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Figure	S1	–	Wavelet	based	peak	detection	method	
A	An	exemplary	single	cell	p53	trajectory,	the	detected	pulses	are	color	coded.	
B	The	wavelet	transform	corresponding	to	the	trajectory	shown	in	A.	
C	 The	 ridge	 lines	 extracted	 from	 the	 wavelet	 transform	 (B).	 The	 color-coding	
corresponds	 to	 the	pulses	 in	 (A).	 See	also	material	 and	methods	section	 in	 the	
main	text.	
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Figure	S2	–	Phase	portrait	of	the	excitable	toy	model	
Three	 subthreshold	 trajectories,	 which	 rapidly	 settle	 back	 to	 the	 stable	 fixed	
point,	and	three	excitation	loops	(pulses)	making	the	full	phase	space	excursion	
are	 shown	 for	 the	 NPF	 system.	 The	 direction	 dependent	 threshold	 visibly	
originates	 from	 the	 saddle	 point	 and	 separates	 the	 phase	 space	 into	
subthreshold	and	excitable	dynamics.	It	is	called	a	separatrix	and	coincides	with	
the	 stable	 manifold	 of	 the	 saddle	 point.	 Such	 a	 phase	 space	 structure	 with	 a	
saddle	as	organizing	center	is	typical	for	type	I	excitable	systems.	
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Figure	 S3	 –	 qPCR	 quantification	 of	 potential	 positive	 feedbacks	 ATM	
inhibitor	studies	
Time	 resolved	 mean	 expression	 of	 p53	 (A),	 the	 known	 negative	 feedback	
regulator	Wip1	 (B),	 the	 effector	 p21	 (C)	 and	 potential	 transcriptional	 positive	
feedbacks	 (D)	 as	 indicated	 on	 the	 y-axis.	 Timing	 and	 fold	 change	 of	 the	 three	
potential	 feedbacks	PIDD,	 14-3-3	 sigma	 and	PTEN	do	not	 support	 an	 effect	 on	
p53	pulse	formation.	Error	bars	indicate	standard	deviation.	
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Figure	S4	–	ATM	inhibitor	studies	
A	 Differential	 effect	 of	 signal	 vs.	 species	 X	 inhibition	 for	 the	 generic	 negative-
positive	 feedback	 (NPF)	 system	 presented	 in	 Figure	 2	 of	 the	main	 text.	 Signal	
inhibition	 leads	 to	 an	 “all-or-none”	 systems	 response.	 X	 inhibition	 leads	 to	 a	
time-of-inhibition	 dependent	 collapse	 of	 the	 excitation	 loop,	 reflected	 by	 the	
smaller	response	amplitudes.	
B	 Single	 cell	 p53	 first	 pulse	 amplitudes	 after	 strong	 stimulation	 (10Gy)	 and	
kinase	 inhibitor	Wortmannin	 addition	 at	 time	 points	 as	 indicated.	 The	 earlier	
ATM	is	inhibited,	the	smaller	are	the	detected	p53	pulses.	
C	 Fraction	 of	 responsive	 cells	 for	 the	 experimental	 conditions	 described	 in	 F.	
Early	ATM	inhibition	abrogates	the	p53	pulse	formation	for	a	substantial	amount	
of	cells	below	the	detection	limit.	
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Figure	S5	–	Bifurcation	analysis	of	the	p53	model	
A	 One	 parameter	 bifurcation	 analysis.	 The	 control	 parameter	 is	 the	 stimulus	
strengths	(S).	For	low	stimulation	the	system	is	in	the	excitable	regime.	Upon	the	
simultaneous	homoclinic	(SNIC)	and	saddle-node	bifurcation	(LP1)	a	limit	cycle	
suddenly	appears	with	full	amplitude.	The	arrow	marks	the	point	 in	parameter	
space	for	the	phase	portrait	shown	in	B	See	also	Supplementary	Text.	
B	 Phase	 portrait	 for	 the	 p53	 model	 in	 the	 excitable	 regime	 as	 marked	 in	 A.	
Shown	are	five	subthreshold	trajectories	which	rapidly	settle	back	to	the	stable	
fixed	 point	 and	 three	 excitation	 loops	 (pulses)	 making	 the	 full	 phase	 space	
excursion.	 Neither	 high	 or	 low	Wip1	 concentrations	 alone	 can	 trigger	 a	 pulse,	
only	strong	ATM	activation	crosses	the	threshold.	
C	Two	parameter	bifurcation	analysis,	the	first	control	parameter	is	the	stimulus	
strengths	 (S),	 the	 second	 parameter	 Wip1	 protein	 maturation	 rate	 (TW).	 The	
Cusp	 Point	 (CP)	 spawns	 two	 saddle-node	 curves	 which	 enclose	 the	 excitable	
regime.	 A	 Bogdanov-Takens	 Point	 (BT)	 is	 very	 close	 to	 the	 Cusp	 Point	 and	
spawns	 a	 Hopf	 curve	 enclosing	 the	 oscillatory	 regime.	 For	 the	 one	 fixed-point	
regime	a	response	was	classified	as	excitable	if	it	shows	at	least	a	five-fold	ATM	
response	upon	a	small	initial	perturbation.	See	also	Supplementary	Text.	
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Figure	S6	–	Local	sensitivity	analysis	of	the	deterministic	core	model	
Model	 parameter	 variations	 are	 given	 as	 log2	 fold	 change	 from	 the	 standard	
values	given	in	supplementary	section	4.	The	red	bars	indicate	the	extent	of	the	
excitable	 regime	 in	 parameter	 space.	 It	 was	 determined	 by	 stimulating	 the	
system	with	a	perturbation	in	ATM*	and	checking	for	a	pulsatile	response.	Within	
the	excitable	regime,	the	maximal	and	minimal	effect	of	the	respective	parameter	
variations	 on	 the	 p53	 pulse	 amplitude	 (width)	 is	 indicated	 in	 blue	 (yellow).	
Parameters	associated	with	the	Wip1	phosphatase	show	the	highest	sensitivity,	
which	 underlines	 its	 proposed	 function	 as	 a	 major	 modulator	 of	 the	 p53	
signaling	pathway.	
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Figure	 S7	 –	 Parameter	 estimation	 for	 the	 stochastic	 double	 strand	 break	
(DSB)	process	
A	Synthetic	ensembles	of	the	time-homogeneous	DSB	process,	with	two	different	
initial	DSB	numbers	as	indicated.	
B	 Estimation	 of	 the	 repair	 rate	 for	 the	 two	 synthetic	 ensembles	 shown	 in	 (A)	
with	the	method	described	in	the	Supplementary	Text.	
C	Distribution	of	 the	 initial	number	of	DSBs	 for	 the	experimental	data	used	 for	
parameter	estimation.	
D	Measured	DSB	dynamics	in	single	cells,	data	is	binned	as	indicated.	N=67	
E	Repair	rate	estimation	carried	out	as	in	(B)	for	the	measured	trajectories.	
F	Exemplary	realization	of	the	time-inhomogeneous	DSB	process	as	described	in	
Supplementary	Text.	The	break	rate	switches	 from	the	high	stimulation	rate	 to	
the	low	basal	rate.	
G	For	medium	stimulation	(initial	break	rate	=	30	DSB/h)	and	5000	realizations	
the	number-densities	of	the	DBSs	are	shown	for	three	different	time	points.	At	all	
times,	but	especially	at	the	initial	DSB	induction,	there	is	a	high	variability	in	the	
number	of	DSBs.		
	 	



	 9	

	
	
Figure	S8	–	Modeled	Wip1	variability	
A	The	assumed	log-normal	distribution	of	the	Wip1	transcription	rate	(Tw)	and	
the	 corresponding	protein	distributions	 at	 steady	 state.	Wip1	mRNA	 levels	 are	
practically	decoupled	from	the	network	under	basal	conditions,	only	influencing	
Wip1	Wip1	protein.	
B	 Sensitivity	 scans	 for	 the	 production	 rate	 of	 p53	 protein,	 Mdm2	 mRNA	 and	
Wip1	mRNA.	 The	 parameters	 were	 varied	 individually	 and	 for	 each	 value	 the	
new	steady	state	was	calculated.	The	corresponding	minimal	ATM	perturbation	
needed	to	cross	the	excitation	threshold	was	determined	by	simulation.			
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C	Western	blot	analysis	of	ATM	and	Chk2	phosphorylation	upon	DNA	damage	in	
A549	 cells	 overexpressing	Wip1	 compared	 to	 control	 cells.	 Quantification	was	
performed	 by	 densitometry;	 signal	 intensities	 were	 corrected	 for	 unequal	
loading	using	GAPDH	and	normalized	to	undamaged	control	cells	(Control	0h).	
D	Wip1	 induction	 for	 highly	 (10Gy)	 stimulated	 cells.	 The	 number	 of	 pulses	 is	
clearly	lower	for	cells	with	increased	Wip1	expression.	
E	 Mean	Wip1	mRNA	 levels	 upon	 transfection	 of	 scrambled	 control	 and	Wip1-
targeting	siRNA	were	measured	by	quantitative	RT-PCR	(3d	after	transfection).	
Wip1	 expression	was	 downresgulated	 below	20%	of	 control	 levels.	 Error	 bars	
indicate	standard	deviation.	
F	and	G	Median	pulse	width	distribution	for	cells	with	no	(E)	or	 low	25ng	NCS	
(F)	 stimulation	 upon	 transfection	 with	 scrambled	 control	 or	 Wip1-targeting	
siRNA,	error	bars	indicate	the	1st	and	3rd	quartile	respectively.	The	siRNA	treated	
cells	show	no	altered	pulse	widths	compared	to	cells	expressing	normal	levels	of	
Wip1.	
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1 Toy model equations

The negative-feedback (NF) system presented in Figure 2 of the main text is
given by:
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This network was inspired by simple models used to describe the p53-Mdm2
core negative feedback loop, for example as in Ref. [1]. The variable y describes
an mRNA species whose production is activated by a protein X acting as tran-
scription factor. The negative feedback closes with the degradation of X by the
maturated protein Y .

The negative-positive feedback (NPF) system is given by the equations:
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Here species X exhibits a self-activating term with a Hill coeffecient of two acting
as the positive feedback, e.g. describing processes like auto-phosphorylation.
This term alone would introduce bistability into the system. The additional
negative feedback is topologically the same as for the NF system presented
above, albeit the degradation of X by Y follows mass action kinetics. This
NPF system resembles a so-called bistable frustrated unit as discussed by the
authors of Ref. [2]. The parameters for both models are given as tables in
section 2.
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2 Tables of parameters for the toy models

Table 1: Negative feedback system model parameters

name value

C 4.5
d

X

0.01
d

Y X

7
k

Y X

0.04
T

y

0.35
d

y

0.4
T

Y

0.67
d

Y

0.25

Table 2: Positive-negative feedback system model parameters

name value

C 0.015
d

Y X

0.14
d

X

0.1
T

y

0.21
d

y

0.1
T

Y

0.3
d

Y

0.1

3 p53 model equations

The core deterministic p53 model was formulated as a system of coupled ordi-
nary differential equations (ODEs). The associated regulatory network is shown
in Figure 3A of the main text. We modeled only the amount of activated ATM
(ATM

⇤), where the positive feedback described in the main text is modeled
phenomenologically by a self-activation term with a Hill coeffecient of two. The
phosphatase Wip1 not only dephosphorylates ATM

⇤ directly, but also other
species (i.e. �H2AX, MRN complex) which are involved in the positive feed-
back [3]. This is modeled by an inhibition of the ATM

⇤ self-activation term
by the Wip1 protein. The constitutive expression of p53 (Figure S2A) was de-
scribed by the constant production rate C for the protein P53. The p53 protein
itself is a target of ATM⇤ and Mdm2 is reported to have a lower binding affin-
ity to phosphorylated P53 . As with the present data phosphorylated p53 was
not quantified, no additional species was introduced into the model. Therefore,
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this mechanism was also indirectly captured phenomenologically by inhibiting
the Mdm2 dependent P53 degradation via ATM

⇤ . The relative strength of
this second ATM

⇤ interaction is given by the parameter R. Transcriptional
activation of the two mRNA species mdm2 and wip1 by P53 were modeled
by saturating kinetics. All other terms of the ODE system follow mass-action
kinetics or first-order kinetics. The dependence of the effective input signal S
on the number of DSBs is modeled by a saturating kinetic to control both the
maximal stimulation and the sensitivity towards DSBs. For the stochastic forc-
ing (Figure 3D,E and F, main text) the number of DSBs is time-dependent and
given by the stochastic DSB process defined below in section 5. The naming
of the parameters follows general conventions: parameters containing the letter
“T” denote production rates concerning translation or transcription, parame-
ters starting with a “d” denote degradation rates and parameters containing “k”
are the respective Michaelis constants. The subscripts encode the affiliation to
the modeled species, e.g. a “m” in the subscript is associated with the Mdm2
mRNA and a “M” with the respective protein species. Thus the parameter k

Pm

,
for example, describes the Michaelis constant of the Mdm2 mRNA production
induced by the p53 protein. Rate parameters which do not follow this nomencla-
ture are: A which gives the maximal activation rate of ATM, P which describes
the dephosphorylation of ATM⇤ by Wip1, g which gives the maximal Mdm2
dependent degradation of P53 and finally C which is the maturation rate of
new P53 entering the system. An overview of all model parameters and their
values is given in the table 4 below.
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4 Table of parameters for the p53 model

Table 3: Overview of all model parameters

name meaning value

A maximal self activation rate of ATM 30.5
P rate of dephosphorylation of ATM by Wip1 22
C production rate of p53 1.4
g maximal degradation of P53 by Mdm2 2.5
d

AM

degradation rate of Mdm2 by ATM

⇤ 20
T

m

maximal production rate of mdm2 1
T

M

maximal production rate of Mdm2 4
T

w

maximal production rate of wip1 1
T

W

maximal production rate of Wip1 1
d

A

basal dephosphorylation rate of ATM⇤ 0.16
d

P

basal degradation rate of P53 0.1
d

m

basal degradation rate of mdm2 1.
d

M

basal degradation rate of Mdm2 2.
d

w

basal degradation rate of wip1 1.3.
d

W

basal degradation rate of Wip1 2.3
k

A

Michaelis constant for the ATM

⇤ self activation 0.5
k

WA

Michaelis constant for the inhibition of the ATM

⇤ self activation by Wip1 0.14
k

MP

Michaelis constant for the degradation of P53 by Mdm2 0.15
k

Pm

Michaelis constant for the production of mdm2 by P53 1.
k

Pw

Michaelis constant for the production of wip1 by P53 1.
R strength of the inhibition of the Mdm2 mediated degradation of P53 by ATM

⇤ 2
S

max

maximal signal strength of the DSB process 0.2
� Michaelis contant for the signal strength of the DSB process 9

5 Detailed description of the Markovian DSB process

The dynamics of the DNA double strand breaks (DSBs) were considered as the
primary input of the p53 model. Fortunately, as outlined in the main text,
single cell trajectories of damage foci are available. While the direct relation
between foci number and number of DSBs remains unclear, they can still serve
as a quantitative marker [4]. Therefore, the number of foci was treated as the
number of DSBs. Typically the DSB dynamics are described by an exponential
model [5], which sufficiently describes the repair process. However, the half-lifes
of the foci show large variability across a cell population [4, 5]. The sources of the
observed stochasticity of the DSB dynamics lie both within the processes which
cause the DNA damage as well as the cellular repair mechanisms. The former
include e.g. the errors arising from mitotic division, the occurrence of radical
metabolic byproducts and cosmic radiation, which are intrinsically noisy. The

6



latter appear to be irregular also due to various reasons, e.g. different severity
of the DNA lesions or different copy numbers and spatial availability of the
proteins involved in the repair process.

5.1 The time-homogeneous repair process

A simple approach to model the stochastic repair process is to define two rates b
and r by the following assignments of probabilities, given that there are n DSBs
present at time t:

b dt = probability that a new DSB occurs in [t, t+ dt]

nr dt = probability that a DSB is repaired in [t, t+ dt].
(4)

This is a Markovian birth-death process, named the payroll process by Gille-
spie [6]. The asymptotic analytical solutions for the mean and variance read:

lim
t!1

hDSB(t)i = N

b

=
b

r

, and

lim
t!1

V ar

�
DSB(t)

�
=

b

r

.

(5)

These relations only provide the ratio between the two rates b and r. To ef-
fectively reverse calculate the rates from the foci data, dynamical properties of
the process have to be taken into account. The aim here is not to claim or pro-
vide an exact parameter estimation, but to give a reasonable estimation given
the simplistic stochastic model used and the data available. In the following,
the background damage level N

b

is used for the estimation, this already gives
b = N

b

r. The first moment time-evolution function for the payroll process given
in ref. [6] reads:

hDSBi
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= e
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(6)

Substituting with the asymptotic mean yields

hDSBi
t

= (N0 �N

b

)e�rt +N

b

. (7)

The notion of N

b

and hN
b

i might be a little confusing. For the stochastic
process, these two are identical, N

b

being the asymptotic time average of one
realization and hN

b

i being the asymptotic ensemble average. For the time series
foci data, these two hardly coincide. Reasons for that are the finite and rather
short period of sampling, some additional cell-to-cell variability and probably
some systematic error in the measurements, as the number of foci is only a
proxy for the number of DSBs. Nevertheless, to advance with the estimation,
the l.h.s. of equation 7 is treated as an ensemble average at time t. Solving for
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the repair rate one obtains:

r = t

�1
ln

✓
N0 �N

b

hDSBi
t

�N

b

◆
(8)

The time dependence of the rate is obviously artificial, as the rate should be
time independent for a time homogeneous process. And indeed, when using
this formula to reverse calculate the repair rate out of an ensemble of synthetic
data, r is time independent for all 0 < t < t

c

. An example is shown in figure
S4A and B. However, when using equation 8, one carefully has to observe the
denominator. From a critical time on, the ensemble average at time t

c

gets
very close to the asymptotic average: hDSBi

tc
⇡ N

b

. This quickly leads to
numerical precision issues, as the denominator converges exponentially fast to
zero and might even turn negative due to fluctuations. Practically this means,
that the estimation of the repair rate r should be carried out in a time domain,
where the trajectories on average are still decaying. To improve the estimate, an
averaging within the respective time domain [0, t

c

] can be carried out and was
done for the inference from the real data. It is noteworthy, that the relaxation
dynamics are needed for the parameter estimation. An unstimulated ensemble
of trajectories corresponding to stationary dynamics alone would not allow for
the described method as this would correspond to t

c

= 0.
Having demonstrated that the proposed method for rate parameter estimation

works with synthetic data, a dataset containing cells irradiated with 5Gy of
gamma radiation was analyzed accordingly. As the DSB induction for irradiated
cells is very fast, only the repair dynamics are observable. Because every foci
trajectory has generally a different N0, the data is binned to form subensembles
with comparable initial amount of DSBs. As can be seen in figure S4C, the
initial amount of DSBs present in the cells has a broad distribution despite the
population received a fixed damage dose. This makes the parameter estimation
even more difficult, due to the low sample numbers in the subensembles. The
results for two different subensembles for the 5Gy data set are shown in figure
S4D. Given the broad initial distribution and that there are only 63 cells in
total, there is no satisfactory pooling available. But nevertheless, the repair
rate was estimated to be in the order of r ⇡ 0.315h�1 per hour, which yields
an average lifetime of a damage locus to be around 3 hours (Figure S4E). This
is in good agreement with the results reported experimentally [4, 5]. Given the
mean damage background level to be hN

b

i ⇡ 2.3, the corresponding basal break
rate for the DSB process is b ⇡ 0.8h�1.

5.2 Modeling the DSB induction by NCS

The dataset used for the main results in the main text consists of cells which were
stimulated with the radiomimetic drug neocarcinostatin (NCS). As opposed to
irradiated cells, the DSB induction is directly observable and lasts around an
hour in these experiments (Figure 3 B and C). To address this phase of rapid
DSB induction within our Markovian modeling framework, we augmented the
stochastic process with a time dependent break rate:
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b(t) =

⇢
b

s

, if t  T

s

b

b

, if t > T

s

. (9)

Here b

b

is the basal break rate as estimated in section 5.1 above, and b

s

> b

b

is the NCS dose dependent stimulation break rate. The switching between both
rates occurs at T

s

.
To devise a simulation algorithm we first recall the next-jump density function

from the classical Gillespie algorithm (SSA) [6]:
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where the a

0
k

s are the propensities. Using integration by parts and employing
inversion sampling gives the expression:

X

k

Z
⌧

0
a

k

(n, t+ ⌧

0)d⌧ 0 = ln(1/r), (11)

here r is a random number drawn from the uniform distribution U(0, 1). Solving
this equation for ⌧ allows for the SSA algorithm. For the time-homogeneous case
a

k

(n, t) ⌘ a

k

(n) this is straightforward:

⌧

hom

= ln(1/r)/
X

k

a

k

(n) = ln(1/r)/(b
b

+ rn), (12)

where for the last expression we substituted the propensities for our homoge-
neous DSB process. For arbitrary time-inhomogeneous processes equation 11
often has to be solved numerically, which greatly increases the cost of the algo-
rithm. However, as our time-inhomogeneous rate b(t) is a simple step-function,
equation 11 can still be solved analytically. Integration yields a family of piece-
wise linear functions and depending on the systems time t the next jump occurs
at:

⌧

inhom

=

8
<

:

z/(b
s

+ rn), if t  T

s

and z  (b
s

+ rn)�
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)�
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/(b
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+ rn), if t  T

s

and z > (b
s

+ rn)�
s

z/(b
b

+ rn), if t > T

s

,

(13)
here �

s

= T

s

� t is the distance in systems time to the break rate switch and
z = ln(1/r). The additional conditions on z for the first two cases (t  T

s

)
ensure, that the correct section of the piece wise linear function is inverted.

In summary, augmenting the cost effective SSA algorithm with a test for
two conditions per step makes it readily applicable to time dependent rates
formulated as step functions. An example realization of the DSB process upon
NCS stimulation is shown in Figure S4F. The good agreement of our DSB
process with an ensemble of NCS stimulated cells is shown in Figure 3C of the
main text.
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6 Bifurcation analysis of the p53 model

The one parameter (or codimension one) bifurcation analysis of the determin-
istic p53 model is shown in Figure S3A. The control parameter is the signal
strengths S which appears on the r.h.s. of the equation for ATM

⇤ (see section
3), describing DSB induced ATM activation. For a low input signal, equivalent
to no or very low damage levels, the system is in the excitable regime. This
is characterized by the presence of one stable and two unstable fixed points
or steady states. The lowest fixed point is a stable spiral, giving rise to small
subthreshold oscillations for small perturbations. The middle fixed point is a
saddle, whose stable manifold separates the phase space into regions of different
qualitative behavior. This separatrix acts as an direction dependent threshold
for the system. The bifurcation leading to the oscillations in the p53 model is
the saddle-node homoclinic bifurcation [7]. This is a global bifurcation involving
a local saddle-node bifurcation. What happens at the bifurcation point is, that
the heteroclinic connection of the saddle to the stable fixed point becomes a
homoclinic orbit of the merged saddle-node. This saddle-node then disappears
via the local saddle-node bifurcation (denoted as limit point in figure S3A) and
a limit cycle appears near the former homoclinic orbit (called a saddle node on

invariant circle (SNIC) bifurcation). From within the excitable regime, which
is considered as operating point of the model for no DSBs present, the oscilla-
tory regime can only be reached by increasing the signal S. The limit cycles of
this positive feedback oscillator are born with huge amplitudes, and show only
very little dependence on the signal strength up to S ⇡ 0.5. In effect, for no or
low signal the system resides in an excitable state capable of showing isolated
pulses. In addition, for a stronger signal after the saddle-node homoclinic bi-
furcation the system undergoes stable sustained oscillations with pulse shapes
very similarto excitory pulses (Figure 3D-F main text). These are exactly the
characteristics found in the p53 single cell data for low vs. high damage input,
which were discussed in the main text.

To further extend the bifurcation analysis, a search for codimension-2 bifur-
cations was performed as shown in figure S3B. Here a Cusp bifurcation point
(CP) was found. This marks the appearance of the phasespace structure re-
quired for the excitability class I regime: the co-existence of a saddle as orga-
nizing center, one stable and one unstable fixed point. There is additionally a
Bogdanov-Takens (BT) point very close by, spawning a Hopf bifurcation curve
which effectively destabilizes the upper fixed point and makes the system ex-
citable. The specific bifurcation parameters used are T

W

, the Wip1 protein
production rate, and again S. However, there are actually only 2 symmetric
types of these codimension-2 diagrams, the other type and further examples
are presented in Ref. [8]. The actual region of excitability in parameter space
extends beyond the three fixed point regime (see figure S3B). Although the two
upper fixed points vanished via a saddle-node bifurcation, the phase space still
has memory about their presence. What is meant by that is, that the global
flow (the excitation loop) is not seriously affected by this local bifurcation. The
exact definition of the threshold as separatrix is, however, lost in this regime.
The oscillatory regime here is reached via a subcritical Hopf bifurcation fol-
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lowed by a saddle-node bifurcation of limit cycles. The stable limit cycle again
suddenly appears with huge amplitudes.

Notably, besides the excitable and oscillatory regimes there is a bistable
regime for very low maximal transcriptional activation of Wip1 and a not too
strong signal. This is due to the now weak negative feedback which is facilitated
by the Wip1-ATM interaction. Therefore the positive feedback predominates
and induces bistability. Interestingly, for medium to high signal strengths the
bistability is lost via a saddle-node bifurcation and the system becomes monos-
table, with the highest steady state now being the only attractor of the system.
This resembles the behavior found for Wip1 knockout cells [9].
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