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ABSTRACT

In the field of RNA, the technologies for study-
ing the transcriptome have created a tremendous
potential for deciphering the puzzles of the RNA
biology. Along with the excitement, the unprece-
dented volume of RNA related omics data is cre-
ating great challenges in bioinformatics analyses.
Here, we present the RNA Centric Annotation Sys-
tem (RCAS), an R package, which is designed to
ease the process of creating gene-centric annota-
tions and analysis for the genomic regions of inter-
est obtained from various RNA-based omics tech-
nologies. The design of RCAS is modular, which
enables flexible usage and convenient integration
with other bioinformatics workflows. RCAS is an
R/Bioconductor package but we also created graph-
ical user interfaces including a Galaxy wrapper and a
stand-alone web service. The application of RCAS on
published datasets shows that RCAS is not only able
to reproduce published findings but also helps gen-
erate novel knowledge and hypotheses. The meta-
gene profiles, gene-centric annotation, motif anal-
ysis and gene-set analysis provided by RCAS pro-
vide contextual knowledge which is necessary for
understanding the functional aspects of different bi-
ological events that involve RNAs. In addition, the
array of different interfaces and deployment options
adds the convenience of use for different levels of
users. RCAS is available at http://bioconductor.org/
packages/release/bioc/html/RCAS.html and http://
rcas.mdc-berlin.de.

INTRODUCTION

In one way or another, RNA plays a role in nearly all cel-
lular processes––from the translation of genetic informa-
tion to the regulation of gene activities (1–3). Anomaly in

RNA activity can lead to pathological conditions in organ-
isms (4,5). In recent years, the advance of deep sequenc-
ing technologies has provided powerful means for study-
ing the transcriptome, the full span of RNA molecules ex-
pressed by an organism. These technologies provide an un-
precedented look into functions, regulation, and diversity of
RNA molecules. We can now assess the abundance of tran-
scripts and identify previously unknown transcripts with
RNA-seq (6). Apart from that, deep-sequencing based tech-
niques provide transcriptome-wide information on many
different layers of mRNA regulation and processing. For
example, the precise details about transcription initiation,
termination, splicing and translation dynamics can be mea-
sured using a variety of sequencing techniques. DeepCAGE
can give information on the precise usage of transcription
start sites (TSSs) (7), whereas NET-Seq can be used for
transcription end sites (TESs) (8). Ribo-Seq can be used
for ribosome profiling to monitor the translation process
(9) and TRAP-Seq for the detection of translating RNAs
(10). Additionally, it is critical to understand how RNA is
processed, trafficked and localized via RNA-binding pro-
teins. With PAR-CLIP and other CLIP based techniques,
one can detect the transcriptome-wide binding sites of the
RNA binding proteins (RBPs) (11). One can also survey
RNA modifications using deep sequencing, which is also
thought to be important for RNA processing and localiza-
tion. m6A-seq provides transcriptome-wide location of N6-
methyladenosine (m6A) sites (12) and m1A-seq can provide
N1-methyladenosine (m1A) locations (13). Finally, RNA–
RNA interactions and RNA-secondary structure can be
mapped via deep sequencing based techniques. ChIRP-seq
can locate the genomic binding sites of non-coding RNAs
(ncRNAs) (14), CLASH-Seq can map RNA–RNA inter-
actions (15). PARE-Seq can be used for mapping miRNA
cleavage sites and degrading RNA (16), and SHAPE-Seq
provides RNA structural information (17).

This list is incomplete and will continue to grow with
the addition of new techniques and the variations of ex-
isting ones. All of these techniques require specialized
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analysis and processing workflows. Although not identi-
cal and differing in many key aspects, the workflows ded-
icated to processing these techniques are similar in their
output since they usually provide transcriptome-wide re-
gions of interest. For example, PAR-CLIP analysis will pro-
vide transcriptome-wide enriched regions for RBP-binding,
m6A-seq and m1A-seq analysis will provide locations for
RNA-modifications, and deepCAGE analysis will provide
regions of transcription initiation. The regions of inter-
est obtained from the initial analysis will almost always
be further processed by a universal downstream analy-
sis approach. Here, we present ‘RNA Centric Annota-
tion System’ (RCAS), a tool that performs overlap opera-
tions between the regions of interest and the genomic fea-
tures, producing in-depth annotation summaries with re-
spect to exons, introns, coding sequences (CDSs), 5′/3′ un-
translated regions (UTRs), exon–intron boundaries, pro-
moter regions, and whole transcripts. Moreover, RCAS
carries out functional annotations for enriched gene sets
and GO terms. In addition, RCAS is capable of detecting
specific sequence motifs enriched in the targeted regions
of the transcriptome. The output of RCAS is a dynamic
HTML file embedding interactive figures and tables which
are ready for publication purposes. RCAS is now part of
the Bioconductor R package library (18). The Guix (19) and
Conda (http://conda.pydata.org/docs/index.html) packages
are available as alternative means of deployment. For the
non-programmer users who are accustomed to graphical
user interfaces (GUI), a Galaxy (20) wrapper and a web ser-
vice have been developed. In essence, RCAS is designed to
ease the process of deriving biological insights from large
collections of transcriptome-wide regions of interest, offer-
ing an automated solution for annotation, summary and
functional analysis of the RNAs. The usability of RCAS is
ensured by its modular design, user-friendly interactive fig-
ures and tables, extensive documentation and testing on the
Bioconductor repository, the availability of different pack-
ages (Guix and Conda), and by the user interfaces of both
command-line and GUI (RCAS web service and Galaxy in-
tegration).

To demonstrate the performance and utility of RCAS,
we employed four use cases that include the datasets from
three high-impact publications (11,13,21) and one in-house
dataset which is related to high occupancy target (HOT) re-
gions of RNA-binding proteins (RBPs). The published ge-
nomic regions are from the studies using PAR-CLIP (11),
RNA-Seq/deepCAGE (6,7) and m1A-seq (13), respectively.
The resulting profiles show that RCAS is not only able to
reproduce the published findings but also to generate novel
knowledge. The information generated by RCAS can pro-
vide a context for understanding different biological events
involving RNAs.

MATERIALS AND METHODS

The RCAS R package employs different R functions
to perform annotation summarization, GO term and
gene set enrichment analysis, and de novo sequence mo-
tif discovery. For the most up-to-date documentation
and demonstration of RCAS functionality, please refer
to the Bioconductor repository at http://bioconductor.org/

packages/release/bioc/html/RCAS.html for the release ver-
sion, and at http://bioconductor.org/packages/devel/bioc/
html/RCAS.html for the development version.

In this section, we describe the methods used to gen-
erate an HTML report using the main RCAS func-
tion RCAS::runReport (as of RCAS version 1.1.1
available on the development branch of Bioconduc-
tor 3.5). The RCAS::runReport function utilizes all
other RCAS functions in a template ‘RMarkdown’ script
(22) to generate a dynamic HTML report. The scheme
of RCAS::runReport pipeline to produce a complete
HTML report is illustrated in Figure 1. With this function,
the users are provided with options to switch on/off indi-
vidual components. The major steps of the default work-
flow consists of (i) importing and processing of inputs, (ii)
plotting genomic annotation summaries and coverage pro-
files, (iii) finding enriched motifs among the input query re-
gions, (iv) GO term (23) analysis of targeted transcripts, (v)
gene set enrichment analysis of the targeted transcripts.The
figures in the final report are generated using the plotly R
library (24), thus the users can interactively modify the dis-
play of the figures according to their choices and export
a snapshot of the modified figures. The tables are gener-
ated using the DT R library (25) and are also interactive.
For instance, the user can search, filter, and sort the ta-
bles; export the tables to Excel, CSV or PDF, and copy
or print the contents of the interactively modified table.
Thus, besides providing publication quality figures and ta-
bles, RCAS can offer the users tools to explore the data fur-
ther, which may help form new hypotheses. The raw data
used to create all the figures and tables can be printed to the
current working directory if the printProcessedTables argu-
ment in the RCAS::runReport function is set to TRUE.
Sample HTML reports generated using real experimental
data from published datasets can be found in the supple-
mentary files (Supplementary Files 1–6). Below is a more
detailed explanation of how the report HTML file is gener-
ated and how each figure and table in the report is calculated
and plotted.

Importing and processing of inputs

The input BED file (containing query genomic regions)
and input GTF file (containing reference genomic regions)
are imported using the rtracklayer library (26). Then,
the GTF file is further processed using the GenomicFea-
tures library (27) in order to extract the genomic regions
of transcript features such as (i) transcripts (using the
GenomicFeatures::transcripts function), (ii)
promoters (using the GenomicFeatures::promoters
function) where a promoter region is defined as the
region encompassing from 2000 bp upstream and 200
bp downstream of the TSS, (iii) exons (using the Ge-
nomicFeatures::exonsBy function where exons
are grouped by ‘transcripts’), (iv) introns (using the
GenomicFeatures::intronsByTranscript func-
tion), (v) CDSs (using the GenomicFeatures::cdsBy
function where coding exons are grouped by tran-
scripts), (vi) 5′/3′ UTRs (using the GenomicFea-
tures::fiveUTRsByTranscript and GenomicFea-
tures::threeUTRsByTranscript functions, respec-
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Figure 1. The scheme of RCAS. RCAS is composed of several components: annotation summary, coverage profile, GO term analysis, gene set enrichment
and motif discovery. The individual components employ various R functions. The modular design provides options for switching on/off the individual
components. The output of RCAS is a dynamic HTML consisting of interactive figures and tables, which are downloadable and ready for the purpose of
publication.

tively). Functions to retrieve the UTR regions return
GRanges objects which contain one or more exons (thus
zero or more introns). Such UTRs with multiple genomic
intervals (one interval for each exon) are reduced to a single
interval by using the GenomicRanges::range function
to find the 5′ most start and the 3′ most end of the UTR.
Currently, the supported genome versions are human hg19,
mouse mm9, worm ce10 and fly dm3.

Summary of genomic annotations

RCAS employs the GenomicRanges library (27) to perform
overlap operations between the query regions in the BED
file and the reference genomic features in the GTF file. The
number of query regions that overlap different kinds of gene
features are counted. The first plot in the HTML report out-
put of the RCAS::runReport function displays the distri-
bution of query regions across gene features. In the figure,
the ‘x’ axis denotes the types of gene features included in
the analysis and the ‘y’ axis denotes the percentage of query
regions (out of the total number of query regions denoted
with ‘n’) that overlap at least one genomic interval that host
the corresponding feature. Notice that the sum of the per-
centage values for different features do not add up to 100%,
because some query regions may overlap multiple kinds of
features. For each transcript in the GTF file, the number of
query regions overlapping the different types of transcript
features are counted and sorted by total number of over-
laps in the whole transcripts. An interactive table of top 100

transcripts is provided. In addition, the number of query re-
gions that overlap different kinds of gene types are counted.
In the resulting figure, the ‘x’ axis denotes the types of genes
included in the analysis and the ‘y’ axis denotes the percent-
age of query regions (out of total number of query regions
denoted with ‘n’) that overlap at least one genomic interval
that host the corresponding gene type.

Producing coverage profiles of query regions

RCAS employs the genomation library’s (28) ScoreMatrix
and ScoreMatrixBin functions to generate coverage profiles.
A coverage profile in the context of RCAS means the depth
of coverage/signal (i.e. the number of query regions) ob-
served at a given genomic segment or a collection of overlaid
genomic segments. Coverage profiles are useful for observ-
ing the relative location of the query regions with respect
to target regions. For instance, an RNA binding protein’s
(RBP) preferred binding location and the signal strength at
the UTR regions relative to the TSSs/TESs might be im-
portant to know to understand how the RBP might be reg-
ulating its target mRNAs; or an increased signal at exon -
intron boundaries may suggest roles for an RBP in alterna-
tive splicing regulation. There are two main types of such
coverage profiles:

1) A coverage profile of query regions at/around fea-
ture boundaries (flanking regions at start and end
positions of the genomic segments of the given fea-
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tures): in the report HTML output, coverage pro-
files at the TSSs/TESs and the coding exon - intron
boundaries are provided. However, in principle, this
type of coverage profile can be obtained for any other
kind of feature or any collection of genomic segments
using the RCAS::getFeatureBoundaryCoverage
and RCAS::getFeatureBoundaryCoverageBin.
The getFeatureBoundaryCoverage function extracts the
flanking regions of 5′ and 3′ boundaries of a given set
of genomic features and computes the per-base cover-
age of query regions across these boundaries. On the
other hand, getFeatureBoundaryCoverageBin extracts
the flanking regions of 5′ and 3′ boundaries of a given
set of genomic features, splits them into 100 equally sized
bins and computes the per-bin coverage of query regions
across these boundaries.

2) A coverage profile of query regions across the length
of different gene features: To generate this plot, the
query regions are overlaid with the genomic regions of
features. Each entry corresponding to a feature is di-
vided into 100 bins of equal length and for each bin
the number of query regions that cover the correspond-
ing bin is counted. Features shorter than 100 bp are ex-
cluded, because such features cannot be divided into 100
equal integer-sized bins. Thus, a coverage profile is ob-
tained based on the distribution of the query regions.
The strandedness of the features are taken into account.
The coverage profile is plotted in the 5′ to 3′ direction.

When generating a report using the runReport function,
the target genomic features are by default randomly down-
sampled to 10 000 genomic intervals in order to speed up the
process of obtaining coverage profiles. Although this num-
ber is fixed when generating reports, it can be tuned in the
RCAS functions calculateCoverageProfile, calculateCover-
ageProfileList, or getFeatureBoundaryCoverage by chang-
ing the ‘sampleN’ argument passed to these functions.

Motif analysis

The genomic sequences of the input query regions are ex-
tracted using the BSgenome-associated R libraries (29) and
a randomly down-sampled set of these sequences (randomly
selected 10 000 intervals) is used as input to the R package
motifRG (30). As motifRG is a discriminatory motif discov-
ery tool, besides the query region sequences, a background
set of sequences with the same length distribution and sim-
ilar sequence content is used as input (by choosing the se-
quences from the neighborhood of the query regions). To
enable motif discovery for query regions that are too short
(<15 bp long), those query regions are resized to 15 bp using
the rtracklayer::resize(fix = 'center') func-
tion. The output consists of a figure of the motif logos and
a table displaying the statistics of motif discovery.

GO term analysis

Based on the overlap operations between the query regions
and the reference transcript features, the list of gene ids cor-
responding to the target transcripts is obtained. This list of
genes is used as input to the R package topGO (31) to dis-
cover enriched GO terms for biological processes, molecular

functions, and cellular components. The results are reported
in interactive tables containing P-value calculations of the
enriched terms based on classical Fisher’s exact test and fil-
tered according to adjusted P-values (cutoff of adjusted P-
value = 0.1) based on multiple testing correction using the
Benjamini–Hochberg method, and the fold increase relative
to the background. The GO term enrichment analysis is not
yet supported for the worm ce10 genome version.

Gene set enrichment analysis

If the user has provided a gene set annotation collection
downloaded from the Molecular Signatures Database (32),
where each gene in the collection is represented by Entrez
gene ids, a gene-set enrichment analysis is carried out (GMT
format file contains two columns: the first column contains
the name of the gene set and the second column contains
a comma-separated list of gene ids). Based on the overlap
operations between the query regions and the target tran-
script features, the list of gene ids corresponding to the tar-
get transcripts is obtained. For each gene set, a 2 × 2 con-
tingency table is constructed for the genes overlapping the
query regions and the background set of genes (the whole
list of genes in the given gene set). A Fisher’s exact test
is applied to find out if the targeted genes are enriched in
that gene set relative to the background. The results are
reported in interactive tables containing P-value calcula-
tions of the enriched terms based on classical Fisher’s ex-
act test, adjusted P-values based on multiple testing cor-
rection using the Bonferroni method, Benjamini-Hochberg
(BH) method, and sorted in decreasing order according to
the fold change relative to the background. The results are
filtered according to adjusted P-values (BH > 0.1).

If the RCAS::runReport function is initiated for a
species other than human (‘hg19’), the provided gene sets
from the MSIGDB are mapped to the corresponding
species via orthology relationships retrieved from the En-
sembl database (33) via the biomaRt library (34), for which
an internet connection must be available. The gene-set en-
richment analysis is not yet supported for the worm ce10
genome version.

Use cases

For annotation summaries, the GTF file for Homo sapiens
(genome version GRCh37 (hg19)) was downloaded from
the Ensembl database (35). For gene set enrichment anal-
ysis, we used the curated pathways gene set collection (con-
taining 1330 gene sets from various pathway databases such
as KEGG (36), BioCarta (37), PID (38) and Reactome
(39)) downloaded from the Molecular Signatures Database
(40,41). We provide the download links for the respective
reference files and BED files at the github repository of
RCAS (https://github.com/BIMSBbioinfo/RCAS). For the
four use cases, we enabled all components of RCAS to gen-
erate the complete profiles.

Use case 1: CLIP analysis. The PAR-CLIP experiment’s
(11) aim was to study several RBPs, some of which are
Pumilio 2 (PUM2), Quaking (QKI) and insulin-like growth
factor 2 mRNA-binding proteins 1, 2 and 3 (IGF2BP1-3).

https://github.com/BIMSBbioinfo/RCAS
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The corresponding BED files were obtained from the do-
RiNA database (42).

Use case 2: CAGE analysis. The deepCAGE experiment
(21) showed the association of tiny RNAs (tiRNAs) with
TSSs in animals. The corresponding BED file, which con-
tains genomic coordinates according to the human genome
hg18, was downloaded from the FANTOM consortium
(43). Since RCAS currently does not yet support hg18, using
Utility (Batch Coordinate Conversion) (44), we converted
the genomic coordinates from hg18 to hg19.

Use case 3: epitranscriptome analysis. The m1A-seq exper-
iment’s (13) aim was to study N1-methyladenosine methy-
lome in eukaryotic messenger RNA. We obtained the cor-
responding human methylation sites from Gene Expression
Omnibus (45) with the accession number GSE70485. We ex-
tended the m1A peak middle position to cover the flanking
regions (25 bp on each side).

Use case 4: HOT regions of RBPs. Using in-house R
scripts, the HOT regions (Supplementary File 7) were de-
termined among the peak regions of human RBPs, which
are available in the doRiNA database. Briefly, RBP-binding
sites returned by all available CLIP experiments are used for
calculating the density of the binding sites over the genome
using 500 bp sliding windows. We calculated the local max-
ima of the density vector for each chromosome. We made
sure local maxima of the density vector are the only max-
ima in the 2000 bp region surrounding the maxima. This is
necessary to remove sub-optimal maxima around the real
maxima. We then ranked these maxima based on the den-
sity scores, which are effectively a number of overlapping
peaks. We used the 99th percentile to define HOT regions,
meaning anything above the 99th percentile is declared a
HOT region for RBPs.

Software packages

RCAS is developed as an R/Bioconductor package. The
R library is also packaged using the package managers
Conda and Guix. The source code of the latest development
of RCAS is available at https://github.com/BIMSBbioinfo/
RCAS.

The R commands to install the release version of RCAS
from Bioconductor:

> source('http://bioconductor.org/
biocLite.R')

> biocLite('RCAS')
The R commands to install the development version of

RCAS from GitHub:
> library('devtools')
> devtools::install github('BIMSBbioinfo

/RCAS')
Conda is a cross-platform package manager and environ-

ment management system that deploys binaries of software
packages. Various dedicated Conda channels have been es-
tablished to host specialized packages, among which the
‘bioconda’ channel (https://bioconda.github.io/) provides
bioinformatics packages. The ‘r’ channel is dedicated to R
packages and the ‘conda-forge’ channel for general purpose

packages. We have integrated the RCAS Conda package to
the ‘bioconda’ channel. Additionally, the Conda packages
are also available in the ‘bimsbbioinfo’ channel which is a
custom channel for our group. Users can install RCAS by
specifying these channels. For example, to install the latest
package for RCAS 1.1.1, users can issue the following shell
command:

> conda install bioconductor-rcas -c
bimsbbioinfo -c r -c conda-forge

Guix is a package and environment manager for the
GNU system. As a functional package manager, every Guix
package expression closes over the complete dependency
graph of a given piece of software, thereby enabling repro-
ducible and portable software environments.

The shell command to install RCAS along with R using
Guix:

> guix package -i r r-rcas

User interfaces

In addition to the command-line interface of R, we also
provide graphical user interfaces via a Galaxy wrapper as
well as a stand-alone web service. The Galaxy wrapper of
RCAS integrates the annotation system with the Galaxy
framework. The GUI provides options to specify BED file,
GTF file, GMT file and the genome version. In addition,
we provide widgets for enabling and disabling individual
components. The RCAS dependencies of the Galaxy wrap-
per are installed via Conda which has been recruited by
Galaxy (since version 16.01) to handle tool dependencies.
The Galaxy wrapper is available at https://testtoolshed.g2.
bx.psu.edu. Figure 2 is a screenshot of the RCAS Galaxy
interface.

We provide a simple stand-alone web interface to RCAS.
It consists of an application server through which users
can request the generation of RCAS reports and a worker
to process queued requests in the background. Both are
written in Guile Scheme. The source code is available in
a separate repository at https://github.com/BIMSBbioinfo/
rcas-web. An instance of the web interface has been de-
ployed and is publicly available at http://rcas.mdc-berlin.de
for demonstration purposes. It can be installed together
with RCAS via Guix using the following shell command:

> guix package -i rcas-web
The web interface allows users to upload a single BED

file, which is used as the main input to RCAS and to select
which of the four analysis modules to run. Users can select
from one of four reference genome assemblies and select one
annotation database to be used for the gene set enrichment
analysis module. The intervals in the BED file can option-
ally be downsampled. Upon submission, a job is enqueued
to run RCAS in the background and generate the specified
HTML report. Once RCAS has generated the report, the re-
quester can access it online or download it in a bundle along
with any produced output files. Figure 3 is a screenshot of
the RCAS web service.

https://github.com/BIMSBbioinfo/RCAS
http://bioconductor.org/biocLite.R
https://bioconda.github.io/
https://testtoolshed.g2.bx.psu.edu
https://github.com/BIMSBbioinfo/rcas-web
http://rcas.mdc-berlin.de
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Figure 2. A screenshot of the Galaxy interface for RCAS. Options are provided for inputs and switches for running individual components.

Figure 3. A screenshot of the interface of the RCAS web service.
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RESULTS

Use cases

In order to assess the performance of RCAS, we employed
four use cases with the datasets from three high-impact
publications and an in-house dataset. The results from the
three use cases are used to benchmark the RCAS anno-
tations against the well-studied peak regions which are
derived from the respective experiments using PAR-CLIP
(11), m1A-seq (13), and deepCAGE (21). For the last use
case, we used RCAS to annotate the features associated with
the potential HOT regions of RBPs.

Case 1: Peak regions of RBPs derived from PAR-CLIP. In
the landmark study (11), Hafner et al. applied the PAR-
CLIP technology to study the respective binding charac-
teristics of different RBPs. Among them, there are PUM2,
QKI and IGF2BP1-3. It is known that the RNA binding of
PUM2 is featured by high sequence-specificity (46) and the
motifs are well defined. This feature is particularly relevant
for the assessment of the motif discovery module of RCAS,
in which the motifRG library (30) is utilized. QKI was im-
plicated in the processes of pre-mRNA splicing (47) and
thus it likely prefers to bind intronic regions (11). IGF2BP
regulates mRNA stability, transport, and translation. The
RCAS outputs are in agreement with the published binding
characteristics of each RBP in terms of the binding pref-
erences and the motifs. RCAS reports 73.8% of the PUM2
binding sites derived from 3′ UTR (Supplementary File 1),
77.6% of the QKI binding sites from introns (Supplemen-
tary File 2), and 66.0% of the IGF2BP1–3 binding sites
from 3′ UTR (Supplementary File 3). In regards to mo-
tif discovery by RCAS, for PUM2, three of the top mo-
tifs (UGUAUA, UGUAAA, UGUACA) (Supplementary
File 1) reasonably match the known recognition element -
UGUANAUA (N = A, C, G, U). For QKI, two of the top
motifs (ACUAAC, ACUAAU) (Supplementary File 2) fit
the previously reported consensus, AYUAAY (Y = C, U).
For IGF2BP1-3, one top motif CACAUC (Supplementary
File 3) reflects the published consensus, CAUH (H = A, U,
C).

In addition to the genomic features and motifs which
were reported by the previous study (11), RCAS provides
additional annotations such as the coverage profiles related
to TSS, TES, and exon-intron boundaries. According to the
RCAS report, there is one characteristic which is common
among PUM2, QKI, and IGF2BP1-3––the strong binding
preference to the TESs when compared to the TSSs (Fig-
ure 4A–C). At the exon-intron boundaries, IGF2BP pro-
teins show a strong increase of signal at the exons relative
to the neighboring introns on both 5′ and 3′ ends of inter-
nal exons. On the other hand, neither PUM2 nor QKI show
a significant signal on either end of internal exons (Supple-
mentary Files 1–3).

Case 2: peak regions of m1A methylation derived from m1A-
seq. In the study (13), the authors found the m1A peaks
mostly enriched in 5′ UTRs and cluster around the AUG
start codon. Furthermore, it was found that the detected
motifs are GC-rich. Moreover, their GO analysis revealed
the enrichment of biological processes which are related to

translation and RNA metabolism. RCAS successfully re-
produces the findings in the previous study. In the RCAS
report, there are 56.8% of m1A methylation sites at 5′ UTR
in comparison with 12.1% at 3′ UTR. In addition, RCAS
reports 75.9% of the methylation sites associated with pro-
moters (within 2000 bp upstream and 200 bp downstream of
the TSS), 43.6% with introns and 55.8% with CDSs (Supple-
mentary File 4, note that the promoter, intron, and UTRs
can overlap and there is no precedence between them when
calculating overlap statistics). Moreover, RCAS reports the
GC-rich top motifs (CCAUGG, GGCGGC, CGCUGC,
CCGCCG) (Supplementary File 4). The GO analysis of
RCAS (Supplementary File 5) suggests that the transcripts
with this modification mark are associated with biological
processes (when sorted by adjusted P-values) that are re-
lated to the regulation of mRNA splicing and processing,
and translational initiation.

Besides recovering the published results, RCAS provides
novel insights such as the coverage profiles at various ge-
nomic features. At the promoters, the peak of coverage is
at the 3′ end of the regions. At the 5′ UTRs, the peak ap-
pears at the 5′ end of the regions (Figure 5A). Moreover, the
coverage is also enriched at the TSSs with a slightly down-
stream shift (Figure 5B). In comparison, no enrichment is
observed at TES. The peak coverage at TSS conforms with
the previous result that m1A peaks cluster around the AUG
start codon (also notice that the top reported motif con-
tains ‘AUG’). At both 5′ and 3′ boundaries, internal exons
show a clear increase for m1A modification sites compared
to neighboring introns (Figure 5C). Together with the re-
sult of GO analysis, the enrichment at the boundaries may
indicate a potential role of m1A in alternative splicing.

Case 3: loci of tiRNAs derived from deepCAGE. In the
study of (21), combining small RNA-Seq and DeepCAGE,
the authors have identified the genomic regions of
tiRNAs––10–30 bp downstream of TSSs in human, chicken
and fly. These tiRNAs are preferentially associated with
GC-rich promoters in highly expressed genes. We used
RCAS to annotate the genomic regions of human tiRNAs.
The RCAS summaries succeed in replicating the previous
findings. In the RCAS report, the originated regions are as-
sociated with promoters by 93.9%, with 5′ UTR by 78.5%,
with introns by 32.4% and with CDSs by 17.8% (Supple-
mentary File 5). Our coverage profiles show the enrichment
of tiRNAs at the 3′ ends of promoters and the 5′ ends of the
5′ UTRs (Figure 6A) with a distinguished peak at the TSSs
(Figure 6B). The detected motifs are featured with high GC
content (CGGCUG, UGGCGG, GGCUGC, GCGGCC)
(Supplementary File 5).

Case 4: HOT regions of RBPs. HOT regions are segments
of the genome occupied by a large number of different tran-
scription factors (TFs) (48). These regions appear to be a
common feature in human and invertebrate model organ-
isms.

To our knowledge, it is not yet known whether the com-
parable HOT regions of RBPs exist. We applied RCAS to
annotate the candidate HOT regions of RBPs which were
identified by our in-house methods. The report shows the
majority of the regions are exonic by 98.3%, associated with
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Figure 4. The coverage profiles of PUM2 (A), QKI (B), IGF2BP1–3 (C) at TSS/TES. The three types of RBPs all appear to have the stronger binding
preference at TES. Each coverage profile is represented with a ribbon where a solid line passing through the middle area. The solid lines represent the mean
coverage score distribution and the thickness of the ribbons represents the 95% confidence interval (equal to 1.96 times the standard error of the mean).
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Figure 5. The coverage profiles of m1A across different features (A), at TSS/TES (B), at exon-intron boundaries (C). (A) At the promoters, the peak of
coverage is at the 3′ end of the regions. At 5′ UTRs, the peak is at the 5′ end of the regions. (B) m1A is clearly enriched at TSS. (C) m1A show a stark
contrast between adjacent exonic and intronic regions. Each coverage profile is represented with a ribbon with a solid line passing through the middle of the
ribbon. The solid lines in the middle of each coverage profile represent the mean coverage score distribution and the thickness of the ribbons encapsulating
the solid line represents the 95% confidence interval (equal to 1.96 times the standard error of the mean).
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Figure 6. The coverage profiles of tiRNAs across different genomic features (A), at TSS/TES (B). (A) tiRNs are enriched at the 3′ end of promoters while
peak at 5′ end of the regions of 5′ UTRs. (B) tiRNAs are clearly enriched at TSS. Each coverage profile is represented with a ribbon where a solid line passing
through the middle area. The solid lines represent the mean coverage score distribution and the thickness of the ribbons represents the 95% confidence
interval (equal to 1.96 times the standard error of the mean).
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Figure 7. (A) The distribution of HOT regions across gene features. (B) Binned coverage profiles of HOT regions overlaid on gene features. (C) Nucleotide
resolution coverage profiles of HOT regions overlaid on TSS/TES boundaries. (D) Nucleotide resolution coverage profiles of HOT regions overlaid on 5′
and 3′ boundaries of internal exons. Each coverage profile is represented with a ribbon where a solid line passing through the middle area. The solid lines
represent the mean coverage score distribution and the thickness of the ribbons represents the 95% confidence interval (equal to 1.96 times the standard
error of the mean).

3′ UTRs by 72.5%, and intronic by 50.6% (Figure 7A).
However, when looking at the depth of coverage profiles,
3′ UTRs show the highest signal (Figure 7B). Moreover,
we observe the distinguished peaks at TESs (Figure 7C).
This characteristics is in agreement with the common bind-
ing preference observed in use case 1 that includes PUM2,
QKI and IGF2BP1-3. The signal strength at the intron-
exon junctions does not display a strong difference, particu-
larly at the 3′ end boundaries of internal exons (Figure 7D).

The observed trends in the coverage profiles could be ei-
ther biologically meaningful or can be explained by the in-
herent biases of the studied RBPs, for which CLIP-Seq peak
regions are available in the doRiNA database. Sixteen out of
38 RBPs in doRiNA have GO terms associated with ‘splic-
ing’, which could explain the observed signal at exon–intron
junctions; 20 out of 38 RBPs in doRiNA have GO terms
associated with ‘miRNA’, ‘gene silencing’, or ‘translation’,
which could explain the increased signal at the 3′ UTRs
(Supplementary File 8).

GO term analysis of the transcripts that harbor HOT re-
gions also suggests that the targets of RBPs have similar
enriched GO terms as the RBPs themselves. For instance,
‘gene silencing by miRNA’ and ‘regulation of RNA splic-
ing’ show up as significant biological process terms for these
transcripts. Again the gene set enrichment analysis of these
transcripts also reveals significant Reactome pathways such
as ‘3′ UTR mediated translational regulation’ and ‘mRNA
splicing’. On the other hand, no sequence motifs have been
discovered for the HOT region sequences (Supplementary
File 6).

DISCUSSION

The advance of RNA-based omics technologies has cre-
ated unprecedented opportunities for biological discov-
ery centered around RNA molecules. However, there have
been challenges to interpreting the gigantic amount of in-
formation yielded by the emerging omics methods. Al-
though data generated from each different RNA-based
omics method require particularly tailored workflows, most
of these workflows will contain common steps such as ex-
perimental design, sample preparation, sequencing, qual-
ity control and pre-processing of sequencing data, obtain-
ing transcriptome-wide regions of interest (these genomic
regions may represent binding sites of RBPs, methylation
sites, loci of RNA species, etc.), and as the final step, func-
tional annotation and analysis of these regions followed
by reporting the analysis results. This last step may pro-
vide the final results of an experiment, suggest intriguing
points for further experimental validation, or could reveal
novel hypotheses for follow-up studies. With the aim to ease
the process of finding biological meaning within the large
datasets of transcriptome-wide regions of interest, we de-
veloped RCAS, an RNA-centric functional annotation and
reporting tool, which is designed to help users quickly sum-
marise their experiment results, find functional associations,
interactively explore the results, and eventually have a stan-
dalone HTML report with exportable figures and tables for
further analysis or for publication purposes.

In order to make RCAS as accessible as possible to a
wide spectrum of users with computational or experimen-
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tal backgrounds, we have developed multiple means of de-
ploying the tool. At the core is a cross-platform R package
in the Bioconductor repository, where the package is tested
to work on Windows, Linux, and Mac OS X operating sys-
tems. To enable different means of installation, the R library
and its dependencies have been packaged with the Conda
and Guix package management systems. To help users with
limited experience with the R command line, we have devel-
oped a web service and a wrapper script to integrate RCAS
with Galaxy.

To assess the accuracy of RCAS, we employed four use
cases, mainly using the example published datasets. The
resulting benchmarks show that RCAS successfully repro-
duces the published results. RCAS correctly identifies the
underlying preferences of different biological events (RBP
binding, methylation, and RNA regulation). The generated
motifs reasonably match the published ones. In addition,
RCAS is capable of generating novel insights which are not
present in the publications, including the RBP binding pref-
erence on TESs and the m1A methylation preference on
exon–intron boundaries. The RCAS output is a dynamic
HTML file which is composed of interactive figures and ta-
bles that are of high-quality, ready for the purpose of pub-
lication.

The outputs of RCAS can be combined for meta-analysis
to compare the characteristics of genomic regions of differ-
ent biological contexts. This would assist the discovery of
common patterns shared by different events that carry sim-
ilar functional implications. For instance, in the case of m1A
methylation and tiRNA regulation, there are common pref-
erences on promoters and 5′ UTRs. The coverage enrich-
ment sites are both at TSS. The detected motifs are both
GC-rich. Even though m1A and tiRNA regulation are sep-
arate events, the common patterns shared by the two are not
unexpected given the context that both events are related to
the regulation of gene transcription.
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Supplementary Data are available at NAR Online.
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