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Abstract

Recent work on genetic association studies suggests that much of the heritable variation in complex traits is
unexplained, which indicates a need for using more biologically meaningful modeling approaches and appropriate
statistical methods. In this study, we propose a biological framework and a corresponding statistical model
incorporating multilevel biological measures, and illustrate it in the analysis of the real data provided by the
Genetic Analysis Workshop (GAW) 19, which contains whole genome sequence (WGS), gene expression (GE),
and blood pressure (BP) data. We investigate the direct effect of single-nucleotide variants (SNVs) on BP and
GE, while considering the non-directional dependence between BP and GE, by using copula functions to
jointly model BP and GE conditional on SNVs. We implement the method for analysis on a genome-wide
scale, and illustrate it within an association analysis of 68,727 SNVs on chromosome 19 that lie in or around
genes with available GE measures. Although there is no indication for inflated type I errors under the proposed
method, our results show that the association tests have smaller p values than tests under univariate models for
common and rare variants using single-variant tests and gene-based multimarker tests. Hence, considering
multilevel biological measures and modeling the dependence structure between these measures by using a
plausible graphical approach may lead to more informative findings than standard univariate tests of common
variants and well-recognized gene-based rare variant tests.
Background
Biological–statistical framework
In recent years, the further development and refinement
of high-throughput technologies has allowed genetic
associations to be investigated in more depth. Using
whole genome sequence (WGS) data, rare variants are
being analyzed with the hope of explaining more of the
heritable variation in phenotypes unexplained by common
single-nucleotide variants (SNVs). However, the results of
recent studies seem to suggest that the success herein has
been limited despite the development and use of new
gene-based rare-variant tests. We argue that statistical
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models and methods with a more meaningful and ap-
propriate biological basis are needed to obtain more
powerful association tests. Accordingly, we propose a
modeling framework incorporating multilevel biological
measures in the context of the available Genetic Ana-
lysis Workshop (GAW) 19 data and a corresponding
statistical method for genetic association analysis of
common and rare variants. The arguments in this study
build on the biological framework depicted in Fig. 1,
which describes the potential effects between the differ-
ent measured variables.
Empirical evidence exists for effects (a) and (b) in Fig. 1

in inverse directions [1], which suggests non-directional
modeling of the association between blood pressure (BP)
and gene expression (GE). Accordingly, this study pro-
poses a joint model of BP and GE conditional on SNVs
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Fig. 1 Model of potential relation between DNA sequence, gene
expression levels, and blood pressure. DBP, diastolic blood pressure;
SBP, systolic blood pressure
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based on copula functions [2] to identify SNVs associated
with BP and/or GE while considering non-directional
associations between them, and implements the ap-
proach so that it can be applied on a genome-wide
scale. Previous studies [3] showed that association tests
of common variants in copula models have higher
power when there is a high correlation between the 2
phenotypes. In this study, we investigate whether or not
this improvement holds true under moderate or low
correlations as well, and whether or not there is any
power gain in single rare-variant association tests when
incorporating multilevel biological measures. Copula
functions are used to construct a joint distribution by
combining the marginal distributions with a depend-
ence structure. In the copula modeling approach, the
parameters of the dependence between BP and GE do
not appear in the marginal distributions. This property
is very useful in estimating the direct effects of SNVs
on BP or GE, while considering the dependence between
BP and GE, and also in identifying pleiotropic SNVs
which are associated with both phenotypes. In addition
to identifying SNVs associated with BP and/or GE, the
framework also allows, for example, a focus on search-
ing for SNVs explaining the association between GE
and BP [3].
Methods
Data description
The family data set of the GAW 19 contains information
on 157 unrelated individuals from the San Antonio family
studies pedigrees, including systolic BP (SBP) and diastolic
BP (DBP) measurements, information regarding current
use of antihypertensive medication, and non-genetic
covariates (sex, age, and current tobacco smoking sta-
tus) at one or more examination time points [4]. GE
measurements in lymphocytes at the first time point are
available for 20,634 transcripts, which were already quality-
checked, filtered for detectable expression, and quantile-
normalized. For 113 unrelated individuals, complete data is
available for BP, GE, and the non-genetic covariates, and
among them, 81 individuals have WGS data. We conduct
genetic association analyses in this subset of 81 unrelated
individuals using real phenotypes. The sequence data is
available for odd-numbered chromosomes and was first
processed before the analysis, with standard quality
control checks and the exclusion of SNVs with more
than 20 % missing base calls. We focus on the BP mea-
surements and non-genetic covariates at the first time
point. Of the 2 BP phenotypes, only SBP is considered.

Statistical methods
To illustrate and evaluate the copula method, chromo-
some 19 was analyzed, as it contains the transcript with
the highest association with SBP (IL12RB1, Kendall’s τ =
0.24, p = 2.5 × 10− 4) among all 11,542 available mapped
transcripts, and we hypothesize that it could lead to the
largest power increase under the joint model compared
to univariate models. GE was measured for 848 transcripts
on chromosome 19. All N = 68, 727 non-monomorphic,
biallelic SNVs with minor allele frequency (MAF) equal
to or greater than 0.015 (i.e., with at least 3 copies of
the minor allele) which lie in or within 5 kb of these
genes were analyzed in separate copula models of SBP
and the corresponding GE. We used the annotations in
the provided variant call format (VCF) files, the pro-
vided mapping of GE probes to gene names, and the
Ensembl database with reference genome GRCh37.p13
through BioMart to obtain physical positions of genes
and SNVs.
In a preparatory step of phenotype definition, we ad-

justed the SBP and GE measures for the effect of the non-
genetic covariates, including antihypertensive medication.
Adjusting SBP for the effect of BP-lowering medication is
important because the objective is to explain the variation
in SBP. Following the method described in Konigorski
et al. [3], we fitted a censored regression model condi-
tional on the non-genetic covariates age, sex, and smoking
status, with medication use as a censoring indicator. For
treated individuals, we estimated the “true” underlying
SBP from the conditional expectation of SBP, given that
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the observed SBP is lower than the true SBP, and also
conditional on the non-genetic covariates. For further
analysis, adjusted SBP phenotypes SBPadj are the residuals
obtained as follows: an untreated individual’s adjusted SBP
is the difference between observed and fitted SBP; a
treated individual’s adjusted SBP is the difference between
estimated true and fitted SBP. Adjusted GE phenotypes
GEj,adj, j = 1, 2, …, 848, for the following analysis steps are
residuals obtained from fitting a linear regression for each
GEj on the nongenetic covariates age, sex, smoking status,
and antihypertensive medication.
In the genetic association analysis, we fitted a copula

model for the joint distribution of SBPadj and GEj,adj, j =
1, 2,…, 848, conditional on each single variant SEQi in
and around the gene,

F SBPadj;GEj;adjjSEQi

� � ¼ Cψ F1 SBPadjjSEQi

� �
; F2 GEj;adjjSEQi

� �� �

ð1Þ
where Cψ is a copula function with dependence parameter
ψ, and F1 and F2 are the marginal distributions of SBPadj
and GEj,adj, respectively, with models

SBPadj ¼ α0 þ α1SEQi þ εi ð2Þ

GEj;adj ¼ β0 þ β1SEQi þ ε
0
i: ð3Þ

We consider the 2-parameter copula family

Cψ u1; u2ð Þ ¼ u1
−φ−1ð Þθ þ u2

−φ−1ð Þθ
h i1=θ

þ 1

� �−1=φ

ð4Þ
with 0 ≤ u1, u2 ≤ 1, and the copula parameters ψ = (φ, θ),
φ > 0, θ ≥ 1, which allows a flexible modeling of both the
lower- and upper-tail dependence and contains a large
class of copulas, including the Clayton and the Gumbel-
Hougaard copula [2]. To identify SNVs associated with
SBPadj and GEj,adj, we tested the null hypotheses H0 : α1 = 0
(vs. HA : α1 ≠ 0) and H0 : β1 = 0 (vs. HA : β1 ≠ 0), respect-
ively, by using the large sample Wald test statistics.
For a comparison with univariate approaches, standard

linear regression models of SBPadj in equation (2) and
GEj,adj in equation (3) were fitted independently. Aside
from the single-variant tests, gene-based association
tests for rare variants were also considered. In particular,
Table 1 Results of the SNVs significantly associated with SBP under

SNV MAF Location Copula

bα1 (SE) p va

rs10402825 0.04 CEACAM5 (protein coding) 30.77 (6.52) 2.40

rs7258524 0.04 CEACAM5 (upstream) 30.75 (6.56) 2.77

Adj. p value is the adjusted p value with BH-correction; MAF denotes the minor al
GECEACAM5,adj is − 0.13. Note: The markers are in very high linkage disequilibrium (
gene are in perfect LD with rs7258524 and have identical association
a variance-component test (the sequence kernel associ-
ation test; SKAT [5]) and a test that combines a burden
and variance-component test (the optimal sequence
kernel association test; SKAT-O [6]) were used for
comparison. To have the best possible performance of
the SKAT and SKAT-O as a reference, all possible kernels,
p value computation methods, and inclusions of variants
(in gene only, in and around gene, rare variants, or rare
and common variants) of the SKAT function in R were
used, and the minimum p value of all these tests was
extracted for a given gene. To assess the significance of
the results corrected for multiple testing, adjusted p values
were calculated using the R function p.adjust with the
Benjamini and Hochberg adjustment (BH-adjustment) [7],
which controls the false discovery rate.

Results
Of the N = 68, 727 analyzed variants on chromosome 19,
18,916 are rare variants with MAF between 0.015 and
0.05 (inclusive), and the remaining 49,811 variants have a
MAF greater than 0.05. On average, 96 SNVs were tested
with each GE (some SNVs were tested with more than 1
GE because of gene overlap/proximity). The smallest gene
contains 4 SNVs and the largest gene contains 920 SNVs.
For model selection, the Akaike Information Criterion
(AIC) was computed for each model. We observed that
the copula model had a smaller AIC than a bivariate nor-
mal model conditional on any SNV; therefore, it has a
better model fit. In addition, the copula model had a
smaller AIC than the working independence model when
there was a moderate association between SBPadj and
GEj,adj (i.e., when the estimated Kendall’s τ is greater
than 0.11).
Based on an α level of 0.05 and the adjusted p values,

5 SNVs in the gene CEACAM5 are identified to be sig-
nificantly associated with SBP under the copula model
(Table 1). Additionally, 1075 SNVs in 122 different genes
are identified to be significantly associated with their
corresponding GE as local (cis) expression quantitative
trait loci (eQTLs; Table 2). For these significant SNVs,
Kendall’s τ between the corresponding GE and SBP is esti-
mated as 0.21 or less. In comparison, none of the 68,727
SNVs are identified as significant based on the univariate
regression model of SBP (Table 1), and based on the
univariate regression model of GE, 800 SNVs in 80 genes
the copula model and results under the univariate model

Univariate

lue Adj. p value bα1 (SE) p value Adj. p value

× 10− 6 4.42 × 10− 2 32.21 (6.63) 6.18 × 10− 6 1.12 × 10− 1

× 10− 6 4.42 × 10− 2 32.28 (6.67) 6.86 × 10− 6 1.71 × 10− 1

lele frequency in this sample. The estimated Kendall’s τ between SBPadj and
LD) (r = 0.99). SNVs rs34155934, rs35091611, and rs10415940 in the same



Table 2 Results of the SNVs with the smallest p values in the association tests of H0 : β1 = 0 for GE under the copula and univariate
models

SNV MAF Location Copula Univariate
bβ1 (SE) p value Adj. p value bβ1 (SE) p value Adj. p value

rs2314667 0.32 UBA52 (upstream) 0.88 (5.42 × 10− 02) 6.47 × 10− 60 1.71 × 10− 55 0.88 (5.49 × 10− 02) 3.21 × 10− 26 8.71 × 10− 22

rs2314664 0.33 UBA52 (downstream) 0.85 (5.52 × 10− 02) 5.01 × 10− 54 7.97 × 10− 50 0.85 (5.59 × 10− 02) 7.24 × 10− 25 1.18 × 10− 20

rs2314666 0.34 UBA52 (downstream) 0.85 (5.66 × 10− 02) 2.88 × 10− 51 3.81 × 10− 47 0.85 (5.73 × 10− 02) 3.41 × 10− 24 4.62 × 10− 20

Adj. p value is the adjusted p value with BH-correction; MAF denotes the minor allele frequency in this sample. The estimated Kendall’s τ between SBPadj and
GEUBA52,adj is − 0.01. Note: The markers in the table are in very high linkage disequilibrium (LD) (with 0.96 ≤ r ≤ 0.99). SNVs rs6554 and rs10425018 in the same
gene are in perfect LD with rs2314667 and have identical association; also rs7258480 is in perfect LD with rs2314664

The Author(s) BMC Proceedings 2016, 10(Suppl 7):57 Page 292 of 415
are significantly associated with GE (Table 2). The power
gain under the copula model compared to the univariate
model is shown in Fig. 2, which shows plots of the p
values of all tested SNVs under the copula model versus
the univariate models of SBP and GE. In particular, lower
p values are much lower under the copula model com-
pared to the univariate models. The power gain can also
be obtained when the dependence between SBP and GE
is very low, and it is a result of: (a) lower SE estimates
of the SNV effect under the copula model, while point
estimates are similar and the mean difference between
point estimates is 0, and (b) the different (asymptotic)
null distribution of the association test statistics (nor-
mal vs. t distribution). The top hits under the 2 models
are in the same order with respect to p values, and con-
sist of rare variants significantly associated with SBP
Fig. 2 Scatterplots of the p values (on a − log10 scale) of all tested common a
(for GE, right panel) under the copula model versus the univariate model. For
corresponding GE and SBP is shown by the color of the dots
(Table 1), and common variants significantly associated
with GE (Table 2).
After extracting the smallest p values among all SKAT

and SKAT-O options in the SKAT function in R and ap-
plying a multiple testing correction for p values, 1 gene is
identified to be associated with SBP (which contains the 5
significant variants identified under the copula model) and
36 genes are associated with GE. All of these genes are
also identified in the single-variant analysis under the cop-
ula model. Table 3 shows the raw and adjusted p values of
the top genes identified by SKAT and SKAT-O, and the
minimum adjusted p values of all variants in or around
the corresponding gene under the copula model for com-
parison. Much smaller p values are obtained using the
single-variant analysis under the copula model incorporat-
ing multilevel biological measures.
nd rare SNVs for testing H0 : α1 = 0 (for SBP, left panel) and H0 : β1 = 0
each SNV, the strength of the association (Kendall’s τ) between the



Table 3 Raw and adjusted p values of the top genes identified by SKAT and SKAT-O and the minimum of the adjusted p values for
variants in the gene under the copula model, obtained from testing H0 : β1 = 0 for GE

Gene SKAT/SKAT-O Copula

p value Adjusted p value p value Adjusted p value

UBA52 1.36 × 10− 12 1.15 × 10− 09 6.47 × 10− 60 1.71 × 10− 55

IGFLR1 3.79 × 10− 10 1.61 × 10− 07 3.74 × 10− 19 1.24 × 10− 15

ACP5 3.12 × 10− 09 8.83 × 10− 07 4.95 × 10− 12 5.33 × 10− 09

CNN2 4.96 × 10− 07 9.06 × 10− 05 2.01 × 10− 14 3.56 × 10− 11

ANKRD27 5.34 × 10− 07 9.06 × 10− 05 6.08 × 10− 13 7.94 × 10− 10
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The type I error of the test statistics, under the 3
modeling approaches, was checked using the observed
data (see Fig. 3, for an illustration, showing quantile–
quantile [Q-Q] plots of the p values for testing H0 : α1 = 0).
The p values obtained under the copula model and the
univariate regression models do not appear to show in-
flated type I errors, and the points corresponding to
high p values lie on the diagonal line. There is some
evidence for an inflated type I error for the gene-based
SKAT and SKAT-O tests, when the minimum p value
of all options in the SKAT package in R is extracted.

Conclusions
A biological framework and genetic analysis approach
based on a joint model of BP and GE is proposed, which
contains a meaningful interpretation of possible bio-
logical relations. The approach, implemented in R, can
be employed on a genome-wide scale and is illustrated
in the analysis of 848 genes on chromosome 19. The
analysis is computationally feasible and the association
tests of all SNVs in the copula model took less than
1 day on four 32-core 2.6-GHz processors. Despite the
small sample size and low dependence between SBP
and GE, under the joint copula model, 5 rare variants
in the gene CEACAM5 are identified to be significantly
associated with SBP, and in the eQTL analysis, 1075
Fig. 3 Uniform Q-Q plots of the p values (on a − log10 scale) for testing H0 : α
and SKAT/SKAT-O (right panel). SNVs/genes which are significant after correct
variants in 122 genes are found to be significantly asso-
ciated with their corresponding GE. More importantly,
the Wald test statistic under the copula model seems to
have a well-calibrated type I error and a higher power
to detect both common and rare SNVs compared to uni-
variate models and the well-recognized multimarker rare
variant association tests, SKAT and SKAT-O. This under-
lines the potential usefulness of better phenotype model-
ing and of incorporating multi-level biological measures.

Discussion
Because the focus was to implement and illustrate the
analyses and interpretations within the proposed bio-
logical framework, as well as to show the potential useful-
ness of the approach by comparison to other approaches,
the real data of unrelated individuals was used. The result-
ing small sample size can naturally limit the relevance of
identified variants, as a consequence of the low power;
however, it allows a more reliable comparison of the
different methods without disentangling the effects
when accounting for the family structure. For a more
complete evaluation, a comparison of type I error rates
has been conducted in an ongoing simulation study,
and we observed that the Wald test statistics do not
have inflated type I errors under the copula model. One
restriction of the analyses was that rare variants with
1 = 0 under the copula model (left panel), univariate model (middle panel),
ing for multiple testing are highlighted in blue color
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only 1 or 2 copies of the minor allele were not investi-
gated under the copula model so that private mutations
could not be detected. As a possible extension of the
proposed approach, it would be interesting to include
phenotypes on multiple levels (e.g., blood serum levels
of biomarkers or epigenetic factors). Furthermore, measur-
ing GE in cell types other than lymphocytes, for example
in cells in the kidney, could lead to a higher association
between SBP and GE. We anticipate that considering
biologically meaningful complex joint models of multiple
phenotypes will lead to more powerful association tests.

Acknowledgements
YEY is supported by the Natural Sciences and Engineering Research Council
of Canada, the Research & Development Corporation of Newfoundland and
Labrador, and the Faculty of Medicine, Memorial University of Newfoundland.

Declarations
This article has been published as part of BMC Proceedings Volume 10
Supplement 7, 2016: Genetic Analysis Workshop 19: Sequence, Blood
Pressure and Expression Data. Summary articles. The full contents of the
supplement are available online at http://bmcproc.biomedcentral.com/
articles/supplements/volume-10-supplement-7. Publication of the
proceedings of Genetic Analysis Workshop 19 was supported by National
Institutes of Health grant R01 GM031575.

Authors’ contributions
SK, YEY, and TP designed the overall study, SK conducted statistical analyses,
and SK and YEY drafted the manuscript. All authors read and approved the
final manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details
1Molecular Epidemiology Research Group, Max Delbrück Center (MDC) for
Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany.
2Department of Mathematics and Statistics, Memorial University of
Newfoundland, St. John’s, NL A1C 5S7, Canada. 3Discipline of Genetics,
Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL
A1C 5S7, Canada.

Published: 18 October 2016

References
1. Ainsworth HF, Cordell HJ. Using gene expression data to identify causal

pathways between genotype and phenotype in a complex disease:
application to genetic analysis workshop 19 data, Paper presented at the
genetic analysis workshop 19 in Vienna. 2014.

2. Joe H. Multivariate models and multivariate dependence concepts. London:
Chapman & Hall; 1997.

3. Konigorski S, Yilmaz YE, Bull SB. Bivariate genetic association analysis of
systolic and diastolic blood pressure by copula models. BMC Proc.
2014;8 Suppl 1:S72.

4. Blangero J, Teslovich TM, Sim X, Almeida MA, Jun G, Dyer TD, et al. Omics
squared: human genomic, transcriptomic, and phenotypic data for genetic
analysis workshop 19. BMC Proc. 2016;10 Suppl 7:S2.

5. Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-variant association testing
for sequencing data with the sequence kernel association test. Am J Hum
Genet. 2011;89(1):82–93.

6. Lee S, Wu MC, Lin X. Optimal tests for rare variant effects in sequencing
association studies. Biostatistics. 2012;13(4):762–75.

7. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57(1):289–300.
•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

http://bmcproc.biomedcentral.com/articles/supplements/volume-10-supplement-7
http://bmcproc.biomedcentral.com/articles/supplements/volume-10-supplement-7

	Abstract
	Background
	Biological–statistical framework

	Methods
	Data description
	Statistical methods

	Results
	Conclusions
	Discussion
	Acknowledgements
	Declarations
	Authors’ contributions
	Competing interests
	Author details
	References

