Repository of the Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association

https://edoc.mdc-berlin.de/16343/

Cancer stem cells regulate cancer-associated fibroblasts via activation of Hedgehog signaling in mammary gland tumors

Valenti G., Quinn H.M., Heynen G.J.J.E., Lan L., Holland J.D., Vogel R., Wulf-Goldenberg A., Birchmeier W.

This is a copy of the accepted manuscript, as originally published online ahead of print by the American Association for Cancer Research. The original article has been published in final edited form in:

Cancer Research 2017 APR 15 ; 77(8): 2134-2147 2017 FEB 15 (first published online) doi: 10.1158/0008-5472.CAN-15-3490

Publisher: American Association for Cancer Research

Copyright © 2017 by the American Association for Cancer Research.

Cancer stem cells regulate cancer-associated fibroblasts via activation of Hedgehog signaling in mammary gland tumors

Giovanni Valenti^{1,3,4}, Hazel M. Quinn^{1,3}, Guus J.J.E. Heynen^{1,3} Linxiang Lan¹, Jane D. Holland¹, Regina Vogel¹, Annika Wulf-Goldenberg², Walter Birchmeier¹

Authors Affiliations: ¹Cancer Research Program, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Robert-Roessle-Strasse 10, 13125 Berlin, Germany. ²Experimental Pharmacology & Oncology (EPO), Robert-Roessle-Strasse 10, 13122 Berlin, Germany. ³Equal first authorships. ⁴Present address: Department of Digestive and Liver Diseases, Columbia University Medical Center, New York, New York, USA.

Running title: CSCs, CAFs and Hedgehog signaling in mammary gland tumors

Keywords: niche; lineage tracing; transcriptional profiling; interaction network; small molecule inhibitors

Financial support: G.V. was a recipient, and H.Q is presently a recipient of the International PhD fellowship of the MDC and the Humboldt University of Berlin

Corresponding Author: Walter Birchmeier, Phone: +49-30-9406-3800; Fax: +49-30-9406-2656; E-mail: <u>wbirch@mdc-berlin.de</u>

Disclosure of Potential Conflicts of Interests: No potential conflicts of interest were disclosed

Word count: 5,053

Total Number of Figures and Tables: 7

Abstract

Many tumors display intracellular heterogeneity, with subsets of cancer stem cells (CSC) that sustain tumor growth, recurrence, and therapy resistance. Cancer associated fibroblasts (CAF) have been shown to support and regulate CSC function. Here we investigated the interactions between CSCs and CAFs in mammary gland tumors driven by combined activation of Wnt/β-catenin and Hgf/Met signaling in mouse mammary epithelial cells. In this setting, CSCs secreted the hedgehog ligand SHH, which regulated CAFs via paracrine activation of Hedgehog signaling. CAFs subsequently secreted factors that promoted expansion and self-renewal of CSCs. In vivo treatment of tumors with the Hedgehog inhibitor vismodegib reduced CAF and CSC expansion, resulting in an overall delay of tumor formation. Our results identify a novel intracellular signaling module that synergistically regulates CAFs and CSCs. Targeting CAFs with Hedgehog inhibitors may offer a novel therapeutic strategy against breast cancer.

Introduction

Tumor heterogeneity is believed to be dependent on a distinct subset of tumor cells that possess the capacity to sustain tumor growth, referred to as cancer stem cells (CSCs) or tumor-initiating cells (1). CSCs have the ability to self-renew, retaining their features over rounds of cell divisions and to differentiate into multiple cell types, placing them at the top of tumor cell hierarchy. These properties appear to enable CSCs to resist chemotherapy, thereby facilitating relapse (2). CSCs express selective markers at the cell surface, and are identified based on their ability to propagate tumors when serially transplanted into recipient mice (3). Tumor cells showing CSC properties have been reported in human and mouse mammary gland tumors (4-7).

CSCs can be regulated by extrinsic signals provided by stromal cells of the tumor microenvironment, which establish favorable conditions for CSC growth (8, 9). Multiple types of stromal cells have been reported to interact with CSCs and to influence their behavior. For instance, endothelial cells provide factors that support CSC proliferation and self-renewal in tumors of brain and skin (10, 11). Mesenchymal stem cells (MSCs) and immune cells establish permissive growing conditions for CSCs in gastric and intestinal tumors (12, 13). In breast cancer, a number of cellular components of the microenvironment have been reported to regulate CSCs, such as MSCs, macrophages and cancer associated fibroblasts (CAFs) (14-19).

CAFs are major cellular components in the stroma of breast cancers and are involved in many aspects of tumor progression, from the *in situ* growth of primary tumors to the metastatic spread of cancer cells (17-19). The hypothesis has recently been put forward that CSCs and CAFs reside preferentially at the tumor-stroma interface, and that both cell types interact with and support each other in a reciprocal fashion (20). CAFs can also

cooperate with other stromal cells of the tumor microenvironment, including immune and vascular cells, to establish favorable conditions for tumor growth (21). Recent work has shown that CAFs sustain CSC expansion in colorectal and lung tumors, through the production of secreted factors (22-24). However, the elucidation of this interaction and the identification of supporting factors for CSCs are less well investigated in breast cancer. Here, we unraveled the reciprocal interactions between CSCs and CAFs in our previously

described Wnt-Met mouse model of basal-like mammary gland tumors (25).

Materials and Methods

Mouse strains and genotyping

All animal experiments were conducted in accordance with European, National and MDC regulations. Wnt-Met mice were previously described (25). For genotyping mice, ear punches were digested in lysis buffer (100 mM Tris pH 8.0, 10 mM EDTA, 0.2% SDS, 200 mM NaCl, 300 µg/ml proteinase K) at 55°C overnight. Samples were diluted 1:20 and employed for PCR reactions to amplify transgenes using appropriate set of primers. Products of the amplification were analyzed by agarose (Invitrogen) gel electrophoresis.

Histology

Mammary glands were fixed in 4% formaldehyde (Roth) at 4°C overnight and dehydrated in ethanol (Roth). Dehydrated mammary glands were embedded in paraffin and cut into 7 µm sections. Tissue sections were dewaxed, rehydrated and stained with Hematoxylin (Fluka) and Eosin (Merck). After staining, tissue sections were dehydrated and mounted with Entellan (Merck). Images were acquired using bright field microscopy (Zeiss).

Immunofluorescence and confocal microscopy

Paraffin-embedded tissue sections were dewaxed and rehydrated. Antigen retrieval was performed to unmask epitopes by boiling sections for 20 minutes in EDTA-Tween buffer (10 mM Tris, 1 mM EDTA, 0.05% Tween-20, pH 9.0). Cryosections were incubated at room temperature for 15 minutes. Adherent cells were fixed in 4% formaldehyde (Roth) at room temperature for 15 minutes. 3D structures were fixed in 2% formaldehyde at room temperature for 20 minutes and permeabilized with 0.5% Triton X-100 (Selva) at 4°C for 10 minutes. Samples were incubated with blocking buffer containing 10% goat serum at room temperature for 1 hour. For staining, samples were incubated with primary antibodies at 4°C overnight (see Supplemental Table 1 for the

full antibody list). Samples were incubated with secondary antibodies conjugated with Alexa488, Cy3 or Alexa647 (1:400, Jackson ImmunoResearch) at room temperature for 1 hour. Samples were counterstained with 1 mg/ml DAPI solution (1:2000, Sigma-Aldrich) and mounted with Immu-mount (Thermo Scientific). Pictures were acquired by confocal fluorescence microscopy using a Leica TCS SPE Microscope.

qRT-PCR

Diluted cDNAs were transferred to 96-well PCR optical plates (Thermo Scientific). Selected primer are listed in Supplemental Table 1. SYBR GreenER qPCR mix (Thermo Scientific) was used. qRT-PCR was performed using the iCycler IQTM 5 multicolor real-time detection system (Bio-Rad). Relative mRNA levels were determined following normalization to the housekeeping genes *Actb* or *Rpl19* and analysis with the comparative threshold cycle ($2-\Delta\Delta$ Ct) method.

SDS-PAGE and Western blot

Protein samples (30 μg) were incubated at 95°C for 5 minutes in sample buffer (125 mM Tris pH 6.8, 4% SDS, 20% glycerol, 2% β-mercaptoethanol, 0.01% bromophenol blue). Samples were loaded on 8% SDS-polyacrylamide gels (Roth), and proteins were separated using running buffer (25 mM Tris pH 8.6, 192 mM glycine, 0.1% SDS). Samples were transferred on polyvinylidene fluoride membranes (PVDF, Roth) by Mini Trans-Blot (Bio-Rad) in transfer buffer (25 mM Tris pH 8.6, 192 mM glycine, and 20% methanol) at 100 V for 2 hours. Membranes were blocked in 5% nonfat dry milk (Fluka) in TBST (50 mM Tris pH 7.5, 150 mM NaCl, 0.1% Tween-20) at room temperature for 1 hour and incubated with primary antibodies at 4°C overnight. Primary antibodies were: goat anti-Vimentin (1:100, Santa Cruz), mouse anti-Fibronectin (1:1000, BD Biosciences) and mouse anti-α-tubulin (1:5000, Sigma-Aldrich). Membranes were developed with Western lightning plus ECL reagent (PerkinElmer) and the Vilber

Lourmat imaging system SL-3. α-tubulin was used as protein loading control.

Isolation of mammary gland tumor cells

Tumors were minced in DMEM/F12 (Invitrogen) supplemented with 5% FBS (Invitrogen), 5 μ g/ml insulin (Sigma-Aldrich), 0.5 μ g/ml hydrocortisone (Sigma-Aldrich), 10 ng/ml EGF (Sigma-Aldrich) containing 300 U/ml Collagenase type III (Worthington) and 100 U/ml Hyaluronidase (Worthington) at 37°C for 1 hour shaking. Resulting organoids were resuspended in 0.25% trypsin-EDTA (Invitrogen) at 37°C for 1 minute and digested in dissociation-medium containing 2 mg/ml Dispase (Invitrogen), 0.1 mg/ml DNase I (Worthington) at 37°C for 1 hour shaking. Samples were filtered with 40 μ m cell strainers (BD Biosciences) and incubated with 0.8% NH₄Cl solution on ice for 3 minutes (RBC lysis). Cells were labeled with lineage cell depletion kit (Miltenyi) and subjected to magnetic activated cell sorting (MACS).

FACS

Single cell suspensions were incubated with conjugated primary antibodies at room temperature for 15 minutes (see Supplemental Table 1 for the full antibody list). Cells were next incubated with 7AAD (BioLegend) at room temperature for 5 minutes to stain DNA of dead cells. Cells were sorted using FACS Aria2 (BD Biosciences) or analyzed using LSRFortessa (BD Biosciences). Data were analyzed using the FlowJo Analysis Software.

Mammosphere and 3D Matrigel cultures

Single cell suspensions were plated at 8x10⁴ cells/ml in serum-free DMEM/F12 medium, supplemented with 2% B27 (Invitrogen), 20 ng/ml FGF (Invitrogen), 20 ng/ml EGF, 4 µg/ml heparin (Sigma-Aldrich), 5 µg/ml insulin and 0.5µg/ml hydrocortisone (mam-medium) for 7-14 days on plates coated with 1.2% PolyHEMA (Sigma-Aldrich). Mammosphere cultures

were supplemented with mam-medium every 3 days. For co-culture experiments, 0.4 μ m membrane pore transwell inserts (BD Biosciences) were seeded with CAFs or control fibroblasts at 4x10⁴ cells/ml in DMEM/F12 containing 1% FBS. Transwell inserts were placed in wells containing single cell suspensions in mammosphere-forming conditions. Mammospheres were allowed to grow for 7 or 14 days. Numbers and sizes of the mammospheres were determined by phase contrast microscopy. In experiments involving the use of Wnt-Met reporter mice, fluorescence microscopy was used to detect YFP. For 3D cultures, sorted YFP⁺ cells were plated at 1x10⁴ cells/well in mam-medium on top of Matrigel layers (BD Biosciences) in 24-well plates and incubated for 14 days. 3D cultures were supplemented with fresh mam-medium every 3 days. For co-culture experiments, CAFs or control fibroblasts were embedded in Matrigel at 5x10³ cells/well and incubated at 37°C for 45 minutes to allow formation of cell-Matrigel layers before seeding CSCs on top.

Cell culture

CAFs were grown in DMEM/F12 supplemented with 10% FBS under standard cell culture conditions. For treatments with recombinant SHH (PreproTech), cells were switched previously to growing medium containing 0.5% FBS. For mammosphere ligand stimulation experiments cultures were supplemented every 2-3 days with mam-medium containing specified concentrations of the following ligands (R&D Systems): ACTIVIN A (338-AC-010), LIF (8878-LF-025), NOV (1976-NV-050) and IGF-1 (791-MG).

In situ hybridization

Paraffin-embedded tissue sections were dewaxed and rehydrated. Proteins hiding mRNAs were removed by Proteinase K (Roche) treatment. For staining, samples were dehydrated and incubated with DIG-UTP-labelled probes in hybridization buffer in a humidified chamber at 63°C overnight. All buffers and solutions were pretreated with

DEPC (1:1000, Sigma-Aldrich) and autoclaved to inactivate RNases. Samples were incubated first in blocking solution at 4°C for 2 hours and then with anti-DIG Fab fragments coupled with alkaline phosphatase (1:1000, Roche) at 4°C overnight. Samples were stained with BM-purple (Roche) in the dark at 37°C. Reactions were stopped by washing with PBS. Samples were dehydrated and mounted with Entellan (Merck). Pictures were acquired by bright field microscopy (Zeiss).

MTT assay

For adherent cultures, cells were seeded at a density of 5x10³ cells/well in 96-well plates. At determined time points, 20 µl 5mg/ml 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) solution (Sigma-Aldrich) were added to each well, and cells were further incubated at 37°C for 5 hours. After incubation, growing medium was removed and formazan crystals were dissolved by adding 200 µl dimethylsulfoxyde (DMSO) (Sigma-Aldrich). For mammospheres, 200 µl of MTT solution were added to each well of 12-well plates, and cells were further incubated at 37°C for 5 hours. After incubated at 37°C for 5 hours. After incubation, mammospheres were collected by gentle centrifugation, resuspended in 200 µl DMSO and transferred in 96-well plates. Plates were incubated at 37°C for 5 minutes with DMSO before measuring signals at 595 nm using the microplate reader Genios (Tecan).

Microarray and computational analysis

For microarray analysis, RNA was isolated using Trizol from freshly sorted CAFs, control fibroblasts, CSCs and tumor epithelial cells. RNA samples were cleaned with RNeasy kit (Qiagen). Quality and purity of RNA samples were assessed by Nanodrop and Bioanalyzer (Agilent) measurements before further processing. RNA (100 ng) was used to synthesize antisense RNAs with the 3' IVT Express Kit (Affimetrix). Antisense RNAs were hybridized on Mouse Genome 430A 2.0 chips (Affymetrix). Microarray data were

analyzed in R statistics using Bioconductor libraries and normalized in RMA with the software BRB-ArrayTools (http://linus.nci.nih.gov/BRB-ArrayTools.html). Microarray data are deposited in the NCBI Gene Expression Omnibus (GEO) with the accession number GSE68241 and accessible at:

<u>http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68241</u>. Genes were functionally annotated using the Database for Annotation, Visualization and Integrated Discovery (DAVID, http://david.abcc.ncifcrf.gov/). Gene set enrichment analysis was performed using default parameters (GSEA,<u>http://www.broadinstitute.org/gsea/index.jsp)</u>. Expression data of tumor stroma from breast cancer patients were retrieved from the Oncomine database (Oncomine, https://www.oncomine.org/).

In vivo pharmacological treatments

Wnt-Met mice post-partum were administrated orally with vismodegib (50 mg/kg, 100 mg/kg) or control every day, for up to 19 days. Tumor volumes and body weights were determined for each animal several times per week.

For remaining Materials and Methods, please see Supplemental Information.

Results

Cancer associated fibroblasts are generated in the stroma of Wnt-Met mammary gland during tumor growth

Histological analyses of mammary gland tumors generated by combined activation of Wnt/βcatenin and Hgf/Met signaling, as directed by the pregnancy-induced WAP promoter (Wnt-Met mammary gland tumors) (25), revealed significant expansion of the stroma during progression. At 1 week post-partum, the stroma resembled that of control mammary glands with loose fibrotic areas and few fibroblast-like cells (Fig. 1A). At 2 and 3 weeks post-partum, the stroma exhibited massive changes, with increased presence of fibroblast-like cells and extensive extracellular matrix (ECM) deposition. Vimentin (VIM), a mesenchymal marker, and smooth muscle actin (SMA), a selective marker for CAFs, were increased after two weeks in the stroma surrounding the tumor epithelial compartments, as shown by immunofluorescence (Fig. S1A). qRT-PCR and Western blot revealed significant increases in the expressions of vimentin and fibronectin (FN) (Fig. 1B, C), an ECM component produced by CAFs (21). These results show that CAF-like structures are generated in the stroma of Wnt-Met mammary gland during tumor growth.

distributions of CSCs CAFs Reciprocal and were assessed by immunofluorescence. CSCs were previously identified in Wnt-Met mammary gland tumors as CD24⁺CD29^{hi} and CD24⁺CD49f^{hi} expressing cells (25). CD49f showed high selectivity for CSCs by FACS, and was employed to analyze CSC distribution. High levels of CD49f were found in tumor epithelial cells positive for keratin 5 (K5) and located in the outermost layers of the tumor epithelial compartments, in close proximity to vimentin positive CAF-like structures (Fig. 1D). These results suggest mutual interactions exist between CSCs and CAFs in Wnt-Met mammary gland tumors.

A Wnt-Met reporter mouse model, in which activation of WAP-Cre induces constitutive yellow fluorescent protein (YFP) production, was employed to track the fate of recombined cells. As confirmation of transgene activation, YFP⁺ cells displayed high protein levels of β-catenin (β-CTN) by immunofluorescence and also high mRNA levels of *Axin2* (a Wnt target gene), *Hgf* and *Wap* by qRT-PCR (Fig. S1B, C). YFP was detected in luminal cells of the tumor epithelial compartments at 1 week post-partum, but absent in K14-positive myoepithelial cells (Fig. 1E, S1D). YFP⁺ cells expressed E-cadherin (E-CAD) but lacked VIM, K5 and K14, as shown by immunofluorescence. At two weeks post-partum, YFP⁺ cells kept E-CAD and low VIM, but increases of the basal differentiation markers K5 and K14 were observed. qRT-PCR and immunofluorescence on sorted YFP⁺ cells confirmed these observations (Fig. 1F, G, S1E).

CD140b and CD90 identify CAFs in Wnt-Met mammary gland tumors

CAFs were isolated from Wnt-Met mammary gland tumors by FACS. A number of cell surface markers were surveyed, and CD140b and CD90 (26, 27) were found to be best suited (Fig. S2A, S2B). Immunofluorescence confirmed that CD140b was expressed exclusively in the stromal compartments of Wnt-Met mammary gland tumors (Fig. S2C). For sorting, the cell surface marker CD24 was used to exclude epithelial cells. The remaining cells were analyzed for CD140b and CD90. The CD140b⁺CD90⁺ population accounted for 15-20% of the parental cells (Fig. 2A). The content of YFP⁺ cells in the CD140b⁺CD90⁺ population was negligible (Fig. 2B), confirming the absence of cells of epithelial origin. CD140b⁺CD90⁺ cells displayed high levels of expression of mesenchymal markers (e.g. *Tnc, Postn,* etc.) (19, 21), but were negative for epithelial markers (e.g. *K8, K14,* etc) (Fig. 2C). Furthermore, these cells did not express any genes associated with transgene activation (*Axin2, Hgf* and *Wap*) (Fig. 2D). In culture, CD140b⁺CD90⁺ cells exhibited a spindle cell morphology, protein expression of vimentin and SMA and the

absence of keratin 5 (Fig. 2E) (21). To rule out that the CAFs are not transdifferentiated cancer cells, the recombination status of the β -catenin exon 3 locus in YFP⁺ cells and in CAFs was determined by PCR analysis of genomic DNA (Fig. S2D). While YFP⁺ cells yielded a PCR product, indicating recombination, CAFs did not (Fig. S2E). Since the cancer cells in this model by definition have undergone recombination, this experiment confirms that CAFs are not derived from cancer cells. These data show that CAFs can be isolated by FACS from Wnt-Met mammary gland tumors. This extended characterization of the CAFs was essential for the subsequent in vitro experiments in our work.

CAFs support proliferation, self-renewal and invasive behavior of CSCs from Wnt-Met mammary gland tumors

To assess potential effects of CAFs on CSC proliferation and self-renewal, a co-culture system based on mammosphere formation was employed (Fig. S3A) (28, 29). CAFs or COFs (control fibroblasts) were sorted as described above and seeded in transwell inserts with 0.4 µm pore size, which allowed exchange on I y of soluble factors. Single cell suspensions from Wnt-Met mammary gland tumors were added into the lower chambers under mammosphere-forming conditions. YFP expression in mammospheres was also examined as readout for CSC content, since YFP⁺ cells were found to be highly enriched within the CD24⁺CD49f^{hi} CSC population and also to possess tumor initiating capacity (Fig. S3B) (25). Mammospheres grown for two weeks in the presence of CAFs were approximately 2-fold larger than those generated with COFs or without fibroblasts (Fig. 3A-C, upper panel in C). Mammosphere growth measured by the MTT assay indicated that CAFs induced a 2-fold increase in the proliferative capacity of CSCs (Fig. 3C, lower panel). In support of CAFs having a positive effect on the proliferation of CSCs, immunofluorescent staining of Wnt-Met tumors showed that CSCs (indicated by nuclear β catenin) in close proximity to the CAF-enriched (vimentin-positive) stroma exhibited higher expression of the proliferation marker Ki-67 than the other epithelial cells in the bulk of the

tumor (Fig. S3C). Mammospheres generated in the presence of CAFs also exhibited an

approximately 3-fold increase in the content of YFP⁺ cells (Fig. 3D-F, upper panel) (25). Dissociated cells from primary mammospheres cultured in the presence of CAFs formed 3-fold more secondary mammospheres than cells previously grown with COFs or without additional cells (Fig. 3F, lower panel). These results show that CAFs markedly sustain CSC proliferation and self-renewal.

To evaluate whether CAFs enhanced the invasive behavior of CSCs, a 3D coculture assay was established (Fig. S3D) (30, 31). CAFs or COFs were sorted and embedded in Matrigel layers; CSCs were grown in the upper compartments and allowed to generate spheroids. 3D structures generated by CSCs within two weeks in culture in the presence of CAFs were significantly larger than those grown with COFs or without fibroblasts (Fig. S3E, F). 3D structures generated by CSCs grown with COFs or without additional cells were largely round and well organized, with filled lumens. These 3D structures also displayed regular distributions of the polarization markers GM130 (a component of the Golgi complex and apical marker) and laminin (LAM, a component of the basement membrane and basal marker) (Fig. 3G, upper two panels) (30, 31). However, when grown together with CAFs, CSCs formed aberrant 3D structures characterized by extensive budding and branching. CSCs grown under these conditions failed to generate polarized 3D structures and exhibited aberrant localizations of GM130 and laminin (Fig. 3G, lower panel). These observations indicate that CAFs enhance CSCs invasive behavior.

Hedgehog signaling regulates CAFs in Wnt-Met mammary gland tumors

CAFs and COFs were transcriptionally profiled, and a signature was determined of 354 genes, whose expression was 2.5-fold or higher in CAFs in comparison to COFs (p<0.001, FDR<0.05) (Fig. 4A). Functional annotation (32) revealed that the biological categories most significantly represented in the CAF gene signature were indicative of wound healing and inflammatory response, regulation of epithelium and gland development, cell adhesion and chemotaxis (Fig. 4A, S4A). A number of genes with elevated expression in CAFs compared to COFs in the identified CAF gene

signature were validated by qRT-PCR (*Cxcl12*, *Mmp9*, *Spp1*, *Tnc*) (Fig. S4B). Several genes associated with Hedgehog signaling emerged from the analysis, including *Gli1*, *Ptch1* and *Ptch2* (Fig. 4A) (33-35). Gene set enrichment analysis indicated similarities between the gene signature of CAFs from Wnt-Met mammary gland tumors and reported stromal gene signatures indicative of Hedgehog pathway activation (Fig. 4B) (33, 36). qRT-PCR confirmed the differential expression between CAFs and COFs of genes associated with Hedgehog signaling, including *Gli1*, *Ptch1* and *Igf1* (Fig. 4C) (33-35). Several genes included in the CAF signature and associated with Hedgehog signaling were also found highly expressed in the stroma of patients with invasive breast cancer (p<0.001) (Fig. 4D) (37, 38).

Genes differentially expressed between CAFs and CSCs were also determined by transcriptome analysis of sorted cells (Fig. 4E) (25, 39, 40). 1139 genes displayed 2.5- fold or higher expression in CAFs than in CSCs (p<0.001, FDR<0.05) (Fig. S4C). Functional annotation revealed that genes highly expressed in CAFs were associated with Hedgehog signaling (33-35) (Fig. S4D). The differential expression of several Hedgehog target genes between CAFs and CSCs was confirmed by qRT-PCR (Fig. 4F). Genes encoding Hedgehog ligands were not detected in CAFs but in CSCs, which expressed Shh (Fig. 4G). The expression of Shh and Ptch1 were further examined by in situ hybridization. Shh expression could be detected at 1 week post-partum in tumor epithelial cells residing at the tumor-stroma interface (Fig. 4H, left panel). Increased Shh expression was observed in CSCs at the tumor-stroma interfaces from one to two weeks post-partum. Ptch1 expression was detected in stromal cells adjacent to the tumor epithelial compartments (Fig. 4H, right panel). Immunofluorescence confirmed these expression patterns at the protein levels (Fig. S4E). CSCs were found to be located at the tumor-stroma interface in the Wnt-Met mammary gland tumors (Fig. 1D). The measurement of the relative distance between CSCs and CAFs revealed that CSCs were approximately 4-fold closer to CAFs with respect to the cells located in the bulk of the 15

tumor mass (Fig. S4F). It is known that the diffusive capacity of SHH is very limited, because of its hydrophobic character (41). Thus, SHH potentially produced in the bulk tumor epithelia would not have a significant impact on CAF function. These data indicate that CSC-derived SHH represents the primary source that activates Hedgehog signaling in the neighboring CAFs, and suggest that CSCs secrete SHH to stimulate paracrine Hedgehog signaling in closely associated CAFs.

CAFs in culture were then stimulated with recombinant SHH to evaluate potential roles of Hedgehog signaling. Treatments with SHH produced dose-dependent increases in CAF proliferation (Fig. 5A, B, S5A). Increases in mRNA levels of ECM components and CAF differentiation markers were also observed (Fig. 5C). Immunofluorescence also revealed an increase in the protein production of SMA and FN (Fig. 5D, E, S5B, C). Moreover, Hedgehog target genes were upregulated in CAFs stimulated with SHH (Fig. 5F). These data show that Hedgehog signaling controls essential aspects of CAF function.

Therapeutic treatment of Wnt-Met mice with a Hedgehog pathway inhibitor reduces tumor stroma and prevents CSC expansion

Wnt-Met mice were systemically treated with vismodegib, an inhibitor of Hedgehog signaling currently approved for treatment of human patients (42, 43). Treated mice exhibited lower overall tumor volumes (Fig. 6A) with limited signs of toxicity, as indicated by the minimal effects on body weights at 50 mg/kg (Fig. S6A). The treatments resulted in histological changes in the tumors, which exhibited multiple areas of loose stroma and normal alveolar structures (Fig. 6B). Significant reduction in SMA was observed in the stroma of treated mice, as seen by immunofluorescence (Fig. 6C). Ki-67 staining of vismodegib-treated tumors showed a reduction in proliferation of both stromal and epithelial cells (Fig. 6D, S6B, C). CAFs from treated mice also showed significant reductions in their proliferation in culture (Fig. S6D). CAFs also exhibited reduced

expression of ECM components and CAF differentiation markers (Fig. 6E). Many Hedgehog pathway components and target genes were strongly downregulated in CAFs from treated mice (Fig. 6F). These results show that the inhibition of Hedgehog signaling prevents CAF expansion from mammary gland tumors.

CSCs were analyzed to evaluate whether inhibition of Hedgehog signaling could also affect their biological behavior. FACS revealed reductions in the fractions of YFP⁺ cells in mammary gland tumors from mice treated with vismodegib (Fig. S6E). Tumor cells from treated mice formed fewer primary mammospheres in culture, which also showed considerable reductions in their average sizes (Fig. 6G, H, S6F). Furthermore, vismodegib treatments strongly inhibited the capacity of CSCs to generate 3D structures in culture, which were significantly smaller, largely rounded and with filled lumens (Fig. 6I, J, S6G). The mammosphere sizes of CSCs treated *in vitro* with increasing concentrations of vismodegib were not affected after 2 weeks growth (Fig. S6H), but the number of mammospheres formed by CSCs treated with high concentrations of vismodegib after 2 weeks of growth were significantly decreased, suggesting an effect on primary mammosphere formation (Fig. S6I). These data suggest that inhibition of Hedgehog signaling depletes CAFs from tumors and exerts major effects on CSC function, resulting in tumor inhibition.

Hedgehog signaling regulates the production of CAF ligands involved in the regulation of CSCs in Wnt-Met mammary gland tumors

The CAF gene signature was highly enriched for genes encoding secreted proteins (Fig. 4A), suggesting that these cells may interact with CSCs through the production of secreted factors. To identify these factors, a signature of genes highly expressed by CSCs with respect to the cells in the bulk of the tumor mass was determined by transcriptome analysis (Fig. S7A) (39, 40). 852 genes were upregulated with a 2.5-fold change or higher in CSCs (CD24⁺CD49f^{hi}) in comparison to CD24⁺CD49f^{lo} cells that form the bulk of the tumor mass (p<0.001, FDR<0.05). The CSC gene signature was highly enriched for genes involved in

cell adhesion, epithelium and gland development, and receptor signaling (Fig. S7A). qRT-PCR confirmed the increased expression of several genes by CSCs (Fig. S7B).

One way that CAFs could potentially influence CSCs is via secretion of ligands/growth factors. To identify ligands that could be involved in the CAF-CSC interaction, the transcriptome analyses from Fig. 4A and S7A were evaluated. The CAF gene signature was filtered for genes encoding extracellular proteins, using information from the public database Uniprot (http://www.uniprot.org). Ligands expressed by CSCs or with weak expression in CAFs were filtered out. The remaining candidate ligands were screened for corresponding receptors in the CSC gene signature, using the public databases Uniprot and STRING (http://string-db.org). Multiple CAF ligand-CSC receptor pairs emerged from the analysis (Supplemental Table 2). To validate the expression of a number of the identified ligands, the expression of these ligands was measured in FACS sorted CAFs and YFP⁺ cancer cells by gRT-PCR. Indeed, all the ligands measured were highly expressed in CAFs in comparison to the cancer cells (Fig. S7C). Six of the identified ligands were also found to be highly expressed in the stroma of patients with invasive breast cancer (p<0.001) (Fig. S7D). Several of these CAF ligands showed reduced expression in CAFs from Wnt-Met mice treated with vismodegib (Fig. 7A), but were increased upon in vitro SHH treatment (Fig. 7B), suggesting that Hedgehog signaling could regulate their expression.

Four of the identified CAF ligands were tested in the mammosphere assay to confirm their effects on CSC functions, and specifically on proliferation and self-renewal. Mammospheres grown from single cell suspensions treated with the ligands ACTIVIN A and NOV were significantly increased in size after 1 week (Fig. 7C). IGF-1 and LIF also displayed a trend towards increased mammosphere size. The number of primary mammospheres generated in the presence of the ligands showed the same trends as the mammosphere size (Fig. S7E). Fluorescence microscopy confirmed the expansion of the initially seeded YFP cell population after 1 week of growing mammospheres in the presence of the ligands produce an effect on CSC proliferations. The number

of secondary mammospheres formed by single cell suspensions treated with ACTIVIN A was increased, pointing to an additional role in self-renewal for ACTIVIN A (Fig. 7E). These results show that activation of Hedgehog signaling in CAFs stimulates the secretion of ligands that operate in a paracrine manner on CSCs, regulating their proliferation and self-renewal.

Discussion

In this study we show that SHH is produced by CSCs in Wnt-Met mammary gland tumors, and that SHH induces the expression of target genes of Hedgehog signaling in CAFs, resulting in increased proliferation and ECM deposition. In response to Hedgehog activation, CAFs also produce ligands such as ACTIVIN A, NOV, IGF-1, LIF and others, which establish permissive conditions for CSC growth, i.e. increased mammosphere size and self-renewal. Our data thus identify a new synergistic network between CSCs and CAFs. In previous mammary gland and breast cancer studies, data on reciprocal signaling between CSCs and CAFs have rarely been investigated in such complexity as in the present work. However, since our study mainly focuses on a transgenic mouse model, further investigation in human breast cancer tissue to confirm a similar mechanism is necessary.

In mammary glands, mutations of Hedgehog pathway components in epithelial cells rarely correlate with tumor onset (34, 44). Hedgehog signaling may thus be relevant in particular for the regulation of the stroma adjacent to the epithelia in mammary gland tumors, as also reported in pancreatic tumors (34, 45, 46). A previous study has reported that human breast cancers exhibit Hedgehog pathway activation primarily in the tumor stroma (47). High SHH ligand in the epithelial compartment and high GLI1 in the stroma have been correlated to the increased risk of metastasis and to the reduced survival in a large human cohort of basal breast cancers and in a mouse model (47). Stromal activation of Hedgehog signaling has also been observed in the MMTV-Wnt1 mouse model of mammary gland tumors, which displays expansions of CSC populations (5, 48). These observations suggest that stromal Hedgehog signaling may be important in terms of CSC regulation in mammary gland tumors. We have shown that CSCs are located close to the tumor-stroma interface and produce significant levels of SHH. In contrast, Hedgehog signaling is active primarily in CAFs, despite these cells 20 not producing Hedgehog ligands.

The findings we present here suggest a model where CSCs use Hedgehog signaling to educate CAFs to support their growth by providing factors required for their maintenance. These factors appear to be important in terms of CSC regulation in mammary gland tumors.

We found that CAFs promote the proliferative and self-renewal capacities of CSCs, as seen by an increase of mammospheres grown in the presence of CAFs. The supportive role of CAFs on CSC self-renewal has been previously observed in experiments involving the use of human breast cancer cell lines (19, 49). In other tumors, CAFs have been reported to promote CSC expansion through alternative mechanisms, for instance CAFs stimulating the acquisition of CSC properties in differentiated tumor cells by inducing EMT (22). In lung cancer, CAFs induced the dedifferentiation of committed tumor cells by activating the expression of genes associated with stemness (24). Here, we present preliminary data supporting a novel mechanism by which CAFs influence the function of CSCs through the production of secreted factors, in response to the activation of Hedgehog signaling. We identified several ligands provided by CAFs that could potentially support CSC function. For instance, we identified ACTIVIN A as a potent regulator of CSC proliferation and selfrenewal in mammospheres. It would be therefore interesting to further elucidate how ACTIVIN A affects CSC proliferation and self-renewal.

We also found that CAFs alter the invasive behavior of mammary gland CSCs. CSCs grown together with CAFs form aberrant 3D structures, characterized by irregular acini, filled lumens and dysregulated epithelial polarity. Previous observations obtained in co-transplantation studies reported roles for CAFs in the formation of highly invasive breast cancers (18). Our *in vitro* data suggest that CAFs promote the transition of tumors to invasive phenotypes through selective effects on CSCs. Recent studies have shown that subsets of highly invasive CSCs reside at the tumor-stroma interfaces in pancreatic cancers (50). It is possible that the acquisition of invasive properties by CSCs depends on

factors provided by CAFs. However, further investigation is required to validate the effect of CAFs on CSC invasion *in vivo*.

Targeting the ability of CSCs to create a supportive microenvironment may allow the development of novel therapeutic strategies. This approach has been employed successfully in brain tumors in mice, where blocking the formation of the tumor vasculature resulted in reduced CSC content and arrest of tumor growth (10). We found that treatment of Wnt-Met mice with the Hedgehog inhibitor vismodegib caused a delay in tumor formation. Treated tumors exhibited a reduction of the tumor stroma, which showed reduced presence of CAFs and with less fibrotic areas. Treated tumors also displayed significant reduction in the CSC content, as indicated by the impaired capacities of is olated tumor cells to generate mammospheres and 3D structures. The inhibition of Hedgehog signaling may deplete CSCs due to lack of the factors provided by CAFs, which are required for their maintenance.

In conclusion, the data presented here demonstrate that in Wnt-Met mammary gland tumors, CSCs actively participate in the formation of a supportive microenvironment. CSCs secrete Sonic Hedgehog, which stimulates paracrine activation of Hedgehog signaling in CAFs (Fig. 7F). As a result, CAFs produce soluble factors such as ACTIVIN A, IGF-1 and LIF, which promote CSC proliferation, self-renewal and potentially invasive behavior. The treatment of mice with a Hedgehog inhibitor caused significant delays in tumors formation, reduction of tumor stroma and reduced CSC content. Our study may therefore pave the way for treatments based on targeting interactions between CAFs and CSCs as a potential therapeutic strategy against breast cancers.

Acknowledgements

We thank Dr. Hans-Peter Rahn and the FACS Core Facility at the MDC for the expertise

with cell sorting, Dr. Anje Sporbert and the Confocal Microscopy Core Facility at the MDC for the support with microscopy. We also thank Dr. Annabel Christ of the MDC for providing reagents to study Hedgehog signaling, and Russel Hodge from the MDC for the helpful discussions and improvements of the manuscript.

References

1. Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014; 14:275–91.

2. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005; 5:275–84.

3. Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008; 8:755–68.

Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF.
 Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA.
 2003; 100:3983–8.

5. Vaillant F, Asselin-Labat ML, Shackleton M, Forrest NC, Lindeman GJ, Visvader JE. The mammary progenitor marker CD61/beta3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res.

2008; 68:7711–7.

Zhang M, Behbod F, Atkinson RL, Landis MD, Kittrell F, Edwards D, et al.
 Identification of tumor-initiating cells in a p53-null mouse model of breast cancer.
 Cancer Res. 2008; 68:4674–82.

7. Holland JD, Klaus A, Garratt AN, Birchmeier W. Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol. 2013; 25:254–64.

8. Barcellos-Hoff MH, Lyden D, Wang TC. The evolution of the cancer niche during multistage carcinogenesis. Nat Rev Cancer. 2013; 13:511–8.

9. Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 2015; 16:225–38.

10. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007; 11:69–82.

11. Beck B, Driessens G, Goossens S, Youssef KK, Kuchnio A, Caauwe A, et al.

A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours. Nature. 2011; 478:399–403.

12. Quante M, Tu SP, Tomita H, Gonda T, Wang SSW, Takashi S, et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 2011; 19:257–72.

13. Li HJ, Reinhardt F, Herschman HR, Weinberg RA. Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discov. 2012; 2:840–55.

14. Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F, et al. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res. 2011; 71:614–24.

15. Yamamoto M, Taguchi Y, Ito-Kureha T, Semba K, Yamaguchi N, Inoue J. NF- κB noncell-autonomously regulates cancer stem cell populations in the basal- like breast cancer subtype. Nat Commun. 2013;4:2299.

16. Lu H, Clauser KR, Tam WL, Fröse J, Ye X, Eaton EN, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014; 16:1105–17.

17. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005; 121:335–48. 18. Hu M, Yao J, Carroll DK, Weremowicz S, Chen H, Carrasco D, et al. Regulation of in situ to invasive breast carcinoma transition. Cancer Cell.

2008; 13:394-406.

19. Malanchi I, Santamaria-Martínez A, Susanto E, Peng H, Lehr HA, Delaloye JF, et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 2012; 481:85–9.

20. Orimo A, Weinberg RA. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle. 2006; 5:1597-601.

21. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6:392–401.

22. Vermeulen L, De Sousa E Melo F, van der Heijden M, Cameron K, de Jong JH, Borovski T, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010; 12:468–76.

23. Lotti F, Jarrar AM, Pai RK, Hitomi M, Lathia J, Mace A, et al. Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. J Exp Med. 2013; 210:2851–72.

24. Chen WJ, Ho CC, Chang YL, Chen HY, Lin CA, Ling TY, et al. Cancerassociated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun. 2014; 5:3472.

25. Holland JD, Györffy B, Vogel R, Eckert K, Valenti G, Fang L, et al. Combined Wnt/β-catenin, Met, and CXCL12/CXCR4 signals characterize basal breast cancer and predict disease outcome. Cell Rep. 2013; 5:1214–27.

26. Sugimoto H, Mundel TM, Kieran MW, Kalluri R. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther. 2006; 5:1640–6.

27. Erez N, Truitt M, Olson P, Arron ST, Hanahan D. Cancer-Associated Fibroblasts Are Activated in Incipient Neoplasia to Orchestrate Tumor- Promoting Inflammation in an NF-kappaB-Dependent Manner. Cancer Cell.

2010; 17:135-47.

28. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003; 17:1253–70.

29. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 2005; 65:5506–11.

30. Debnath J, Brugge JS. Modelling glandular epithelial cancers in three- dimensional cultures. Nat Rev Cancer. 2005; 5:675–88.

31. Vargo-Gogola T, Rosen JM. Modelling breast cancer: one size does not fit all.

Nat Rev Cancer. 2007; 7:659-72.

32. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res.

2007; 35:W169-75.

33. Yauch RL, Gould SE, Scales SJ, Tang T, Tian H, Ahn CP, et al. A paracrine requirement for hedgehog signalling in cancer. Nature. 2008; 455:406–10.

34. Mak KK, Bi Y, Wan C, Chuang PT, Clemens T, Young M, et al. Hedgehog signaling in mature osteoblasts regulates bone formation and resorption by controlling PTHrP and RANKL expression. Dev Cell. 2008; 14:674–88.

Varjosalo M, Taipale J. Hedgehog: functions and mechanisms. Genes Dev.
 2008; 22:2454–72.

36. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA.

2005; 102:15545–50.

37. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al.
ONCOMINE: a cancer microarray database and integrated data-mining platform.
Neoplasia. 2004; 6:1–6.

Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, et al.
 Stromal gene expression predicts clinical outcome in breast cancer. Nat Med.
 2008; 14:518–27.

39. Spike BT, Engle DD, Lin JC, Cheung SK, La J, Wahl GM. A mammary stem cell population identified and characterized in late embryogenesis reveals similarities to human breast cancer. Cell Stem Cell. 2012; 10:183–97.

40. Choi H, Sheng J, Gao D, Li F, Durrans A, Ryu S, et al. Transcriptome analysis of individual stromal cell populations identifies stroma-tumor crosstalk in mouse lung cancer model. Cell Rep. 2015; 10:1187–201.

41. Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001;15:3059–87.

42. Rudin CM, Hann CL, Laterra J, Yauch RL, Callahan CA, Fu L, et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med. 2009; 361:1173–8.

43. Sekulic A, Migden MR, Oro AE, Dirix L, Lewis KD, Hainsworth JD, et al. Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med. 2012;366:2171–9.

44. Kasper M, Jaks V, Fiaschi M, Toftgård R. Hedgehog signalling in breast cancer. Carcinogenesis. 2009; 30:903–11.

45. Bailey JM, Swanson BJ, Hamada T, Eggers JP, Singh PK, Caffery T, et al. Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin Cancer Res. 2008; 14:5995–6004.

46. Mukherjee S, Frolova N, Sadlonova A, Novak Z, Steg A, et al. Hedgehog signaling and response to cyclopamine differ in epithelial and stromal cells in benign breast and breast cancer. Cancer Biol Ther. 2006; 5:674-83.

47. O'Toole SA, Machalek DA, Shearer RF, Millar EKA, Nair R, Schofield P, et al. Hedgehog overexpression is associated with stromal interactions and predicts for poor outcome in breast cancer. Cancer Res. 2011; 71:4002–14.

48. Teissedre B, Pinderhughes A, Incassati A, Hatsell SJ, Hiremath M, Cowin P. MMTV-Wnt1 and -DeltaN89beta-catenin induce canonical signaling in distinct progenitors and differentially activate Hedgehog signaling within mammary tumors. PLoS ONE. 2009; 4:e4537.

49. Tsuyada A, Chow A, Wu J, Somlo G, Chu P, Loera S, et al. CCL2 mediates cross-talk between cancer cells and stromal fibroblasts that regulates breast cancer stem cells. Cancer Res. 2012; 72:2768–79.

50. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, et al.

Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007; 1:313–23.

Figure Legends

Figure 1. CAFs are generated in the stroma of Wnt-Met mammary gland tumors. A. Hematoxylin and eosin staining of tissue sections from control mammary glands and Wnt-Met tumors at different stages; Ept: epithelium, Str: stroma B. qRT-PCR analysis of RNA from control mammary glands and Wnt-Met tumors at two weeks post-partum for vimentin (Vim) and fibronectin (Fn). C. Western blot of protein lysates from control mammary glands and Wnt-Met tumors at two weeks post-partum for VIM and FN; α-tubulin (TUB) was used as protein loading control. D. Immunofluorescence of tissue sections from control mammary glands and Wnt-Met tumors at 2 weeks post-partum for CD49f, K5 and VIM. E. Immunofluorescence of tissue sections from Wnt-Met tumors at 1 and 2 weeks post-partum for basal differentiation markers K5 and K14. G. Immunofluorescence of YFP⁺ cells sorted from Wnt-Met tumors at two weeks post-partum for VIM and K5. Scale bars, 25 μ m.

Figure 2. CD140b⁺*CD90*⁺ *cells isolated from Wnt-Met mammary gland tumors exhibit CAF features.* A. Strategy to isolate CD140b⁺CD90⁺ cells by FACS from Wnt-Met tumors. B. FACS for YFP of CD140b⁺CD90⁺ cells sorted from Wnt-Met tumors. C. qRT-PCR analysis of CD140b⁺CD90⁺ cells and YFP⁺ cells sorted from Wnt-Met tumors for mesenchymal (upper panel) and epithelial (lower panel) differentiation markers. D. qRT-PCR analysis of sorted YFP⁺ and CD140b⁺CD90⁺ cells for genes associated with transgene expression. E. Representative brightfield and fluorescence pictures of CD140b⁺CD90⁺ cells stained for VIM, SMA and K5. Scale bars, 25 μm.

Figure 3. CAFs promote mammosphere formation and enhance the capacity of CSCs to form invasive 3D structures in Wnt-Met mammary gland tumors. A. Size 30

of mammospheres generated alone, with COFs or CAFs over a two week culturing period. B. Representative brightfield pictures of mammospheres generated alone, with COFs or CAFs after two weeks. C. Bar charts of average sizes of mammospheres (upper panel) generated alone, with COFs or CAFs, and relative cell growth measured by MTT proliferation assay (lower panel). D. FACS for YFP in mammospheres generated alone, with COFs or CAFs over a two week culturing period. E. Representative fluorescence pictures of mammospheres generated alone, with COFs or CAFs. F. Bar charts of average percentages of YFP⁺ cells in mammospheres (upper panel) generated alone, with COFs or CAFs, and numbers of secondary mammospheres (lower panel). G. Representative pictures of 3D structures generated alone, with COFs or CAFs over a two week culturing period and stained for the polarization markers GM130 and LAM. Scale bars, 100 μm.

Figure 4. CAFs from Wnt-Met mammary gland tumors display activation of Hedgehog signaling. A. Heat map of gene expression and gene grouping comparing COFs and CAFs. B. Gene set enrichment analysis of the gene expression profiles of CAFs and COFs for Hedgehog signaling. C. qRT-PCR analysis of CAFs and COFs for Hedgehog pathway genes (upper panels) and genes regulated by Hedgehog signaling (lower panels). D. Expression of Hedgehog genes in the stroma of breast cancer patients; left: normal stroma, right: tumor stroma. E. Strategy employed to isolate CSCs by FACS from Wnt-Met tumors. F. qRT-PCR analysis of CSCs and CAFs sorted from Wnt-Met tumors for Hedgehog ligands. H. *In situ* hybridization of tissue sections from control mammary glands and Wnt-Met tumors at 1 and 2 weeks post-partum for *Shh* and *Ptch1*. Scale bar, 25 μm.

Figure 5. Hedgehog signaling regulates CAFs in Wnt-Met mammary gland tumors. A. Relative cell growth of CAFs stimulated with increasing concentrations of SHH

for 24, 48 and 72 hours, as measured by MTT assay. B. Representative brightfield pictures of CAFs stimulated with SHH for 48 hours. C. qRT-PCR analysis of CAFs stimulated with SHH for ECM components and CAF differentiation markers. D. Representative fluorescence pictures of CAFs stimulated with SHH and stained for SMA. E. Representative fluorescence pictures of CAFs stimulated with SHH and stained for SMA. F. qRT-PCR analysis of CAFs stimulated with SHH and stained for SMA. The transformation of CAFs stimulated with SHH and stained for SMA. In the transformation of CAFs stimulated with SHH and stained for SMA. The transformation of CAFs stimulated with SHH and stained for SMA. In the transformation of CAFs stimulated with SHH and stained for SMA. The transformation of CAFs stimulated with SHH and stained for SMA. The transformation of CAFs stimulated with SHH and stained for SMA. The transformation of CAFs stimulated with SHH and stained for SMA. The transformation of CAFs stimulated with SHH and stained for SMA. The transformation of CAFs stimulated with SHH and stained for SMA. The transformation of CAFs stimulated with SHH and stained for SMA.

Figure 6. Therapeutic treatment of Wnt-Met mice with a Hedgehog pathway inhibitor depletes tumor stroma and prevents CSC expansion. A. Volume of mammary gland tumors from Wnt-Met mice treated with increasing concentrations of vismodegib over 16 days. B. Hematoxylin and eosin staining of tissue sections from untreated and vismodegibtreated Wnt-Met tumors. C. Immunofluorescence of tissue sections from untreated and vismodegib-treated Wnt-Met tumors for VIM, SMA and K5. Scale bars, 25 µm. D. Ki-67 staining of epithelial and stromal compartments of untreated and vismodegib-treated Wnt-Met tumors. E. qRT-PCR analysis of CAFs sorted from untreated and v ismodegib-treated Wnt-Met tumors for ECM components and CAF differentiation markers. VISMO: vismodegib F. qRT-PCR analysis of CAFs sorted from untreated and vismodegib-treated Wnt-Met tumors for Hedgehog target genes. G. Bar chart of average sizes of mammospheres generated by single cell suspensions from untreated and vismodegibtreated Wnt-Met tumors. H. Representative brightfield pictures of mammospheres generated by single cell suspensions from untreated and vismodegib-treated Wnt-Met tumors. I. Bar chart of average numbers of 3D structures generated by CSCs sorted from untreated and v ismodegib-treated Wnt-Met tumors. J. Representative brightfield pictures of 3D structures generated by CSCs sorted from untreated and vismodegib-treated Wnt-Met tumors. Scale bars, 100 µm.

Figure 7. Hedgehog signaling regulates the production of CAF ligands involved in the regulation of CSCs in Wnt-Met mammary gland tumors. A. qRT-PCR analysis of CAFs sorted from untreated and vismodegib-treated Wnt-Met tumors for CAF ligands potentially involved in CSC regulation. B. qRT-PCR analysis of CAFs stimulated with SHH for vismodegib-regulated ligands. C. Mammosphere sizes of untreated single cell suspensions and single cell suspensions treated with IGF-1 (100nM), ACTIVIN A (10nM), NOV (50nM), and LIF (1nM) after 1 week growth. Data points are mean±SEM. ns, not significant. ****p<0.0001 (One-way ANOVA). D. Fluorescence microscopy on YFP⁺ cells in mammospheres grown for 1 week from untreated single cell suspensions and single cell suspensions treated with IGF-1 (100 nM), ACTIVIN A (10nM), NOV (50nM), and LIF (1nM). Scale bar, 200μm. E. Number of 2nd mammospheres untreated or grown for 1 week in the presence of IGF-1 (100 nM), ACTIVIN A (10nM), NOV (50nM), and LIF (1nM). F. Scheme of CSC niche (left panel) and interaction networks between CAFs and CSCs (right panel) in Wnt-Met tumors. TEC: bulk tumor epithelial cells.

Valenti et al., Fig. 1

Valenti et al., Fig. 2

Valenti et al., Fig. 3

Valenti et al., Fig. 4

Valenti et al., Fig. 5

Valenti et al., Fig. 6

Ε

Valenti et al., Fig. S1

Valenti et al., Fig. S2

Е

_

+

Valenti et al., Fig. S4

С

Н

D

12

9

6

3

0

Т

Valenti et al., Fig. S6

Valenti et al., Fig. S7

List of primers and relative sequences used for qRT-PCR			
Gene Name	Forward Primer 5'→3'	Reverse Primer 5'→3'	
Actb	TCGTGCGTGACATCAAAGAGAAGC	ATGGATGCCACAGGATTCCATACC	
Adipoq	GTCACTGTTCCCAATGTACC	TTCCTGATACTGGTCGTAGG	
Bglap	CTGACAAAGCCTTCATGTCC	GATACCATAGATGCGTTTGTAGG	
Ccnd1	AAGTTCATTTCCAACCCACCCTCC	AGAAGGGCTTCAATCTGTTCCTGG	
CD24	CTCCTACCCACGCAGATTTA	GAGTAGAGATGCAGAAGAGAGAG	
Ctgf	TTCTAAGACCTGTGGGATGG	AGAAAGCTCAAACTTGACAGG	
Cxcl12	CATCAGTGACGGTAAACCAG	GGTACTCTTGGATCCACTTTAAT	
Egfr	TCAAATACTGCACTGCCATCAGCG	ACCATGTTGCTTTGTTCTGCCACG	
Eng (CD105)	CACGTTCTCTTCCTGGATTT	AACATCACAGTGCTACCATC	
Epcam	AACACAAGACGACGTGGACATAGC	AATGACACCACCACAATGACAGCG	
Erbb3	CTACGACTGGCTGAAATACC	CTCTCTTGATGACCAGATACC	
Ereg	GTTCAGATGGAAGACGATCC	ACGTATTCTTTGCTCAAGGG	
Fgf7	GCTCTACAGATCATGCTTCC	CAGTCTTCTCACCCTTATATCC	
Fn	TGAGCGACATGCTCTACAAAGTGC	TGCTTGTTTCCTTGCGACTTCAGC	
Gas6	GAGTGTGTCCAGAAGAATGG	GCTGTATGTATATCCCTCATCG	
Gli1	CTCCACCACAAGTCAATAGC	GGAGGAGGAAAGAGAGATCC	
Hgf	ACCCTGGTGTTTCACAAGCAATCC	TCTTTCTGGCAAGAACTTGTGCCG	
lgf1	AACAACAAACGAAAGCCTGGAGCC	AAGAAACCAGGACTCCCAAATCCC	
ltga6 (CD49f)	CCCGAGAAGGAAATCAAGAC	GAACTGAAGAACGACCTCTAC	
ltgb4	TTTCAATGTAGTCTCTTCTACGG	CTTAACCGTGTATCGGTATGG	
K5	ATGTTCTTTGATGCGGAGCTGTCC	ATCTCGTGCTTGGTGTTTCGAAGG	
K8	TGATGTCGTGTCCAAGTGAATGGC	ACTGAATTGGGTTTGGATGGGAGG	
K14	TGAGAGCCTCAAGGAGGAGC	TCTCCACATTGACGTCTCCAC	
Mmp9	CTGGACAGCCAGACACTAAAG	CTCGCGGCAAGTCTTCAGAG	
Muc1	ATCATTCCAGACCACAATGGCTCC	TGTGCTATAGTAAGAGCTGCTGGC	
Pdgfb	GTGAGAAAGATTGAGATTGTGC	CTTAAACTTTCGGTGCTTGC	
Pdgfc	CCGAAGTTTCCTCATACATACC	TTCCTTTAGAAGTCTGCTTTCC	
Pdgfra (CD140a)	AACATTGTGAACTTGCTGGGAGCC	TTGCTTCATGTCCATGTAGTCGCC	
Pdgfrb(CD140b)	AGCGAGAAGCAAGCCTTAATGTCC	AAGAAGGTGTGTTTGTTCCGGTGC	

_		
P4hb	ACAATCAGCTGCCTTTGGTCATCG	AATAGGATCTTGCCCTTGAAGCCC
Postn	AACCATTGGAGGCAAACAACTCCG	TCAAATCTGCAGCTTCAAGGAGGC
Ptch1	ATCAACTGGAATGAAGACAGG	CATAGGCAAGCATCAGTAGG
Ptch2	CTACCAGACACATGACATCG	TAAGCAGATAGCCTCCTACC
Prir	ATGATGACCTGCATCTTTCC	CCTCATTGTCATCCACTTCC
Rpl19	CATATGTATCACAGCCTGTACC	TTGATGATCTCTTCCTTCTTGG
Shh	AGCAGTTTATTCCCAACGTAGCCG	TCTTTGCACCTCTGAGTCATCAGC
SMA	TGATCACCATTGGAAACGAACG	TGGTTTCGTGGATGCCCGCT
Thy1 (CD90)	AGCCCTATATCAAGGTCCTTACCC	TCACAGAGAAATGAAGTCCAGGGC
Tgfb3	CGAACCTAAGGGTTACTATGC	CACATAGTACAAGATGGTCAGG
Tgfbr2	ACAACATCAACCACAACACGGAGC	TGCAGGATGTTCTCATGCTTCAGG
Tnc	AAGACTGCAAAGAGCAAAGGTGCC	ACACACATTGTCCTTGGTTGCTGC
Vim	ATGACCGCTTTGCCAACTACATCG	ATCTCCTCCTGCAATTTCTCTCGC
Wnt5b	GAGAAGAACTTTGCCAAGGG	GTCGTACTTCTCCTTCAAACG
Slug	TGGTCAAGAAACATTTCAACGCC	GGTGAGGATCTCTGGTTTTGGTA
Twist	GGACAAGCTGAGCAAGATTCA	CGGAGAAGGCGTAGCTGAG
Snail	CACACGCTGCCTTGTGTCT	GGTCAGCAAAAGCACGGTT
Zeb1	GCTGGCAAGACAACGTGAAAG	GCCCTCAGGATAAATGACGGC

List of primary antibodies used for Immunofluorescence/Immunohistochemistry		
Gene Name	Manufacturer	Dilution
rat anti-CD49f	BD Biosciences	1:50
biotin anti-CD140b	Biolegends	1:100
mouse anti- Fibronectin	BD Biosciences	1:200
goat anti-GFP	Abcam	1:100
rabbit anti-GFP	Abcam	1:100
mouse anti-GM130	BD Biosciences	1:250
rabbit anti-K5	Covance	1:1000
guinea pig anti-K8	Progen	1:50
rabbit anti-Laminin	Sigma-Aldrich	1:500

rabbit anti-PTCH1	Dr. Annabel Christ, MDC	1:250
rabbit anti-SHH	Santa Cruz	1:25
rabbit anti-SMA	Abcam	1:50
goat anti-Vimentin	Santa Cruz	1:50
rabbit anti-Ki67	NEO Markers/Lab Vision RM-9106	1:200

List of primary antibodies used for FACS			
Gene Name	Manufacturer	Dilution	
rat PE anti-CD24	BD Biosciences	1:400	
rat FITC anti- CD49f	BD Biosciences	1:50	
APC-Cy7 anti- CD90.1	BD Biosciences	1:100	
biotin anti-CD140b	Biolegends	1:100	

CAF ligand - CSC receptor interactions	
CAF ligand	CSC receptor
CHL1	PTPRA
CD	SLC11A1
GP	SLC40A1
0050	CSF2RA
C3F2	CSF2RB
OTOF	FGFR2
CIGF	FGFR3
	CXCR4
CACE 12	CXCR7
CXCL14	CXCR4
EREG	EGFR
	FGFR1
FGF7	FGFR2
	FGFR3
GAS6	AXL
	IGF1R
IGFT	IGF2R
11 33	IL1RAP
1200	IL1RL1
	ACVR1A
INHBA	ACVR1B
	ACVR2A
LBP	CD14
LIE	IL6ST
LII	LIFR
	DDR1
	GJA1
NOV	ITGAV
	ITGB5
	NOTCH1
SFRP1	FZD6
	EGFR
TNC	ITGA9
	ITGAV
	ITGB1
VCAN	CD44