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Abstract

Background: Critically ill patients develop atrophic muscle failure, which increases
morbidity and mortality. Interleukin-1β (IL-1β) is activated early in sepsis. Whether IL-
1β acts directly on muscle cells and whether its inhibition prevents atrophy is
unknown. We aimed to investigate if IL-1β activation via the Nlrp3 inflammasome is
involved in inflammation-induced atrophy.

Methods: We performed an experimental study and prospective animal trial. The
effect of IL-1β on differentiated C2C12 muscle cells was investigated by analyzing
gene-and-protein expression, and atrophy response. Polymicrobial sepsis was
induced by cecum ligation and puncture surgery in Nlrp3 knockout and wild type
mice. Skeletal muscle morphology, gene and protein expression, and atrophy
markers were used to analyze the atrophy response. Immunostaining and reporter-
gene assays showed that IL-1β signaling is contained and active in myocytes.

Results: Immunostaining and reporter gene assays showed that IL-1β signaling is
contained and active in myocytes. IL-1β increased Il6 and atrogene gene expression
resulting in myocyte atrophy. Nlrp3 knockout mice showed reduced IL-1β serum
levels in sepsis. As determined by muscle morphology, organ weights, gene
expression, and protein content, muscle atrophy was attenuated in septic Nlrp3
knockout mice, compared to septic wild-type mice 96 h after surgery.

Conclusions: IL-1β directly acts on myocytes to cause atrophy in sepsis. Inhibition of
IL-1β activation by targeting Nlrp3 could be useful to prevent inflammation-induced
muscle failure in critically ill patients.
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Background
A major contributor of intensive care unit (ICU)-acquired weakness (ICUAW) is a se-

vere and disabling muscle atrophy leading to loss in strength and mass [1–4]. ICUAW

is associated with increased morbidity and mortality and has a significant impact on

healthcare systems [5, 6]. Sepsis and systemic inflammation are major risk factors for

ICUAW [7, 8]. Importantly, inflammation and acute-phase response occur early and

directly in muscle and affect disease progression in ICUAW. Recently, others and we

reported an imbalanced protein homeostasis caused by increased protein degradation
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and reduced protein synthesis in the skeletal muscle [4, 9–11]. Muscular-motor protein

breakdown, especially myosin heavy chain (MyHC), via the protein degrading ubiquitin

proteasome system (UPS), is a prominent feature of muscle atrophy [1, 4, 10–13]. The E3

ligase, muscle RING finger (MuRF) 1 (TRIM63), and F-box protein atrogin 1 (FBXO32)

are increased in muscle during atrophy and mediate degradation of structural pro-

teins [4, 10]. Interleukin-1β (IL-1β) is one of the most activated cytokines in sep-

sis [14–20]. In muscle, IL-1β increases MuRF1 and atrogin 1 expression

implicating a function in atrophy [21–23]. However, if IL-1β directly causes

muscle atrophy in sepsis and if inhibition of IL-1β prevents this response is un-

known. IL-1β production and secretion requires three consecutive steps that are

tightly controlled, namely expression, cleavage, and secretion. Whereas inflamma-

tory cytokines increase expression of pro-IL-1β, which is the inactive proform of

IL-1β, its conversion to IL-1β, and its secretion is mediated by caspase-1 activat-

ing inflammasomes [14, 24–28]. Inflammasomes are multi-protein complexes of

the innate immune system [29] and involved in the pathogenesis of sepsis [30].

Cytoplasmic receptors of the nucleotide binding domain (NOD)-like receptor

(NLR) family are key components of the inflammasome, of which the best char-

acterized NLR is NLRP3 [31, 32]. The NLRP3 inflammasome regulates maturation

and secretion of IL-1β [32]. IL-1β signal transduction occurs via the IL-1 recep-

tor, which is associated with IL-1 receptor-associated kinase 1 (IRAK1) that acti-

vates the transcription factor nuclear factor-kappa B (NF-κB) [33]. NLRP3 is

contained in muscle, and its activity is increased in myopathies [34]. However,

the function of NLRP3 and IL-1β in ICUAW is unknown. We tested the hypoth-

esis that IL-1β, depending on the Nlrp3 inflammasome, contributes to

inflammation-induced atrophy in vitro and in vivo.

Methods
Animal model

Animal procedures were performed in accordance with the guidelines of the Max-

Delbrück Center for Molecular Medicine, were approved by the Landesamt für

Gesundheit und Soziales, Berlin, Germany (G207/13, G129/12), and followed the

“Principles of Laboratory Animal Care” (NIH publication No. 86-23, revised 1985)

and the current version of German Law on the Protection of Animals. Nlrp3

knockout (KO) mice were kindly provided by Aubry Tardivel and Nicolas Fasel

(University of Lausanne) [35]. Cecal ligation and puncture (CLP) surgery was

performed to induce polymicrobial sepsis in 12- to 16-week-old male Nlrp3 KO or

wild-type (WT) mice as recently described [36–38]. Sham mice were treated identi-

cally except for the ligation and puncture of the cecum. Mice were sacrificed 96 h

after surgery. For more information, see Additional file 1.

Molecular and cell biology analysis

For detailed information about quantitative RT-PCR (qRT-PCR), western blotting,

immunostaining, and cell culture, see Additional file 1. Measurements of serum IL-1β

were performed by using the Mouse ELISA Kit for IL-1β (Abcam, ab100704) according

to the manufacturers’ protocol.
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Statistical tests

All experiments were performed independently and at least three times using biological

triplicates each. All qRT-PCR gene expression data from mouse and cell culture

samples was analyzed by one-way ANOVA with post hoc correction (Tukey’s post-

comparison test). Paired t test was used to study the distribution of myotube diameter

in C2C12 myotubes. Survival curves were compared with a Mantel-Cox test. Differences

were considered statistically significant at p < 0.05. Data are shown as mean ± standard

error of the mean (SEM) in bar plots. Plots and statistics calculation were done by using

the GraphPad Prism® 6 program (GraphPad Software, La Jolla, CA, USA), Adobe Illustra-

tor CS6, version 16.0.0, and Photoshop CS6, version 13.0. The documentation of

immunofluorescence and histological staining results was performed with a Leica fluores-

cence microscope using Leica cameras (DFC 360 FX and DFC 425) and the LAS.AF

software (version: 2.4.1 build 6384 and the LAS3.1 software (version 2.5.0.6735).

Results
IL-1β induces myocyte atrophy in vitro

Recently, we showed that inflammation and acute-phase response participates in the

pathogenesis of ICUAW in patients [10]. However, whether IL-1β is synthesized in

muscle and whether Nlrp3-mediated IL-1β maturation is involved in inflammation-

induced atrophy was unknown. We performed qRT-PCR to investigate if sepsis

increases Il1b or Nlrp3 expression in gastrocnemius/plantaris or tibialis anterior

muscle of mice and found that sepsis induced Il1b and Nlrp3 expression in both

muscles (Additional file 2A, B). Il6 expression was also induced. These data indicate

that IL-1β and Nlrp3 are contained and activated in muscles during sepsis.

To investigate if the IL-1β signaling pathway is contained and active in myocytes, we

analyzed cytoplasmic-to-nuclear translocation of IL-1 receptor type I (IL-1R1) associ-

ated kinase 1 (IRAK-1) in C2C12 muscle cells. C2C12 myoblasts were originally iso-

lated from wild-type mice [39] and selected for its ability to differentiate to myotubes

expressing characteristic muscle proteins [40]. Others [41–43] and we [36, 38, 44] have

used this cell line earlier to investigate mechanisms of inflammation-induced myocyte

atrophy. Using immunocytochemistry, we found that 30 min of IL-1β treatment

resulted in an increased cytoplasmic-to-nuclear shift of IRAK-1 in C2C12 myocytes

(Fig. 1a) indicating that the IL-1β pathway is active in myocytes. Since IL-1β mediates

its effects via NF-κB in non-myocytes, a luciferase reporter assay was used to test if this

response also occurs in myocytes. The same assay performed in HeLa cells was used as

positive control. IL-1β treatment induced the NF-κB promoter in muscle and non-

muscle cells (Fig. 1b), indicating that IL-1β activates NF-κB dependent signaling events

in muscle cells. To test if IL-1β induces its target genes in myocytes, we treated C2C12

myotubes with recombinant IL-1β for different time points and quantitated Il6 expres-

sion (Fig. 1c). IL-1β induced Il6 and Nlrp3 expression in myocytes after 2 h of treat-

ment (Fig. 1c, d). Together, these data indicate that the IL-1β pathway is functional in

myocytes. To investigate if IL-1β induces myocyte atrophy, we treated C2C12 myotubes

with increasing amounts of recombinant IL-1β and vehicle, respectively, for 72 h and

measured myotube diameters. IL-1β treatment caused a significant reduction of

myotube diameters after 72 h (Fig. 1e). Frequency distribution histograms of myotube
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diameters showed a dose-dependent increase in the number of thinner myotubes

resulting in a leftward shift of the histogram and a dose-dependent decrease in mean

myotube diameters after 72 h of treatment (Fig. 1f, h). Dexamethasone (Dexa), which

was used as positive control, resulted in myotube atrophy after 72 h (Fig. 1e, g, h).

Because a reduction in MyHC proteins is consistently observed in inflammation-

induced atrophy [1, 10], we investigated if IL-1β causes a reduction in MyHC protein.

C2C12 myotubes were treated with recombinant IL-1β and vehicle, respectively, for

72 h and Western blot was performed. Indeed, IL-1β decreased fast and slow MyHC

protein contents (Fig. 2a). As expected, Dexa treatment caused a reduction in slow and

fast MyHC contents after 72 h (Fig. 2a). Recently, we reported that inflammation-

induced atrophy is caused by a dysregulation in protein homeostasis with decreased

MyHC expression and increased UPS-dependent MyHC degradation [10]. Therefore,

we investigated if IL-1β causes a reduction in MyHC expression. C2C12 myotubes were

treated with IL-1β and vehicle, respectively, for 24 h and Myh2, 4, and 7 expression,

encoding fast/type IIa, fast/type IIb and slow/type I MyHC, respectively, was quanti-

tated by qRT-PCR (Fig. 2b). IL-1β treatment led to a decreased Myh2, Myh4, and Myh7

expression after 24 h; whereas Dexa led to an increased Myh4 and Myh7 but not Myh2

expression (Fig. 2b). To test if IL-1β activates atrophy gene expression involved in

MyHC degradation, we treated C2C12 myotubes with IL-1β for 2 h and quantitated

Trim63 and Fbxo32 expression by qRT-PCR. IL-1β significantly increased Trim63 and

Fbxo32 expression, indicating that MuRF1 and atrogin 1 are involved in IL-1β-induced

atrophy. Likewise, Dexa treatment increased Trim63 and Fbxo32 expression in myo-

cytes (Fig. 2c). These data indicate that IL-1β causes a disturbed protein homeostasis

contributing to IL-1β mediated atrophy.

Nlrp3 KO mice are protected against inflammation-induced atrophy

At baseline, Nlrp3 KO were indistinguishable from WT mice and did not differ in body,

liver, spleen, or skeletal muscle weights normalized to tibia length (Additional file 3A–C).

To investigate whether or not Nlrp3 inflammasome-dependent IL-1β activation affects

inflammation-induced atrophy, we subjected male Nlrp3 KO and WT mice to CLP (Nlrp3

KO, n = 27; WT, n = 33) or sham surgery (Nlrp3 KO, n = 11; WT, n = 16), respectively.

Compared to WT mice, significantly less Nlrp3 KO mice died after 96 h after CLP surgery

(See figure on previous page.)
Fig. 1 The IL-1β signaling pathway is contained and active in C2C12 myocytes. a C2C12 muscle cells were
treated with human recombinant IL-1β (10 ng/ml) or vehicle for 30 min and 1 h. Immunocytochemistry
with anti-IRAK1 antibody shows cytoplasmic-to-nuclear translocation of IRAK1 in response to IL-1β after
30 min. Nuclei were stained in blue (DAPI). Scale bar = 50 μm. b Synthetic luciferase reporters with
multimerized NF-κB sites (NF-κB-Luc) were transfected into C2C12 (b, left panel) and HeLa (b, right panel)
cells, together with LacZ as transfection control. Cells were treated with recombinant IL-1β (10 ng/ml) for
24 h. n = 3. c, d C2C12 cells were differentiated for 8 days and treated with human recombinant IL-1β
(10 ng/ml) for different time points as indicated. qRT-PCR analysis of Il6 and Nlrp3. mRNA expression was
normalized to Gapdh. All data are reported as fold change ± SEM. e–h IL-1β increases Nlrp3 expression and
induces atrophy in differentiated C2C12 myocytes in vitro. C2C12 cells were differentiated for 8 days and
treated with human recombinant IL-1β (10, 20, and 50 ng/ml) for 72 h. Dexamethasone (10 μM/ml)
treatment was used as atrophy control. e Representative light microscopy pictures. Scale bar = 250 μm. f, g
Frequency distribution histograms of cell width of IL-1β (10, 20, and 50 ng/ml) and dexamethasone-treated
myotubes, as indicated, compared to vehicle-treated myotubes, n = 100 cells per condition. h Mean
myotube width. Data are presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p ≤ 0.0001
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(57.6 vs. 29.6%; p < 0.05) (Fig. 3a). Septic WT mice showed a reduction in body and liver

weight and no change in spleen weight (Fig. 3b; Additional file 4A, B). In contrast,

Nlrp3 KO did not lose body or liver weight, while spleen weight increased in these

mice during sepsis (Fig. 3b; Additional file 4A, B). We investigated if absence of Nlrp3

affects muscular cytokine expression in sepsis. At baseline, Il6 expression was not

different between Nlrp3 KO and WT in gastrocnemius/plantaris and tibialis anterior

(Additional file 5A). CLP did not or only marginally induce muscular Il6 expression

in Nlrp3 KO compared to WT (Fig. 3c, d). Also, Il1b expression was not different

between Nlrp3 KO and WT at baseline, and its expression was blunted in muscles of

CLP-treated Nlrp3 KO compared to WT mice (Additional file 6A, B). CLP induced Nlrp3

expression in WT but not in Nlrp3 KO (Additional file 6C, D). Since conversion of pro-

a

0

0.5

1.0

1.5

re
la

tiv
e 

m
R

N
A

 e
xp

re
ss

io
n

Myh2

** ** ***

Myh4 Myh7 Myh2

Dexa

Myh4 Myh7

*
**

0

0.5

1.0

1.5

re
la

tiv
e 

m
R

N
A

 e
xp

re
ss

io
n 2.0

b

- + - + - + - + - + - +

0

0.5

1.0

1.5

2.0

re
la

tiv
e 

m
R

N
A

 e
xp

re
ss

io
n

Trim63

*

0

0.5

1.0

1.5

2.0

2.5

re
la

tiv
e 

m
R

N
A

 e
xp

re
ss

io
n

**

0

1

2

3

4
Fbxo32

***

0

1

2

3

*

Trim63 Fbxo32

Dexa- + - + - + - +

c

IL-1

IL-1

IL-1

170

170

35

- + Solvens Dexa

GAPDH

slow/type I Myosin

fast/type II Myosin

Fig. 2 IL-1β treatment induces Trim63 (MuRF1) and Fbxo32 (atrogin 1) gene expression and reduces slow
and fast myosin heavy chain (MyHC) in C2C12 myotubes. a C2C12 cells were differentiated for 8 days and
treated with human recombinant IL-1β (10 ng/ml) for 72 h. Dexamethasone (10 μM/ml) treatment was used
as atrophy control. Western blot analysis with anti-myosin heavy chain (MyHC) slow and anti-MyHC-fast
antibody. n = 3. GAPDH was used as loading control. b C2C12 cells were differentiated for 8 days and
treated with human recombinant IL-1β (10 ng/ml) for 24 h. Dexamethasone (10 μM/ml) treatment was
used as atrophy control. qRT-PCR analysis of myosin heavy chain (Myh) 2, Myh4, and Myh7 expression.
mRNA expression was normalized to Gapdh. Data are presented as mean ± SEM. n = 3. *p≤ 0.05; **p≤ 0.01;
***p ≤ 0.001. c C2C12 cells were differentiated for 8 days and treated with human recombinant IL-1β
(10 ng/ml) for 2 h. Dexamethasone (10 μM/ml) treatment was used as atrophy control. qRT-PCR analysis
of Trim63 (MuRF1) and Fbxo32 (atrogin 1) expression. mRNA expression was normalized to Gapdh. Data
are presented as mean ± SEM. n = 3. *p≤ 0.05; **p≤ 0.01; ***p ≤ 0.001

Huang et al. Intensive Care Medicine Experimental  (2017) 5:3 Page 6 of 15



IL-1β to IL-1β depends on an intact Nlrp3 inflammasome [14, 24, 25], we quantitated IL-

1β cytokine levels in the serum of Nlrp3 KO and WT. Already at baseline, IL-1β serum

levels were reduced in Nlrp3 KO compared to WT (Additional file 6E). CLP significantly

induced IL-1β serum levels in WT. This induction in IL-1β serum levels was greatly
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reduced in Nlrp3 KO (Additional file 6F). These data indicate that in sepsis muscular Il1b

and Il6 expression depend on Nlrp3.

Compared to WT sham, WT CLP mice showed a significant reduction in the

weights of all muscles investigated 96 h after surgery. In contrast, the reduction of

muscle mass of Nlrp3 KO CLP compared to Nlrp3 KO sham mice was less severe
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(Fig. 3e, f, Additional file 4C, D). These data indicate that Nlrp3 KO mice are pro-

tected against inflammation-induced atrophy. Since inflammation-induced atrophy

predominantly affects fast-twitch fibers in critically ill patients [10], we analyzed at-

rophy of fast/type II fibers in gastrocnemius/plantaris and tibialis anterior muscles

of Nlrp3 KO and WT after CLP. The histological pictures show that myofibers of

WT but not of Nlrp3 KO CLP atrophied during sepsis (Fig. 4a). Accordingly, fre-

quency distribution histograms of the myocyte cross sectional areas (MCSA)

showed an increased number of smaller fast/type II fibers in both muscles of septic

WT but not Nlrp3 KO leading to a leftward shift of the distribution curve (Fig. 4b).

This atrophic response was attenuated in Nlrp3 KO compared to WT following

sepsis as indicated by a less pronounced reduction in mean MCSA in septic Nlrp3

KO (Fig. 4b). These data indicate Nlrp3 contributes to fast/type II fiber atrophy in

sepsis.

To test if inflammatory atrophy was accompanied by a reduction in MyHC, Western

blot analysis was performed and showed that sepsis caused a reduction of slow and fast

MyHC protein in gastrocnemius/plantaris and tibialis anterior of WT but not Nlrp3

KO (Fig. 5a). To elucidate if decreased myosin content was due to a reduction in

MyHC gene expression, we quantitated Myh2, 4 and 7 by qRT-PCR. Inflammation

caused a significant reduction in Myh2 and Myh7 gene expression in WT gastrocne-

mius/plantaris muscle (Fig. 5b). In contrast, Myh2 and Myh7 expression increased in

Nlrp3 KO gastrocnemius/plantaris muscle during inflammation (Fig. 5b). Inflammation

did not affect Myh4 gene expression. In the tibialis anterior muscle, Myh2 gene expres-

sion was regulated with the same trend as in gastrocnemius/plantaris, whereas Myh4

and Myh7 did not show a significant regulation (Additional file 7). To test if decreased

myosin content was correlated with increased atrogene expression, we quantitated

Trim63 and Fbxo32 expression in the muscle. Indeed, Trim63 and Fbxo32 expression

were significantly increased in septic WT but remained unchanged in Nlrp3 KO

muscles (Fig. 5c–f ). Western blot analysis showed that MuRF1 protein expression was

increased in gastrocnemius/plantaris of WT CLP but not in Nlrp3 KO CLP (Fig. 5a).

These data indicate that decreased Myh gene expression and its increased degradation

contribute to inflammation-induced atrophy.

Discussion
ICUAW is a devastating disease warranting detailed mechanistic investigation [2, 45].

In our study, we found a close relationship between systemic inflammation in sepsis

and muscle atrophy. We show that IL-1β signaling is present in myocytes and when

activated leads to myocyte atrophy in vitro. Germline deletion of Nlrp3 in mice led to

reduced IL-1β serum levels in response to inflammation and less inflammation-induced

muscle atrophy in vivo. These data underscore the conclusion that during inflamma-

tion, skeletal muscle and myocytes are targeted by IL-1β to undergo atrophy. However,

since Nlrp3 is ubiquitously expressed [31, 32], the observed reduction in IL-1β serum

levels in response to inflammation was most likely caused by the absence of Nlrp3 in

multiple cells, tissues, and organs and not only muscle. Nevertheless, our findings

suggest Nlrp3 as target for treatment against inflammation-induced atrophy.

Based on earlier published work, we suggest that muscle contributes to inflammation

and acute-phase response. Of note, the acute-phase response protein serum amyloid
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A1 (SAA1) was shown to be synthesized by and released from muscle of critically ill

patients and septic mice [36]. SAA1 induces IL-1β expression [46] and secretion [47]

and activates the Nlrp3 inflammasome in immune cells [46]. The Nlrp3 inflammasome

is contained and active in C2C12 myocytes [48]. IL-1β induces atrogene expression in

myocytes [23]. Together, these data suggest feedback loops between IL-1β, IL6, SAA1,
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and Nlrp3 during inflammation reinforcing muscle atrophy in critical illness. Here, we

show that Il1b and Il6 as well as Nlrp3 expression are increased in muscles of septic

mice. We show that the IL-1β signaling pathway is contained and active in myocytes in

vitro. Based on these observations, it is possible that Nlrp3 KO mice have less overall

inflammation during sepsis when compared to Nlrp3 WT animals and that not only de-

creased IL-1β levels but also reduced overall inflammation contributed to reduced

muscle atrophy in septic Nlrp3 KO mice. However, since we did not perform a compre-

hensive analysis of inflammation in our mice, we cannot provide a definitive answer to

this hypothesis.

We hypothesized that activation of the Nlrp3 inflammasome plays a role in

inflammation-mediated muscle atrophy via activation of IL-1β. The Nlrp3 inflamma-

some is activated by pathogen-associated molecular patterns [49] and host-derived

molecules, such as DNA, which indicates cellular damage and cell death, so-called

damage-associated molecular patterns [50]. Nlrp3 inflammasome could therefore

contribute to both pathogen-associated immune responses and sterile-inflammation.

We found that depletion of Nlrp3 in mice not only increases their survival in sepsis but

also inhibits sepsis and inflammation-mediated muscle atrophy. We believe that this

phenotype is predominantly caused by the missing conversion of pro-IL-1β to IL-1β.

We demonstrate that IL-1β induces atrophy presumably via the IL-1 signaling pathway

leading to NF-κB activation and increased MuRF1 and atrogin 1 expression in vitro.

This interpretation is in line with published work showing that IL-1β increases

atrogene expression in vitro [23]. Likewise, decreased activation of IL-1β in Nlrp3 KO

mice during sepsis resulted in decreased Il6 expression, which is a target of IL-1β and

mediates atrophy [36, 51]. We hypothesize that blockage of Nlrp3 inhibits sensing of

pathogen and host signals, which is followed by inhibition of IL-1β- and IL-6-

dependent damage pathways resulting in better survival and reduced muscle atrophy.

IL-6 and SAA1 mRNA and protein expression are increased in muscle of critically ill

patients [7, 36]. These factors promote continuous inflammation and acute-phase

response that in turn triggers ICUAW. We observed that IL-1β induces Il6 and Nlrp3

expression in cultured myocytes. After 24 h of treatment, expression levels of both

genes dropped. In contrast, in septic mice, the muscular expression of Il6 mRNA is still

markedly increased after 96 h post CLP, reflecting the situation of critically ill patients.

Our data add IL-1β and Nlrp3 as further cytokine network factors, highly expressed in

the skeletal muscle during systemic inflammation. The observed differences between

cultured myocytes and muscle tissue could be explained by the fact that a functional

cytokine network relies on interacting organs rather than cell-to-cell communications

within an isolated organ. This interpretation implies that the muscle, although itself an

immune organ, requires interaction and feedback from other organs to fully respond to

systemic inflammation. Taken together, during systemic inflammation, muscular

expression of SAA1, IL-6, Nlrp3, and IL-1β is persistently elevated, which might

contribute to atrophy.

An imbalanced muscular protein homeostasis plays a dominant role in muscle failure

of critically ill patients [4, 10, 38]. Atrogin 1 and MuRF1 are key “atrogenes” in this

process [10, 22, 38, 52]. Our finding that atrogene expression was not increased in

Nlrp3 KO indicates that atrogene expression is regulated by Nlrp3-dependent IL-1β

activation. Muscle atrophy is accompanied by increased MyHC degradation and
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decreased MyHC expression [10]. Whereas sepsis led to a decreased Myh2 and Myh7

expression in muscle of WT, this effect was blunted in Nlrp3 KO. Because IL-1β treat-

ment leads to decreased Myh2, Myh4, and Myh7 expression in myocytes, reduced

muscular MyHC expression during sepsis might be caused by IL-1β. Our data indicate

that Nlrp3-mediated IL-1β activation may affect both major branches of protein

homeostasis and therefore regulate MyHC synthesis via mRNA expression as well as

UPS-mediated MyHC degradation.

Conclusions
We suggest that Nlrp3-mediated IL-1β activation in sepsis is a major pathogenic

mechanism in inflammatory muscle atrophy. Inhibition of IL-1β could be useful to

prevent ICUAW in critically ill patients. Since not only sepsis is associated with

inflammation-induced muscle failure and increased IL-1β levels other forms of muscle

atrophy might also profit from Nlrp3/IL-1β inhibition; for example, in patients with

rheumatoid arthritis and inflammatory bowel disease. However, IL-1β is only one of

many cytokines that are elevated during the cytokine storm in the acute phase of sepsis.

It was shown that IL-1β, TNF-α, and IFN-γ were below detection limit in patients with

septic shock admitted to an ICU [41]. In these patients, continuously high IL-6 serum

levels were measured. IL-6 was not only negatively associated with muscular myosin

contents, a marker for muscle atrophy, but also provoked atrophy in myocytes in vitro

[41]. These data indicate that inhibition of multiple cytokines as well as its correct

timing is important to reduce inflammation-induced atrophy. However, unlike during

controlled conditions in animal experiments, the precise time point of sepsis onset in

patients is often unknown which impedes such treatment decisions for the caring

clinician. The key to a targeted therapy of inflammation-induced atrophy in sepsis is,

therefore, a better characterization of the disease process, and we think that animal

models are helpful in this regard.

Additional files

Additional file 1: Supplementary Materials and Methods. (DOCX 78 kb)

Additional file 2: Polymicrobial sepsis increases Nlrp3, Il1b, and Il6 expression in the muscle. Twelve-week-old
male C57B16/J mice were subjected to cecal ligation and puncture (CLP) or sham surgery (sham), as indicated. (A)
qRT-PCR analysis of Nlrp3, IL-1β, and Il6 expression in gastrocnemius/plantaris (GP) and (B) tibialis anterior (TA)
muscles of sham (n = 5) and CLP (n = 5) mice 4 days after surgery. mRNA expression was normalized to Gapdh.
Data are presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001. (EPS 1161 kb)

Additional file 3: Body and organ weights of Nlrp3 KO and WT mice were indistinguishable at baseline. Weights
of body (A), liver and spleen (B), and muscle (C); gastrocnemius/plantaris (GP), tibialis anterior (TA), soleus (Sol) and
extensor digitorum longus (EDL)); Nlrp3 KO (n = 6); WT (n = 6). All weights were normalized to tibia length and
expressed as percent wise change compared to WT. Animals were 12–16-week-old males. Data are presented as
the mean ± SEM. ns = not significant. (EPS 1175 kb)

Additional file 4: Septic Nlrp3 KO mice show no decrease in liver weight but an increase in spleen weight.
Twelve- to 16-week-old male Nlrp3 KO and WT mice were subjected to CLP or sham surgery. Weights were
determined at 96 h after surgery. (A) Liver and (B) spleen weight. (C, D) Weights of the skeletal muscles (C)
soleus (Sol) and (D) extensor digitorum longus (EDL) (WT sham (n = 13), WT CLP (n = 12), Nlrp3 KO sham (n = 8),
Nlrp3 KO CLP (n = 16)). All weights were normalized to tibia length and expressed as percent wise change
compared to the respective sham group. Data are presented as the mean ± SEM. ns = not significant.
*p < 0.05; **p < 0.01; ***p < 0.001. (EPS 1427 kb)

Additional file 5: Baseline muscular Il6 and Il1b expression in Nlrp3 KO and WT mice. qRT-PCR analysis of (A) Il6
and (B) IL1b expression in gastrocnemius/plantaris (GP) and tibialis anterior (TA) muscles as indicated. Nlrp3 KO
(n = 6) and WT (n = 6). mRNA expression was normalized to Gapdh. Data are presented as the mean ± SEM.
ns = not significant. (EPS 1144 kb)
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Additional file 6: Inflammation-induced increase in muscular Il6 and Il1b expression as well as serum IL-1β levels
are blunted in Nlrp3 KO mice. Twelve- to 16-week-old male Nlrp3 KO and WT mice were subjected to CLP or sham
surgery, as indicated. At 96 h after surgery, analyses were performed. (A–D) qRT-PCR analysis of (A, B) Il1b and (C,
D) Nlrp3 expression in gastrocnemius/plantaris (GP) and tibialis anterior (TA) muscles of WT sham
(n = 5), WT CLP (n = 9), Nlrp3 KO sham (n = 5), and Nlrp3 KO CLP (n = 6) mice. mRNA expression was normalized to
Gapdh. (E, F) Serum IL-1β was determined in WT and Nlrp3 KO mice using the Abcam kit according to the
manufacturer’s protocol. (E) Serum IL-1β concentration at baseline. (F) Serum IL-1β concentration in Sham and
CLP mice. WT-sham (n = 15), WT-CLP (n = 12), Nlrp3 KO-sham (n = 14), Nlrp3 KO-CLP (n = 14). Data are presented as
mean ± SEM. ns, not significant; **p ≤ 0.01; ***p≤ 0.001. n.d. = not detected. (EPS 1443 kb)

Additional file 7: Inflammation-induced decrease of myosin heavy chain gene expression is blunted in Nlrp3 KO
mice. Twelve- to 16-week-old male Nlrp3 KO and WT mice were subjected to CLP or sham surgery. qRT-PCR
analysis of myosin heavy chain (Myh) 2, Myh4, and Myh7 expression in tibialis anterior (TA) muscles of sham (n = 5)
and CLP (n = 5) mice at 96 h after surgery as indicated (WT sham: n = 5; WT CLP: n = 9; Nlrp3 KO sham n = 5; Nlrp3
KO: CLP n = 6). mRNA expression was normalized to Gapdh. Data are presented as mean ± SEM. ns, not significant;
**p≤ 0.01. (EPS 1369 kb)
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CLP: Cecal ligation and puncture model of polymicrobial sepsis; Fbxo32: F-box only protein 32 (mouse gene encoding
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