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Abstract 

 

 

The immunoglobulin superfamily represents a diverse set of cell-cell contact proteins and includes 

well-studied members such as NCAM1, DSCAM, L1 or the contactins which are strongly expressed in 

the nervous system. In this review we put our focus on the biological function of a less understood 

subgroup of Ig-like proteins composed of CAR (coxsackievirus and adenovirus receptor), CLMP 

(CAR-like membrane protein) and BT-IgSF (brain and testis specific immunoglobulin superfamily). 

The CAR-related proteins are type I transmembrane proteins containing an N-terminal variable (V-

type) and a membrane proximal constant (C2-type) Ig domain in their extracellular region which are 

implicated in homotypic adhesion. They are highly expressed during embryonic development in a 

variety of tissues including the nervous system whereby in adult stages the protein level of CAR and 

CLMP decreases, only BT-IgSF expression increases within age. CAR-related proteins are 

concentrated at specialized cell-cell communication sites such as gap or tight junctions and are present 

at the plasma membrane in larger protein complexes. Considerable progress has been made on the 

molecular structure and interactions of CAR while research on CLMP and BT-IgSF is at an early 

stage. Studies on mouse mutants revealed biological functions of CAR in the heart and for CLMP in 

the gastrointestinal and urogenital systems. Furthermore, CAR and BT-IgSF appear to regulate 

synaptic function in the hippocampus.   
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Structural features of CAR-related cell adhesion molecules 

 

The CAR-related proteins form a subgroup within the larger subgroup of CTX (the cortical 

thymocyte marker in Xenopus) of Ig-like cell adhesion molecules (Chretien et al., 1998; Du Pasquier 

and Chrétien, 1996). Besides CAR, CLMP, BT-IgSF and ESAM (endothelial cell-selective adhesion 

molecule) are assigned to this CAR subgroup (Schreiber et al., 2014). These are type I transmembrane 

glycoproteins sharing an identical overall domain organization including two extracellular Ig domains, 

a transmembrane segment and a cytoplasmic tail. The N-terminal located domain belongs to the V-

subtype of Ig domains (D1) which is connected to the membrane proximal Ig domain of the C2 

subtype (D2) by a short junction which might create flexibility in the extracellular part of the protein. 

Some diversity between these members is seen in the cytoplasmic domain, but all three contain PDZ 

binding motifs at their C-termini (Raschperger et al., 2004). Up to date, only for CAR a three-

dimensional structure of the extracellular domains has been solved by crystallography (Patzke et al., 

2010; van Raaij et al., 2000; Verdino et al., 2010). Due to the high similarities to CAR at the amino 

acid level a potential protein structure can be predicted for the extracellular part of CLMP and BT-

IgSF as shown in Figure 1. Beside these structural similarities all three proteins mediate homotypic 

cell aggregation and for CAR and CLMP a homophilic binding mode has been demonstrated (Harada 

et al., 2005; Honda et al., 2000; Patzke et al., 2010; Raschperger et al., 2004). 

 

The coxsackie- and adenovirus receptor 

 

Initially CAR was identified as a receptor for subtypes of adenoviruses and group B 

coxsackieviruses by Bergelson et al. (1997) and Tomko et al. (1997) whereby CAR acts as attachment 

site for adenoviruses and for binding and entry in the case of coxsackieviruses (Bergelson et al., 1997; 

Bewley, 1999; He et al., 2001; Martino et al., 2000; Roelvink et al., 1999; Salinas et al., 2014; Tomko 
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et al., 1997). The murine and human Car genes are composed of 8 exons and are located on the 

chromosome 16 and chromosome 21 (21q21.1), respectively, from which different isoforms are 

generated by alternative splicing (Bergelson et al., 1997; Bowles et al., 1999; Chen et al., 2003; 

Excoffon et al., 2010). Three transmembrane forms differing in the cytoplasmic segment of murine 

CAR are known of which the two dominating forms contain class I PDZ binding motifs (Chen et al., 

2003; Excoffon et al., 2010). In humans two transmembrane forms have been described and in 

addition three soluble forms have been predicted at the transcript level which, however, have not been 

confirmed at the protein level (for further details and literature on the different isoforms of CAR see 

the recent reviews by Excoffon et al. 2014 and Loustalot et al. 2015). CAR orthologues were also 

found in rats, pigs, dogs, chick and zebrafish and revealed a highly conserved amino acid sequence in 

particular in the cytoplasmic domain (Coyne and Bergelson, 2005; Fechner et al., 1999; Patzke et al., 

2010; Petrella et al., 2002; Thoelen et al., 2001).  

In crystals the full extracellular region of CAR forms U-shaped homodimers through the 

binding of their N-terminally located Ig domains which is reminiscent to JAM-A homodimers 

(Kostrewa et al., 2001; Patzke et al., 2010; Prota et al., 2003; Verdino et al., 2010). D1 and D2 

associate in a head-to-tail manner and form a rod-like, dumbbell-shaped structure whose protrusions 

are formed by the two globular Ig domains (Figure 1). A linker segment of five residues tethers the 

extracellular Ig domains of CAR to the plasma membrane. The resolution of this extracellular CAR 

protein structure allowed to define an interface of amino acid residues with a size of 684 Å
2
 per 

monomer which is implicated in homodimer formation. Interestingly, CAR-CAR homodimer or CAR-

JAM-L heterodimer formation and binding of the adenovirus fiber knob to CAR in crystals is 

mediated by overlapping amino acid residues within the D1 domain. The fiber knob is the 

homotrimeric protein of the adenovirus capsid which binds CAR on the host cell surface for infection 

(Howitt et al., 2003; Law and Davidson, 2005; Patzke et al., 2010; van Raaij et al., 2000; Verdino et 

al., 2010). For coxsackievirus B3 attachment also the D1 domain is required, however compared to 

adenovirus binding different amino acid residues are involved (Figure 2) (He et al., 2001). The 

membrane-proximal C2-like Ig domain (D2) might not be necessary for correct adenovirus binding or 

homodimer formation (Carson, 2001; van Raaij et al., 2000), however, in polarized airway epithelial 
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cells the complete extracellular domain was required for efficient adenovirus binding and infection 

(Excoffon et al., 2005). Furthermore, in biochemical binding and adhesion studies Patzke et al. (2010) 

showed an interaction between D1 and D2 domains suggesting that both Ig like domains are 

implicated in homophilic interactions which can also be deduced from molecular docking simulations 

(Figure 2). The combined adhesion, binding and structural data on CAR suggest that additional 

arrangements of CAR molecules other than that observed in the crystal might be proposed. In a 

hypothetical model trans-homophilic interactions might be initiated by CAR monomers from opposing 

cells via the observed D1-D1 interface. CAR mediated adhesion could then be further strengthened by 

a change in the conformation which relocates the Ig domains in a manner in which they bind 

reciprocally by forming D1-D2 interfaces in a linear arrangement (Patzke et al., 2010). The binding 

affinity of the fiber knob of the adenovirus to CAR is 100 to 1000-fold higher compared to homodimer 

formation probably to ensure correct attachment of the virus for proper cell entry (Kirby et al., 2000; 

Patzke et al., 2010; van Raaij et al., 2000). The trimeric fiber knob binds up to three D1 domains of 

CAR molecules which most likely are attached to the same plasma membrane (Bewley, 1999; 

Freimuth et al., 2008; Roelvink et al., 1999). Consistently, the binding of the fiber knob to CAR on the 

cell surface disrupts the formation of cell-cell contacts which might also allow the virus to cross tissue 

barriers (Patzke et al., 2010; Walters et al., 2002).  

 

Extra- and intracellular molecular interactions of CAR 

 

In addition to homophilic interactions, heterophilic binding of CAR was observed with 

different extracellular matrix proteins like fibronectin, agrin or tenascin-R in biochemical assays which 

appear to be mediated by D2 of CAR. However the biological significance of these interactions are 

currently unknown. Other heterophilic interactions were defined with the junctional adhesion 

molecules JAM-L and JAM–C (Figure 2) (Mirza et al., 2006; Patzke et al., 2010; Verdino et al., 2010; 

Witherden et al., 2010; Zen et al., 2005). The interaction between CAR on keratinocytes and JAM-L 

on γδ T cell in the skin regulates signals for neutrophil transepithelial migration across tight junctions. 

It induces co-stimulation, cytokine production and activation of the MAP kinase pathway via 
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recruitment of the phosphoinositide-3-kinase (PI3K) to a JAM-L intracellular sequence motif (Luissint 

et al., 2008; Verdino et al., 2010; Witherden et al., 2010; Zen et al., 2005). Direct binding of CAR to 

integrin adhesion receptors has so far not been demonstrated, however several reports have described a 

close association of CAR with specific integrins on cardiomyocytes and CAR mediated activation of 

MAPK resulted in an increased activation of β1 and β3 integrins (Morton et al., 2013; Noutsias et al., 

2001). Furthermore, CAR co-operates with integrins to enable efficient virus entry into the cell 

suggesting a crosstalk between both receptor types  (Bai et al., 1994; Davison et al., 1997; Li et al., 

2001; Uchio et al., 2007; Wickham et al., 1993). 

The cytoplasmic tails of CAR isoforms include two distinct class I PDZ (PSD-95/Disc-

large/ZO-1) binding motifs. Deletion of the PDZ binding segment of CAR resulted in altered cell 

adhesion and cell growth in airway epithelia cells suggesting CAR interactions with different 

intracellular signaling molecules (Excoffon et al., 2004).  Consistently, several partners were identified 

that bind to the PDZ motifs of human or murine CAR including the tight junction protein ZO-1 (Zona 

occludens-1), MUPP-1 (Multi-PDZ domain protein-1), MAGI-1b (Membrane associated guanylate 

kinase, WW and PDZ domain containing 1b), PICK-1 (Protein interacting with C kinase 1), the 

synaptic scaffolding protein PSD-95 (postsynaptic density protein 95) and LNX (Ligand-of-Numb 

protein-X) and LNX2 (Cohen et al., 2001; Coyne et al., 2004; Kolawole et al., 2012; Mirza et al., 

2005; Raschperger et al., 2006; Sollerbrant et al., 2003). Overall, these interactions with intracellular 

proteins indicate that CAR is present at the plasma membrane in larger protein complexes. 

Colocalisation of CAR with ZO-1 suggested that CAR itself is involved in the formation of tight 

junctions and therefore promotes cell-cell contacts probably together with the multi-PDZ domain 

protein MUPP1 (Cohen et al., 2001; Coyne et al., 2004). Indeed, the integrity of cell-cell contact sites 

was reduced in CAR knockout mouse models, after inhibition of CAR by a soluble form of CAR or 

after fiber knob binding (Cohen et al., 2001; Lim et al., 2008; Patzke et al., 2010; Walters et al., 2002). 

In growth cones CAR seems to associate with actin filaments to modulate the cytoskeletal 

organization during growth and migration (Huang et al., 2007).  Furthermore, CAR is able to affect the 

trafficking of E-cadherin and ASIC3, a H
+
-gated cation channel implicated in mechanosensation 

(Excoffon et al., 2012). E-cadherin trafficking is dependent on phosphorylation  of CAR and may 
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serve to stabilize cell-cell adhesion in human epithelial cells (Hussain et al., 2011; Morton et al., 

2013). The interaction of CAR with scaffolding proteins such as PSD-95 might be one option of CAR 

to modulate intracellular signaling cascades which might be one of the subjects of future 

investigations. 

 

The expression of CAR and its involvement during neuronal development 

 

Extensive studies on the timing and pattern of CAR expression have been performed which 

indicated that CAR is tightly regulated in many organs like brain, heart, lung, pancreas or kidney. In 

general, at embryonic and early postnatal stages CAR is expressed abundantly, whereas expression in 

the mature mouse is more restricted in several organs such as heart, pancreas or testis. CAR is also 

found at specialized cell-cell contact sites, e. g. at tight junctions of epithelial cells (Cohen et al., 2001) 

or at the neuromuscular junction (Shaw et al., 2004). In mouse CAR expression starts at embryonic 

day (E) 6.5 in the ectoderm, the primary decidua and the uterine epithelium (Hotta et al., 2003). From 

E8.5 on CAR is localized in the neural tube and from E10.5 on throughout the brain including cerebral 

cortex, cerebellum, brainstem, retina and olfactory bulb (Honda et al., 2000; Patzke et al., 2010; 

Persson et al., 2006; Venkatraman et al., 2006). In primary cultivated neurons CAR is found in the 

growth cone, neurites and cell bodies where it is localized at cell-cell contacts (Honda et al., 2000; 

Hotta et al., 2003; Patzke et al., 2010). From developmental stage P10 on the expression of CAR is 

strongly downregulated (Honda et al., 2000; Patzke et al., 2010). In adult stages it is detectable in the 

posterior corpus callosum, between layers IV and V and layer I of the cerebral cortex. In the 

hippocampus CAR is found on axons of the entorhinal cortex and mossy fibers. Biochemical 

fractionation and immunohistochemical studies indicated a localization of CAR in the presynapse of 

excitatory and inhibitory neurons (Zussy et al., 2016).   

The strong expression of CAR at developmental stages suggests that CAR mainly regulates 

processes during neuronal development. However, no gross morphological anomalies in the brain 

were observed in conditional CAR knockouts. Only minor differences in the organization of the 

dentate gyrus were detected between wild-type and CAR mutants (Zussy et al., 2016) which, however, 
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might be the cause for a loss of hippocampal synaptic plasticity observed only in CAR-deficient 

females but not in males. This surprising finding is further supported by the downregulation of a 

number of pre- and postsynaptic proteins in conditional knockout females (Zussy et al., 2016). 

In behavioral tests analyzing locomotor or sensory function in conditional CAR mutants, in 

which CAR expression is abolished from postnatal stages on, CAR knockout mice only significant 

changes were observed during the transfer arousal test. CAR-deficient mice showed a significant 

lower tendency to freeze (46% of the tested animals in contrast to 80% of wild type animals) 

(Pazirandeh et al., 2011). In contrast when CAR is inactivated in the brain from embryonic stages on 

by Nestin-Cre impaired behavior in the elevated pulse maze, the Y maze and Morris water maze was 

detected reflecting altered spatial working memory and anxiety. It might be hypothesized that the 

impaired neurogenesis that was observed in the adult CAR-deficient hippocampus contributes to these 

behavioral deficits (Zussy et al., 2016).  

There are still many open questions about the physiological function of CAR in the adult brain 

and even more in the embryonic brain.  Interestingly, the CAR level appears to be reduced in 

hippocampus of inflammatory brains as shown for patients at the early phase of late-onset Alzheimer 

disease suggesting for CAR a potential involvement in neuronal diseases (Zussy et al., 2016). 

 

CAR is essential for heart development and electrical conduction in the mature heart 

 

Constitutive CAR KO mice revealed embryonic lethality around embryonic day 11.5 to 13.5 

due to malformations of the heart and hemorrhage (Asher et al., 2005; Chen et al., 2006; Dorner et al., 

2005). CAR-deficient hearts revealed enlarged endocardial cushions and only one atrioventricular 

canal instead of two. In addition, an engorgement of cardinal veins and thickening of the ventricular 

and atrial wall was reported (Asher et al., 2005; Dorner et al., 2005). This thickening of cardiac tissue 

was related to increased proliferation in CAR KO embryos as an increased expression of the 

proliferation marker Ki67 was detected by Chen et al. (2006). However this result was not supported 

by proliferation assays using BrdU incorporation (Dorner et al. 2005). These distinct observations on 

cell proliferation in the CAR knockout heart might be explained by the different stages that were 
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studied (E10.5 versus E11.5). CAR deficient cardiomyocytes also showed highly disorganized 

myofibrils, thinner myofibers and impaired intercellular junctions between neighbouring 

cardiomyocytes (Chen et al., 2006; Dorner et al., 2005).  

In the adult heart, CAR expression is strongly downregulated in comparison to embryonic 

hearts and CAR is mainly found at the intercalated discs where it colocalizes to connexins and ZO-1 

(Lim et al., 2008; Matthäus et al., 2014; Shaw et al., 2004). Cardiac specific deletion of CAR after 

birth resulted in mice that are viable and which did not reveal overall morphological abnormalities in 

the heart. However, different stages of atrioventricular (AV) heart blocks up to a complete AV block 

were measured (Lim et al., 2008; Lisewski et al., 2008; Pazirandeh et al., 2011). CAR deficient hearts 

showed disrupted intercellular contacts in the myocardium in which an altered localization of 

connexins, β-catenin and ZO-1 preceded cardiac dysfunction. These mislocalizations probably caused 

the observed impairment of electrical conduction through gap junctions in the mature CAR KO hearts. 

In contrast, overexpression of CAR in the heart causes disorganization and degeneration of 

cardiomyocytes, disrupted adherens junctions, nuclear translocation of β-catenin and cardiomyopathy 

(Caruso et al., 2010). 

As a receptor for group B coxsackieviruses CAR is implicated in virus-induced myocarditis 

(Freiberg et al., 2014). CAR itself initiates a strong immune response via the inflammatory mitogen-

ativated protein kinase (MAPK) after virus binding and cell entry and even further, CAR expression is 

upregulated during myocarditis (Ito et al., 2000; Yuen et al., 2011). Surprisingly CAR also gets re-

expressed in adult hearts of patients suffering from dilated cardiomyopathy or after infarction 

(Fechner, 2003; Noutsias et al., 2001). Up to date the cellular mechanism why and how CAR gets re-

expressed during cardiac disease remains to be determined.  

In conclusion, in the embryonic and mature heart CAR is required for the generation of intact 

cell-cell contact sites including the localization of connexins within the intercalated discs. Absence of 

CAR at these sites results in a defective communication through gap- and/or tight junctions. Increased 

CAR expressions in heart failure suggest a remodeling function at cardiac cell-cell contact sites.  

 

CAR in pancreas, kidney, testis and the lymphatic system 
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CAR is also detectable in several other organs such as pancreas, testis, kidney and the intestine 

(Coyne and Bergelson, 2005; Mena et al., 2000; Pazirandeh et al., 2011; Tomko et al., 2000; Zanone et 

al., 2007). Zanone et al. (2007) showed CAR expression in human pancreatic islet endothelial cells 

whereby coxsackievirus B infection even further increased CAR expression and induced pancreatitis. 

Pazirandeh et al. (2011) demonstrated in conditional CAR KO mouse enlarged intestines and atrophy 

of exocrine pancreas.  

Although, CAR is also found in germ cells and Sertoli cells of the testes conditional testicular 

depletion of CAR revealed no severe impairments in the fertility and the blood-testis-barrier (Mirza et 

al., 2006; Sultana et al., 2014; Tomko et al., 2000; Wang et al., 2007). No influences of CAR absence 

were observed during the development of podocytes (Schell et al., 2015). These epithelial cells are 

located in the Bowman’s capsule of the kidney and CAR expression is found already at E15 during 

murine embryogenesis until adulthood. However, specific deletion of CAR in podocytes did not reveal 

any impairment in structure and function of the renal filter barrier (Schell et al., 2015).  

During embryonic development of lymphatic vessels CAR is strongly expressed in endothelial 

cells of the early lymphatic system followed by a decrease after E16.5 (Mirza et al., 2012; Vigl et al., 

2009). Consistently, CAR deficient embryos revealed impaired lymphatic endothelial cell adhesion 

which impaired the separation of blood and lymphatic vessels. This might contribute to the above 

mentioned hemorrhage and embryonic death (Mirza et al., 2012; Vigl et al., 2009). These results 

showed that CAR is also essential for correct development of the lymphatic system during 

embryogenesis.   

 

A potential role of CAR in cancer growth 

 

Due to its high binding affinity to adenoviruses CAR became in focus for gene therapeutic 

studies. Therefore, CAR expression was compared in a multitude of cancer cells: in parotid glands, 

colon cancers, prostate cancers or bladder cancer cells CAR expression is downregulated (Loustalot et 

al., 2015; Okegawa et al., 2001; Reeh et al., 2013) while human cancer cell lines like the cervical cell 
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lines HeLa and SiHa, the glioblastoma cancer line U87MG or the ovarian cancer cell line OV-UL-2 

showed increased CAR expression (Brüning and Runnebaum, 2003). In comparison to healthy 

patients, a significant increased CAR level was found in specimens from patients suffering from 

basalioma, lung, ovarian, urinary bladder cancer and in neuroblastoma (Reeh et al., 2013). 

Downregulation of CAR in cancer cells is related to activation of Raf/MEK/ERK pathway and TGF-

beta signaling as well as loss of alpha-catenin and increased proliferation and migration (Brüning and 

Runnebaum, 2003; Loustalot et al., 2015). However, up to date it is still unknown whether CAR itself 

is involved in the progression of cancer development.  

 

In conclusion, a high diversity of intracellular and extracellular binding partners has been 

defined for CAR. Its involvement in cardiac development and conduction has been clearly 

demonstrated while its function in the developing nervous system – the organ of strongest CAR 

expression - is less understood. Furthermore, an overall cellular mechanism for CAR that can be 

adapted to a wide range of organs and tissues is still lacking. As a cell adhesion molecule CAR in 

conjunction with intracellular PDZ-domain containing proteins might contribute to the correct 

formation and regulation of specialized cell-cell contact sites such as gap or tight junctions. 

 

The CAR-like membrane protein (CLMP) 

 

Bioinformatics screening of expressed sequence tag (EST) and genomic databases led to the 

identification of cDNAs of human and murine origin that showed a high sequence similarity of about 

49% at the amino acid level to the IgCAM CAR and a related overall domain organization (Figure 1). 

Therefore, it was termed CAR-like membrane protein (Raschperger et al., 2004). CLMP was also 

identified in a screen for upregulated genes in visceral adipose tissue of Otsuka Long-Evans 

Tokushima fatty (OLETF) rats, a model of type 2 diabetes and termed adipocyte adhesion molecule 

(ACAM) (Eguchi et al., 2005; Hida et al., 2000). The human and mouse CLMP gene consists of seven 

exons on chromosome band 11q24.1 and 9A5.1, respectively (Raschperger et al., 2004). The promoter 

site of the murine Clmp gene and responsive elements that are required for basal Clmp expression in 
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Sertoli TM4 cells contain binding motifs for the transcription factors GATA-1, GATA-6, Kruppel-like 

factor 4 (KLF 4), and sex-determining region Y (Sze et al., 2008). In addition, Clmp transcript in TM4 

cells has been found to be post-transcriptionally negatively regulated by TNF-alpha via the RNA-

binding protein tristetraprolin (TTP) and the c-Jun N-terminal kinase (JNK) signaling pathway (Sze et 

al., 2008). 

 

Expression of CLMP at transcript and protein levels 

 

A wide tissue and organ distribution in humans and mice has been described for CLMP at the 

level of mRNA transcripts using Northern blotting, quantitative PCR and in situ hybridization (Eguchi 

et al., 2005; Raschperger et al., 2004). Although some discrepancies exist between both studies, strong 

expression was described in heart, brain, intestine, white adipose tissue and placenta and lower levels 

in kidney, lung, skeletal muscle and spleen. In situ hybridization data (www.genepaint.org) also 

demonstrated a wide-spread expression of Clmp mRNA. In the intestine localization in the outer layers 

of the gastrointestinal tract at E14.5 has been observed pointing to a localization in smooth muscle 

cells, neurons and/or interstitial cells of Cajal. In immunohistochemical stainings on human embryonic 

tissue CLMP was observed in the intestine, in rapidly dividing cells of the nervous system, in the 

mesenchyme of the frontonasal and mandibular processes and in the dermamyotome. Endodermal 

derivatives of the foregut, midgut and hindgut, lung, liver, esophagus and trachea were also found to 

express CLMP (Van der Werf et al., 2012). In addition to tissue sections, endogenous CLMP 

expression has been detected in several epithelial cell lines (Raschperger et al., 2004; Sze et al., 2008; 

Van der Werf et al., 2012) as well as in human glioblastoma T98G cells. In transfected cells CLMP 

co-localizes with the tight junction markers ZO-1 and occludin suggesting that CLMP might be a tight 

junction molecule. Consistent with a cell adhesive function and a tight junction localization, 

transfection of MDCK epithelial monolayers with cDNA encoding full-length CLMP resulted in a 

significant increase of transepithelial electrical resistance (Raschperger et al., 2004). The transfection 

of CHO cells with a mutated variant of human CLMP, which is unable to integrate into the plasma 
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membrane but instead localizes in the cytoplasm, leads to mislocalization of ZO-1 with an increased 

aggregation of ZO-1 in the cytoplasm (Figure 2) (Van der Werf et al., 2012). 

Taken together, expression of CLMP protein and its transcript has been investigated in several 

studies. While transcript expression suggests a more restricted expression of Clmp concentrated in 

brain, heart and adipose tissue; immunological studies indicate a rather ubiquitous expression of 

CLMP protein with a focus on epithelial cell types (Eguchi et al., 2005; Raschperger et al., 2004; Sze 

et al., 2008; Van der Werf et al., 2012). However, additional research is required to determine CLMP 

expression more precisely during murine development and its subcellular localization in order to shed 

light on the biological function of CLMP. 

 

CLMP mediates homotypic cell adhesion 

 

In order to elucidate the function of CLMP, mainly in vitro experiments have been carried out 

and only recently the role of CLMP was addressed in animal models. Since CLMP is the closest 

homologue of CAR, its ability to mediate cell adhesion was investigated in vitro. Transfection of 

Chinese hamster ovary (CHO) cells with full-length human CLMP or its rat orthologue induced cell 

aggregation which was comparable to that of CAR. However, aggregation intensity was not as strong 

as observed by transfections with the adhesion molecule cadherin1 (also known as E-cadherin) 

(Eguchi et al., 2005; Raschperger et al., 2004; Van der Werf et al., 2013). 

Clmp transcript expression has been reported to be stimulated during the peri-ovulatory period in rats. 

Peri-ovulatory processes in rat ovaries and ovarian cell cultures were induced by treatment with 

human chorionic gonadotrophin and shortly afterwards a rise in Clmp transcript and protein abundance 

was detected, which was controlled by signaling pathways dependent on protein kinase A (PKA), 

phosphoinositide-3-kinase (PI3K), p38 kinase and epidermal growth factor (EGF) receptor (Li et al., 

2014). Since cell adhesion is crucial for ovulation during the transition of the pre-ovulatory follicle to 

the corpus luteum and CLMP expression is increased in this period, it might be hypothesized that 

CLMP might have a function in these processes. 
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CLMP is involved in adipocyte function and obesity 

 

When obesity was stimulated in OLETF rats by administration of the hormone pioglitazone, 

the white adipose tissue of these animals upregulated Clmp transcript and CLMP protein as compared 

to non-treated OLETF rats, suggesting that CLMP might function in the conversion of premature to 

mature adipocytes (Eguchi et al., 2005). In a recent study Murakami and colleagues demonstrated that 

adipocyte-specific expression of CLMP in transgenic mice were protected from obesity under a high-

fat high-sucrose (HFHS) chow (Murakami et al., 2016). These mice exhibited a significant reduction 

of body and fat pad weight as well as a significantly improved glucose tolerance and insulin 

sensitivity. In addition, adipocyte-specific expression of Clmp in transgenic CLMP mice under HFHS 

chow mediated a homotypic adhesion of adipocytes, formed zonula adherens structures and promoted 

actin polymerization (Murakami et al., 2016). Taken together, these findings indicate a role of CLMP 

in adipocyte function and obesity.  

 

Mutations in the human CLMP gene cause congenital short-bowel syndrome 

 

The in vivo function of CLMP is currently not well defined. In human patients homozygous 

and compound heterozygous loss-of-function mutations have been detected in a small number of 

patients with congenital short bowel syndrome (CSBS, OMIM 615237) by a genome-wide scan and 

homozygosity mapping. The defects in the CLMP gene included frameshift, missense, and splice 

donor site mutations in coding regions and an intronic deletion, which were not present in 

chromosomes of control individuals. In silico and in vitro experiments showed that these mutations 

most likely result in a loss of function of CLMP (Gonnaud et al., 2016; Van der Werf et al., 2012) . 

CSBS is a rare hereditary gastrointestinal disorder for which no cure is available. Patients with CSBS 

revealed a very short small intestine with a length of approximately 50 cm at birth while normal 

humans display a length of 190-280 cm and which is accompanied by intestinal malrotation (Alves et 

al., 2016; Hamilton et al., 1969; Van der Werf et al., 2015, 2012) .  
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To determine whether loss-of-function mutations are associated with a short bowel, 

morpholino knockdown zebrafish models were generated. In zebrafish, two clmp transcripts have been 

identified and one transcript variant was expressed in the zebrafish intestine. Knockdown of this 

enteric clmp variant by splice-blocking or translation-blocking resulted in morpholinos with a 

significant developmental delay. When compared to wildtype controls, the morphants exhibited a 

significantly shorter body length associated with a significant reduction of intestinal length, which, 

however, was proportional to the overall decreased body length. Interestingly, histological analyses 

revealed the absence of enteric goblet cells in morphants (Van der Werf et al., 2012). Goblet cells are 

glandular epithelial cells and a typical attribute of the zebrafish midintestine, which is comparable to 

the human small intestine (Ng et al., 2005). Thus, the authors supposed that the loss of goblet cells as 

markers for midintestinal epithelial tissue might indicate a lack of small intestine in zebrafish clmp 

morphants (Van der Werf et al., 2012). Based on the reported co-localization of CLMP with epithelial 

tight junction markers like ZO-1, which is involved in cell proliferation (Matter and Balda, 2007), it 

was hypothesized that loss-of-function CLMP mutations in CSBS patients might be important for 

proliferative processes of enteric epithelia during intestinal human development (Van der Werf et al., 

2012). Further in vitro analyses using T84 colonic adenocarcinoma cells transfected with cDNA 

encoding a missense mutant of CLMP, which had been reported in one of the CSBS patients, could 

not show any implication of CLMP in key processes of intestinal epithelial development including 

migration, proliferation, viability and transepithelial electrical resistance (Van der Werf et al., 2013). 

Thus, the precise function of CLMP in CSBS pathogenesis remains to be elucidated.  

In order to further clarify the biological function of CLMP in the living organism, a 

constitutive Clmp knockout mouse model was generated in our laboratory and phenotypic analyses of 

homozygous CLMP-deficient mice revealed multiple recessive abnormalities in growth, survival, the 

gastrointestinal tract and the urogenital system (Langhorst et al., in preparation). Clmp mutant animals 

displayed a high rate of mortality during neonatal and early postnatal stages which was accompanied 

by a delay in body growth. Although the underlying mechanisms leading to compromised survival and 

growth needs further investigations, it is likely that gastrointestinal malfunctions are involved. For 

instance, in embryos or in newborn animals an impaired transport of meconium or chyme, 
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respectively, along the intestine was observed. Consistently, an impaired peristalsis of the intestine 

was demonstrated in an organ bath. Analogous to the reduction of small intestine length in CSBS 

patients, the bowel length of surviving adult Clmp mutant mice was analyzed, but in contrast to CSBS 

patients, Clmp knockout mice did not display a shortening of the small bowel. Instead, gut malrotation 

and duodenal dilation were observed. The distinction in gut length might reflect different 

developmental processes in the length growth of the intestine in humans and mice.  

Furthermore, CLMP-deficient mice developed a high degree of bilateral hydronephrosis with 

onset at a perinatal stage which has not been described so far in human CSBS patients. 

Hydronephrotic kidneys, characterized by accumulation of urine in renal pelvis and calyces and 

accompanied by renal parenchymal atrophy, were not caused by physical obstruction of the urinary 

tract. Instead, ureteral peristalsis, which is essential for propagation of urine from kidneys to urinary 

bladder, is impaired by the loss of CLMP. In addition, calcium imaging experiments on ureteral 

explants revealed an absence of organized Ca
2+

 transients in Clmp mutants (Langhorst et al., in 

preparation).  It might be of great interest to investigate whether CLMP is also implicated in human 

congenital anomalies of the urinary tract.  

In conclusion, since its discovery the knowledge about CLMP is gradually advancing and 

demonstrates multiple functions for CLMP in the organism. CLMP has been associated with obesity 

(Eguchi et al., 2005; Murakami et al., 2016; Van der Werf et al., 2012), the human intestinal disorder 

CSBS (Van der Werf et al., 2015, 2012) as well as with the peristalsis of the gastrointestinal and 

urogenital system (Langhorst et al., in preparation). The function of CLMP in the central nervous 

system where it is highly expressed remains to be determined.  

 

The brain and testes specific immunoglobulin superfamily protein (BT-

IgSF) 

 

Human and mouse BT-IgSF were cloned in 2002 (Suzu et al., 2002). Due to its strong 

expression in brain and testis, it was termed brain and testis specific immunoglobulin superfamily 
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protein. It was also characterized independently as a gene frequently up-regulated in intestinal-type 

gastric cancers and designated IgSF11 (Katoh and Katoh, 2003). Alignment of the murine amino acid 

sequence of BT-IgSF with its closest homologs shows a 29% identity with CAR and ESAM and a 

30% identity with CLMP. The murine and human BT-IgSF gene are located on chromosome band 

16B4 or 3q13.3, respectively, a region that is associated with corpus callosum agenesis in humans 

(Genuardi et al., 1994; Mackie Ogilvie et al., 1998; Suzu et al., 2002). While the mouse gene consists 

of 7 exons the human gene is composed of 10 exons which are alternatively spliced into two isoforms: 

BT-IgSF/IGSF11-1 and BT-IgSF/IGSF11-2. IGSF11-1 contains exons 1a, 2a, 3a and 4-9 whereas 

IGSF11-2 contains exons 1b and exons 4-9. The exon splice variants 1a and 1b lack an N-terminal 

signal peptide suggesting that IGSF11-2 is the representative isoform of IGSF11 in humans (Katoh 

and Katoh, 2003). Human and murine BT-IgSF are highly glycosylated and among all CAR subgroup 

members, BT-IgSF has the longest cytoplasmic segment of 167 (in mouse) or 169 (in human) amino 

acid residues (Katoh and Katoh, 2003; Suzu et al., 2002).  

 

BT-IgSF is implicated AMPAR-mediated synaptic transmission and migration of melanophores 

 

As CAR and CLMP, BT-IgSF mediates in transfected cells homophilic cell adhesion in a 

Ca
2+

/Mg
2
-independent manner which is independent of integrins (Figure 2) (Eom et al., 2012; Harada 

et al., 2005). In zebrafish BT-IgSF has been described in the spinal cord and adult pigment cells and 

their precursors at postembryonic stages (Eom et al., 2012). In the mouse brain the corpus callosum, 

the amygdala and the hippocampus reveal high expression in contrast to weak expression in the colon, 

adrenal gland and the fetal brain (Suzu et al., 2002). In the hippocampus BT-IgSF appears to be 

developmentally regulated reaching a peak during adulthood with a strong localization in the dentate 

gyrus rather than in the CA1 region (Jang et al., 2015). BT-IgSF was detectable in synaptic and 

postsynaptic fractions of rat brains in particular only at excitatory synapses. BT-IgSF can bind and 

interact with PSD-95 and AMPARs in a tripartite manner. These molecular interactions and the 

pattern of expression suggested a pivotal function in the hippocampus. Knockdown of BT-IgSF in 

cultured neurons suppressed AMPAR clustering on the surface and impaired AMPAR- but not 



ACCEPTED MANUSCRIPT
 

18 
 

NMDA-mediated synaptic transmission in CA1 pyramidal synapses in slice cultures. These SC-CA1 

synapses showed suppressed long-term potentiation in BT-IgSF knockout mice. However, the DG 

granule cells showed a reduced amplitude of mEPSCs, which could be rescued by the re-expression of 

BT-IgSF in the BT-IgSF knockout animals (Jang et al., 2015). These results show that BT-IgSF is 

implicated in AMPAR-mediated synaptic transmission and plasticity. 

On non-neuronal cells a critical role for BT-IgSF in promoting the migration and survival of 

melanophores and their precursors was demonstrated in zebrafish BT-IgSF mutants (Eom et al., 2012). 

In zebrafish, melanophores migrate to the hypodermis to form a typical horizontal patterning. In vivo 

imaging revealed that the migration of melanophore precursors with a mutation in the BT-IgSF gene 

(seurat mutant) was impaired resulting in an irregular spotting pattern. 

 

A potential role of BT-IgSF in cancer 

   

Ailan et al. (2009) showed that BT-IgSF is a target gene of AP-2γ, a transcription factor 

involved in the initiation and progression of breast cancer. The binding of AP-2γ to the BT-IgSF gene 

increases the expression of BT-IgSF in breast cancer cell lines (Ailan et al., 2009). Also for other 

cancer types, such as gastrointestinal and hepatocellular carcinomas, it is known that BT-IgSF gets up-

regulated. It was even shown that BT-IgSF is able to induce cell growth in vitro and further, the 

inhibition of BT-IgSF expression via siRNA in cancer cells leads to a decreased number of transfected 

cells suggesting that the increased expression of BT-IgSF in cancer cells may be important for cancer 

growth (Watanabe et al., 2005). Both studies suggest BT-IgSF as a promising target for cancer 

therapy.  

 

Conclusions 

 

Although research on the CAR subgroup of IgCAMs is still at an early stage studies on mouse 

models revealed that these proteins are implicated in a variety of biological processes during 

developmental stages including synaptic transmission, peristalsis in the gastrointestinal and ureteral 
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system, formation of the embryonic heart and atrioventricular conductance in the mature heart. Of 

particular interest are links to hereditary human diseases as it has been found for CLMP. A recurrent 

picture on the function of this set of proteins that evolves from current studies is their participation in 

the development or regulation of specialized cell-cell communication sites. However, the detailed 

molecular mechanism and/or signaling functions of this set of proteins remains to be determined.  

Although these three proteins discussed in this article are strongly expressed in the developing 

(CAR and CLMP) or mature nervous system (BT-IgSF) their function is least understood here. Studies 

on their interaction with a number of complex scaffolding proteins might be of great interest to begin 

to understand the function of CAR members in particular in the developing and mature nervous 

system to modulate synaptic plasticity.  
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Figure legends 

 

Fig. 1: Members of the CAR subgroup of IgCAMs. The crystal structure of the complete 

extracellular portion of mouse CAR (Patzke et al., 2010; Verdino et al., 2010) (PDB: 3jz7A) 

and of the single membrane distal domain D1 (van Raaij et al., 2000) has been solved.  For 

CLMP a protein tertiary structure was calculated on the basis of the mouse CAR template 

using Phyre2 (Kelly et al., 2015). The extracellular protein structure of BT-IgSF was also 

deduced from the CAR structure analog to Jang et al. (2015).   

 

Fig. 2: Scheme of molecular interactions of CAR subgroup members. Binding regions of 

CAR that have been mapped are indicated by vertical lines. The homophilic binding regions 

for CLMP and BT-IgSF are currently not known but have been provisionally deduced from 

studies on CAR. For the numerous scaffolding proteins that interact with the C-terminus of 

CAR please see the text. PM, plasma membrane. 
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