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Abstract  

Polycomb proteins are well-known epigenetic repressors with unexplained roles in 

chromatin folding. In this issue of Molecular Cell, Kundu et al. (2017) investigate the 

structures of PRC1-mediated domains in stem cells, and probe their changes upon 

differentiation and in PRC knockouts. 

 

Main text 

First identified in Drosophila as repressors of homeotic genes (Hox), Polycomb 

Repressive Complexes (PRCs) are silencing machineries that are essential for 

proper cell differentiation and chromatin memory during development (Steffen and 

Ringrose, 2014). These major PRC roles spawn from their direct repression of 

transcription factors and signalling molecules that are critical for development.  

 

The two main complexes, PRC1 and PRC2, have histone-modifying activities that 

are responsible for ubiquitylation of histone H2A at Lys119 (H2AK119ub1) and 

methylation of histone H3 on Lys27 (H3K27me1/2/3), respectively. PRC1 can be 

further divided in different sub-complexes. The canonical complex contains CBX 

proteins, the ubiquitin ligase RING1B and the polyhomeotic (Ph)-like ortholog PHC1. 

Canonical PRC1 complexes are recruited to chromatin through binding of CBX 

proteins to the PRC2-dependent mark, H3K27me3, and by its own mark, 

H2AK119ub1, which is also recognized by PRC2 components. This complex 

interplay between the recruitment of the two major PRC complexes and their 

modifications highlights the complexity of PRC repression mechanisms. Moreover, it 

remains unclear to which extent the molecular mechanisms of PRC repression are 

mediated by PRC binding to chromatin leading to compaction, or through their 

histone marks.  
 



Early observations that Polycomb proteins can form visible nuclear foci, called 

Polycomb bodies, suggested a role of Polycomb in chromatin structure (Buchenau et 

al., 1998). The Drosophila Pc (Polycomb) protein and the orthologous, mammalian 

CBX proteins have a chromo-domain (chromatin organization modifier) that is 

similar to HP1, hinting at a heterochromatin-like behaviour, where self-interactions 

promote the assembly of larger chromatin complexes. The close liaison of PRC1 with 

chromatin architecture matured in the next decade. Electron microscopy studies 

showed in vitro compaction of nucleosome arrays by PRC1 (Francis et al., 2004). 

Single-cell imaging studies by fluorescence in situ hybridization showed PRC1-

dependent in vivo compaction of Hox genes in mouse Embryonic Stem Cells (ESCs; 

Eskeland et al., 2010). More recently, H3K27me3-repressed domains were imaged 

in Drosophila with 3D STochastic Optical Reconstruction Microscopy (STORM), 

revealing a much tighter compaction when compared to genomic regions that are 

transcriptionally active or inactive but not PRC-repressed (Boettiger et al., 2016). 

PRC1 has also been implicated in coordinating a network of long-range chromatin 

interactions in mouse ESCs that spatially connects promoters from all four Hox gene 

clusters and other developmental regulators (Schoenfelder et al., 2015). The core 

PRC1 protein Ph has recently been found to control formation of nuclear nano-

clusters, through the polymerization activity of its ‘sterile alpha motif’ (SAM) domain, 

which facilitate long-range chromatin interactions (Wani et al., 2016).  

 

In this issue, Kundu et al. (2017) now explore how and which of the different PRC1 

components contribute to chromatin domain formation in mouse cells, and how PRC 

nuclear clusters relate with other architectural elements such as topologically 

associated domains (TADs), which are major units of chromatin folding. Kundu et al. 

(2017) elegantly combine epigenetic mapping, chromosome conformation capture 

carbon copy (5C) and STORM to identify discrete and compact domains at Hox and 

other developmental loci in mouse ESCs and neural progenitors (NPCs). These 

domains are marked by PRC1 occupancy, highly enriched in 5C local contacts and 

contain silent genes. PRC1 domains range from 20 to 140 kbp, much shorter than 

the length of TADs (several hundred kbp to the Mbp range). Unlike TAD boundaries, 

PRC1 domain borders are not enriched for architectural proteins, such as CTCF, 

cohesin and mediator components. Instead, they require the presence of PHC1 to 

recruit CBX proteins to chromatin, whereas TADs are unaffected in the absence of 

PHC1. Kundu et al. (2017) point out that PRC1 domains can cross TAD borders, as 

seen at the HoxA and HoxD clusters, suggesting that chromatin domains occur at 

different hierarchies of chromatin folding, through the action of different factors. 



 

Kundu et al. (2017) then go on to study the dynamics of PRC1-mediated domains 

upon differentiation, investigating locus architecture and PRC1 occupancy as ESCs 

differentiate to NPCs. Here the authors focus on the traditional, developmentally 

regulated Hox clusters, HoxA and HoxD, but also on neural transcription factors such 

as Pax6 and Nkx2.2, all of which are PRC1 repressed in ESCs but expressed in 

NPCs. Interestingly, they also study a locus that gains de novo PRC1 repression in 

NPCs, containing the Igf2bp3 and Stk31 genes. While in all cases compaction 

matches PRC1 occupancy and gene expression, they identify locus-specific 

chromatin structures (summarised in Figure 1). The HoxA and HoxD clusters, 

covered by PRC in ESCs, change to an extended form in NPCs, but only at genes 

that get activated and lose PRC. In contrast, both Hox clusters become highly 

decompacted in Phc1 knockout (KO) cells. The Pax6 locus displays an identical 

domain opening in NPCs. In Phc1-KO cells, the compaction is not completely 

abolished, arguing for a contribution of additional factors at this locus, where PHC1 

binding is low. Loops interspersed with open areas are found at Nkx2.2 in ESCs, and 

not compact domains, where PRC coverage is discontinuous. These loops 

disassemble in NPC and in Phc1-KO cells. Interestingly, new loops are formed at the 

Igfbp3 and Stk31 locus, coincidentally with de novo PRC occupancy in NPCs. These 

results suggest a role for PRC1 in chromatin looping not limited to ESCs and extend 

our limited knowledge of PRC function in differentiating mammalian cells. 
 

To further dissect the PRC components that are needed for chromatin domain 

formation or stability, Kundu et al. (2017) took advantage of several mutated or 

knockout ESC lines. They find that chromatin compaction also requires the presence 

of RING1B (in agreement with Eskeland et al., 2010; Schoenfelder et al., 2015), is 

only partially weakened by H2AK119ub1 or EZH2 absence, and is unchanged after 

knockout of Kdm2b, a variant PRC1 component. Nevertheless the great variety of 

PRC1 and PRC2 components and their complex web of interactions call for further 

studies to dissect the complexity of PRC1-dependent domains and the contributions 

of other components, especially as components could have direct roles in chromatin 

topology but also influence the recruitment and complex stability on chromatin, as 

seen by the disruption of CBX protein binding to chromatin in Phc1-KO cells.  

 

Overall, PRC1 domains show just how little we know about different hierarchies of 

chromatin architecture, from the smallest unit of folding to the more fuzzy 

intermediate scales. It will be interesting to see how domains acting on different 



scales combine, and bridge boundaries. Furthermore, the simple view that 

Polycomb-dependent compaction limits access to the transcription machinery 

ignores the presence of H3K4me3 and RNA polymerase II complexes at the vast 

majority of PRC-marked developmental regulators (Brookes et al., 2012; Mikkelsen 

et al., 2007), namely the genes studied in Kundu et al. (2017). Additional studies with 

higher time resolution will greatly advance our understanding of how gene 

expression, chromatin compaction and folding influence each other in cell fate 

decisions. 
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Figure 1. PRC1-mediated domains in ESCs and how they change in Phc1 

knockout ESCs or in NPCs.  

Solid and striped ovals represent canonical PRC1 and unknown additional factors 

involved in compaction, respectively. Phc1-KO ESCs, dashed line; NPCs, green line. 
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