, the maximum value of D, Dmax, is defined as: 

𝐷,-./	
min 𝑓&𝑓3, (1 − 𝑓&)(1 − 𝑓3) 		𝑤ℎ𝑒𝑛	𝐷 < 0	
min 𝑓3 1 − 𝑓& , 𝑓&(1 − 𝑓3) 			𝑤ℎ𝑒𝑛	𝐷 > 0 

Heatmaps of linkage between all regions on the same chromosome were calculated from linkage 

matrices L(i,j) where each entry is the normalized linkage of i and j and are plotted using matplotlib 

[19]. 

Chromatin de-compaction 

The de-compaction of chromatin within a given genomic window is approximated by the frequency of 

window detection, i.e. by the number of NPs containing the window, as previously described [9]. 

Circular permutation 

To avoid generating positive windows within unmappable regions, any windows which were never 

detected across the population of NPs are first removed from the segregation table. Then, for each 

chromosome (of length L) in each NP, a shift 1 £ i £ L is chosen and the positive/negative window 

call at window j is moved to window j+ i. If j+ i is larger than L, the information at window j is 

moved to window (j+ i)-L. This process is repeated with a different random shift for each each NP. 

Abbreviations 

3D: three dimensional; API: application programming interface; D’: normalised linkage 

disequilibrium; GAM: Genome Architecture Mapping; NP: nuclear profile; QC: quality control; 

TAD: topologically associating domain. 
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Figures 

Figure 1 

 

Figure 1: Outline of a GAM experiment. 

In a typical GAM experiment, cells grown in culture or obtained from tissue are crosslinked with 

formaldehyde and frozen in a cryoblock. A thin (~200nm) section is taken from the block, and 

sections of individual nuclei (nuclear profiles or NPs) are isolated from the cryosection by laser 

microdissection. The genomic content of each NP is assessed by next generation sequencing, 

generating a segregation table. Segregation tables list the presence or absence of each genomic region 

for each NP and are the basis for further downstream analysis (e.g. calculating proximity matrices). 
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Figure 2 

 

Figure 2: Computational tools provided by GAMtools for the analysis of GAM datasets. 

a, The “gamtools cosegregation” subcommand can convert segregation tables (see Fig 1) into 

proximity matrices. These matrices can be visualised as a heatmap where red indicates close nuclear 

proximity between two loci and blue indicates a lack of proximity. b, The “gamtools compaction” 

command calculates GAM detection frequency, which can be used as an estimate of chromatin 

compaction [9]. Estimated compaction can be visualised in the UCSC browser and compared to other 

chromatin features, e.g. DNaseI accessibility. c, Circular permutation randomises data for a particular 

NP by shifting each data point one or more places to the right. Data points shifted past the end of a 

chromosome are returned to the beginning of that chromosome. d, Whole GAM datasets can be 
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randomised by circularly permuting each NP by a different random amount. e, TADs are not observed 

in a circularly permuted GAM dataset. f, Chromatin compaction estimated from a circularly permuted 

GAM dataset no longer correlates with DNaseI accessibility. 
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Supplementary Figures 

Supplementary Figure 1 
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Supp. Figure 1: Scheme of GAMtools commands. 

Starting from raw sequencing data (one fastq file per NP) users must first generate a GAM 

segregation table. This can be done using the GAMtools “process_nps” command, or users can supply 

their own mapping and generate a segregation table using GAMtools “call_windows” command. 

GAMtools then uses the segregation table to generate proximity matrices, chromatin compaction and 

radial positioning datasets. 
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Supplementary Figure 2 

  

Supp. Figure 2: GAMtools identifies genomic regions present in each NP over a range of 

sequencing depths. 

Left: Curve fitting of sequencing data from a single NP (sample ID F6E2 [9]). Black barplots show 

the number of 50 kb genomic windows covered by a given number of sequencing reads. Green and 

blue lines give the curve fitting results for a negative binomial distribution (representing sequencing 

noise) and a lognormal distribution (representing true signal) respectively. Red dots give the sum of 

the two curves. Grey dashed vertical line gives the determined threshold between positive (signal) and 
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negative (noise) windows (27, 18 and 12 reads for the top, middle, and bottom rows respectively). 

Right: Examples of GAM sequencing data and the associated positive windows identified by 

GAMtools. Blue tracks give the raw number of mapped reads, black bars below indicate positive 

windows. The three rows show different quantities of sequencing data from the same NP, 

demonstrating that positive window identification is robust across a wide range of sequencing depths. 

Supplementary Figure 3 

 

Supp. Figure 3: Circular permutation produces randomised GAM datasets that can be used as 

background controls. 

a, The average linkage of genomic windows separated by a given genomic distance in both original 

and permuted GAM datasets. Green area indicates the mean ± s.d. for permuted data, green line gives 

the mean of the original data. GAM datasets have slightly lower average linkage after permutation 

because permutation averages out specific associations between loci. However, the slope of the line 

. CC-BY 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/114710doi: bioRxiv preprint first posted online Mar. 20, 2017; 

http://dx.doi.org/10.1101/114710
http://creativecommons.org/licenses/by/4.0/


remains the same after permutation, indicating that the general scaling properties of the dataset are 

maintained after permutation. b, Heatmap showing that GAM detection frequency (a proxy for 

chromatin compaction, where greater detection indicates less compaction) and DNase-seq coverage 

(i.e. chromatin accessibility) are correlated at 50kb resolution. c, After circular permutation, GAM 

detection frequency no-longer correlates with DNase-seq coverage. 
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Tables 

Table 1: Quality control metrics calculated by GAMtools. 

QC metric Description 

% Mapped reads Percentage of sequenced reads mapping uniquely to 
the reference genome 

% Duplicated reads Percentage of uniquely mapped reads that are PCR 
duplicates 

% Multimapping reads Percentage of sequenced reads mapping non-
uniquely to the reference genome 

% Reads mapping to contaminant 
genomes 

Percentage of sequenced reads mapping uniquely or 
multiply to each contaminant genome supplied 

% Reads mapping to yeast or E. coli Percentage of sequenced reads mapping uniquely or 
multiply to either the yeast (sacCer3) or E. coli 
(ecoli_k12) genomes 

Average per-base quality score Mean Illumina quality score over all bases 

Mononucleotide repeats Enrichment of mononucleotide repeats (from 
FastQC; Andrews, 2010) 

Dinucleotide repeats Enrichment of dinucleotide repeats (from FastQC; 
Andrews, 2010) 

% Genome coverage Percentage of genomic windows identified as 
positive in the NP 

No. chromosomes covered Number of mouse chromosomes identified in the NP 

% orphaned windows Percentage of positive genomic windows without a 
positive neighbour 
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