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ABSTRACT

Multiple sequence alignments (MSAs) are one of
the most important sources of information in
sequence analysis. Many methods have been pro-
posed to detect, extract and visualize their most
significant properties. To the same extent that
site-specific methods like sequence logos success-
fully visualize site conservations and sequence-
based methods like clustering approaches detect
relationships between sequences, both types of
methods fail at revealing informational elements of
MSAs at the level of sequence–site interactions,
i.e. finding clusters of sequences and sites respon-
sible for their clustering, which together account
for a high fraction of the overall information of
the MSA. To fill this gap, we present here a
method that combines the Fisher score-based
embedding of sequences from a profile hidden
Markov model (pHMM) with correspondence ana-
lysis. This method is capable of detecting and
visualizing group-specific or conflicting signals in
an MSA and allows for a detailed explorative inves-
tigation of alignments of any size tractable by
pHMMs. Applications of our methods are exempli-
fied on an alignment of the Neisseria surface anti-
gen LP2086, where it is used to detect sites of
recombinatory horizontal gene transfer and on the
vitamin K epoxide reductase family to distinguish
between evolutionary and functional signals.

INTRODUCTION

Multiple sequence alignments (MSAs) are high dimen-
sional discrete datasets, which play a prominent role in
bioinformatics. They are typically involved in the func-
tional classification of proteins and phylogenetic recon-
struction of evolutionary trees, for example. In general,
there are two aspects of MSAs; analyses are mostly
either species- or site focused. Species-driven approaches
usually aim at the relationship between sequences,
averaging over the alignment columns. Methods for
phylogenetic reconstruction as well as general sequence
clustering methods are examples, and make (amongst
other things) use of distance measures to impose an
hierarchy on the species in an alignment. This allows for
the detection of closely related species, functional clusters
and the reconstruction of gene trees or species trees.
Site-driven analyses in contrast put more emphasis on
sequence content, looking for specific sequence motifs,
conservation profiles, areas with characteristic biochem-
ical properties like hydrophobicity or transmembrane
regions, thereby averaging over the sequences or focusing
on their conserved regions.
A combination of both types of analyses of an (correctly

aligned) MSA helps to distinguish functionally conserved
from variable sites, detect clusters of sequences and
find sites responsible for a certain splitting of sequence
groups. This integration can finally lead to an understand-
ing of the functional evolution of sequences, as tree
splits or cluster breaks can be annotated with the
associated autapomorphies [an autapomorphy is a trait
characteristic for a terminal group in a phylogenetic tree
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(a monophyletic group), i.e. a property that is shared by
only the members of the group, but not by any other taxa].
Due to the complexity of MSAs of realistic size, thorough
analyses require expert knowledge, are tedious, time
consuming and error-prone.
Traditionally, first view analyses are done in alignment

editors/aligners like SEAVIEW (1), CLUSTAL_X (2),
Jalview (3) or 4SALE (4). Amino acids are usually colored
with respect to their biochemical and physical properties
and conservation bars are aligned to the MSA to get a
column-based summary. A better graphical representation
of the degree of conservation can be achieved by sequence
logos (5), which additionally visualize the entropy of the
site distributions. RNA logos also include horizontal
dependencies in RNA sequences, defined by their respect-
ive secondary structure (6,7). With the arrival of hidden
Markov model (HMM) (8–10) in sequence analysis,
HMM logos were introduced presenting entropy terms
based on estimated HMM parameters like emission, inser-
tion and deletion probabilities (11,12).
These site-focused methods provide an abstract sum-

mary of the sequence variability in an alignment, but
usually do not allow for the detection of sequence clusters
and fail at representing long sequences adequately. Apart
from character-based methods, clustering of sequences is
either done indirectly, via an interposed distance measure
as in the case of phylogeny, or requires a meaningful
way to embed sequences into a real-valued vector space,
something which cannot be achieved trivially. Given such
an embedding, standard dimension reduction techniques
like principal component analysis (PCA) or classical
multidimensional scaling (MDS) could be applied.
Casari et al. (13) introduced a method for dimension
reduction on MSAs, which was later implemented in the
Jalview application (3). The algorithm is based on a simple
mapping of sequences to binary vectors, not including
gaps, and applies PCA to the binary sequence data.
Our method captures both horizontal and vertical

information by combining an improved embedding of
sequences including gaps with a site-specific annotation
of sequence clusters. Instead of mapping the sequence
data to a binary vector, we apply an HMM-based
embedding using a vector of sufficient statistics for
the emission probabilities instead of the Fisher scores
(14–16). We apply correspondence analysis (CA) (17) to
the embedded sequences and sites, elaborating on the
association between both data and visualizing clusters
of sites and sequences in one joint plot. Dimension reduc-
tion is done the usual way, preserving as much informa-
tion as possible in the lower dimensional representation.
Selection of the axes allows for a precise investigation
of different signals in the alignment, as shown in studies
on the Neisseria factor H binding protein and the vitamin
K epoxide reductase family.

MATERIALS AND METHODS

Embedding

Molecular sequences are typically represented by
strings over an alphabet of either 4 or 20 characters.

In order to apply numerical methods on these kinds of
data, a sensible embedding into R

n has to be found.
Fisher scores are derived from the posterior probabilities
of a fitted HMM and are known to be a sufficient statistic
for the fitted HMM parameters (15,18).

Fisher scores are the derivative of the log-likelihood of
an HMM with respect to all parameters of the HMM,
namely emission and transition probabilities, evaluated
for each datum, i.e. for each sequence. To be more precise,
the Fisher score vector Fi for the i-th sequence Si is
Fi=r� log(P[Si|�]), where � denotes the vector of
HMM parameters. They therefore represent a site-specific
fixed-length embedding that directly encodes emission,
insertion and deletion events.

Intuitively spoken, a Fisher score of an HMM param-
eter describes the slope of the likelihood for the given data
(the given sequence) with respect to this parameter. This
can be seen as the degree of influence the datum has on the
parameter in an optimization context, or the degree of
surprise encountering the given amino acid/nucleotide/
indel at that specific alignment position. For a precise
description of the computational details of the Fisher
score calculation, see refs (15,19).

Correspondence analysis (CA)

CA is an ordination method originally created for
count data in two-way contingency tables and rooted in
ecology and community analysis (17). In contrast to other
ordination methods built around singular value decom-
position (SVD), CA performs its ordination simultan-
eously on column and row scores. It superimposes the
results in one joint plot, thus painting an usually 2D pic-
ture of dependencies between data points and its most
significant factors.

Pre-processing. For technical reasons, the n�m data
matrix F=(fij) is first made positive by adding a constant
to each entry. It is then normalized by dividing the matrix
entries by its respective row and column sums hij ¼
fij=

ffiffiffiffiffiffiffiffi
fi�f�j

p
, resulting in the normalized data matrix H.

In matrix notation this may be written as H=S�1/2

XC�1/2, where S�1/2 and C�1/2 are diagonal matrices
containing the reciprocals of the square root of the row
and column marginal totals.

SVD. SVD is a factorization of a real or complex matrix
A2M (m� n; K) of the form A=U�V � where U is a
m� n unitary matrix over a field K, � is n� n positive
semidefinite diagonal matrix and V� denotes the conjugate
transpose of V, an n� n unitary matrix over K. � contains
the singular values, whereas the columns of U and V� are
the left- and right-singular vectors for the corresponding
singular values (20).

A lower dimensional representation of the data is
generated by ordering the singular values by size and
taking the first n0 singular values. The loss of information
is described in terms of the proportion of the sum of
squares of singular values

Pn0

i¼1 �2
ii used (total inertia).

In the CA context, the total inertia is proportional to
the value of the w2 statistic, and thus to the degree of
association in the data (21).
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Post-processing. After SVD, the row U and column V
scores are usually rescaled via Xi ¼ Ui

ffiffiffiffiffiffiffiffiffiffi
f��=fi�

p
and

Yi ¼ Ui

ffiffiffiffiffiffiffiffiffiffi
f��=fi�

p
, to obtain the optimal or canonical row

(X) and column (Y) scores. Depending on the implemen-
tation of the CA algorithm, these are afterwards further
scaled by their corresponding singular values (17).

Interpretation. The selected component axes are then
plotted in usually 2D scatterplots. The Euclidean projec-
tion of both site and species points in the new space
approximates their w2 distances as closely as possible. Pro-
ximity of points in the CA biplot therefore corresponds to
dependencies between items. Furthermore, points are
projected such that the further away a point is from the
origin, the higher its contribution to the w2 statistic.
Positive associations lie on the same side of the plot,
whereas negative associations lie on the opposite sides.
For a more detailed explanation, see ref. (17). Please
note that the addition of a positive constant to the original
data matrix does not change the proportions of the new
coordinate system but implies a rescaling of the result.

Sequence analysis

Neisseria meningitidis factor H binding protein. Sequences
for the LP2086 and VKOR studies were aligned using
Muscle (22) (Supplementary Data). The distance matrix
for the LP2086 alignment was calculated using ProfDist
(23,24) applying the VT substitution matrix (25). The dis-
tance matrix was further analyzed and visualized by
SplitsTree0s split decomposition method (26).

Vitamin K epoxide reductase family. Vertebrate sequences
were extracted from ENSEMBL using the human
VKORC1 and VKORC1L1 proteins as query in a blastp
search (27). The ENSEMBL identifiers are:

The Ciona savigny homologue was identified only in gen-
omic sequences. The protein sequence was predicted using
gene-wise (28) and the human VKORC1 protein as
template. The alignment was calculated using Muscle
(22) and manually optimized (Supplementary Data). The
phylogenetic tree for the VKOR example was calculated
with proml of the PHYLIP package (29) and 100 boot-
strap replicates. Ancient sequences were reconstructed by
codeml of the PAML package (30).

RESULTS

The method we propose here is a novel approach to an
explorative analysis and visualization of MSAs. The goal

of our method is the detection and depiction of major
signals in alignments, ordered by their importance,
co-clustering of sequences and sites and resolution of
contradictory signals, i.e. different parts of the alignments
vote for a different clustering.
The approach comprises three separate steps: (i) the

embedding of sequence data into a real valued very high
dimensional vector space, (ii) the simultaneous dimension
reduction and ordination of both rows and columns of the
data matrix (the alignment) and (iii) a biplot visualization
of the canonical row and columns scores.
The result is a lower dimensional representation of

sequences and sites, which can be analyzed by (two-, or
three dimensional) scatterplots, comparable but not
identical with the result of classical dimension reduction
techniques like PCA, applied to both sequences and sites.
In contrast to traditional dimension reduction methods,
the sequences are co-clustered to their defining sites
and vice versa. In this representation, the sites responsible
for a cluster of sequences come to lie close to the
sequences.
Embedding (i) is achieved via the Fisher score represen-

tation of HMM parameters (14,15,18). Therefore we
start by training a profile HMM (pHMM), (9,10) on the
previously aligned sequences. The Fisher scores are then
computed as the vector of derivatives of the log-likelihood
of each training sequence with respect to the emission
probabilities of the HMM (see ‘Material and Methods’
section). The sequence is thus transformed in a meaningful
way into a vector of real-valued numerical values for the
following ordination step.
Steps (ii) and (iii) are done via direct application of CA

to the derived data matrix of Fisher scores. CA is a
method originating from ecology and designed for the
analysis of two-way contingency tables (17). It is capable
of performing simultaneous ordination on both rows and
columns of a data matrix (often referred to as species and
sites in ecology, a nomenclature which also fits well in
sequence analysis) and has also been shown to be of
use for continuous datasets in the context of microarray
analysis (31). In principle, it can be thought of as an
oriented MDS on w2 distance matrices computed from
both sides of a data matrix, which is jointly plotted. In
the CA, each axis is a weighted linear combination of
the Fisher scores of the data vectors, i.e. of the existent
(and due to the way the Fisher scores are generated
also non-existent) nucleotides/residues in the alignment.
CA is a co-clustering of sequences and sites, where con-
ditionally independent signals are projected onto the
component axes.
Therefore, in a phylogenetic context, one would expect

that the first component axis corresponds to the branch
of a phylogenetic tree which discriminates most
between the most different sequence groups. Typically
this refers to the longest branch of the tree. This means
that the two major phylogenetic sequence groups are
expected to lie consistently on one side of the first compo-
nent axis, or the other, respectively. Other long-branched
subgroups of the tree are then likely to be found in
higher order component axes. The co-clustered sites
are major candidates for the autapomorphies defining

L1_Human ENSP00000353998 L1_Pan ENSPTRP00000047967

L1_Macaca ENSMMUP00000027960 L1_Rat ENSRNOP00000024691

L1_Mouse ENSMUSP00000073601 L1_Monodelphis ENSMODP00000008083

L1_Xenopus ENSXETP00000022171 L1_Danio ENSDARP00000064087

L1_Oryzias ENSORLP00000014137 L1_Fugu ENSTRUP00000017074

C1_Human ENSP00000378426 C1_Pongo ENSPPYP00000008254

C1_Cat ENSFCAP00000002398 C1_Horse ENSECAP00000021915

C1_Dog ENSCAFP00000024701 C1_Cow ENSBTAP00000000519

C1_Rat ENSRNOP00000026347 C1_Mouse ENSMUSP00000033074

C1_Fugu ENSTRUP00000027115 C1_Tetraodon ENSTNIP00000018260
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the split. In the same manner, alignments can be
decomposed, even when a well-supported phylogenetic
tree cannot be constructed, either due to contradictory
signals within the alignment or different evolutionary
histories. In summary, our proposed method yields a
complete decomposition of the considered MSA. In
particular, it visualizes information content and species-
site dependencies with respect to a given sequence family,
modeled by the underlying pHMM.

Example on an artificial dataset

To illustrate the concept of our proposed method, we
created an artificial DNA MSA (Figure 1a) of four
sequences. The main split of the associated cluster tree
(Figure 1b) distinguishes the sequences 1 and 2 from 3
and 4. Given the first split, split II distinguishes between
sequences 1 and 2 and split III distinguishes between
sequences 3 and 4.
Application of our method illustrates how it is able to

recover the sequence groups and the nucleotide replace-
ments responsible for the grouping. The procedure
decomposed the alignment into a 3D space, without
loss of information. Figure 1c and d are CA plots of the
MSA showing the first three component axes (1 versus 2,
and 3 versus itself). In Figure 1c, the first component axis
corresponds to the main split of the cluster tree and
separates sequences 1 and 2 from sequences 3 and 4,
thereby indicating the sites responsible for this split,
i.e. G and C versus both Ts at position 3 and 4. The
second component axis explains the (conditional) split
between sequences 1 and 2 identified by an A or T at
position 10. The last conditional split to be explained is
the one separating sequences 3 and 4. This is shown in
Figure 1d, the third component axis, which identifies the
differences at position 16 (G versus C) as being responsible
for the split.

Neisseria meningitidis factor H binding protein

To validate our method on a biological example we chose
the N. meningitidis factor H binding protein (fHBP),
also termed lipoprotein 2086 and GNA1870, which has
become a prominent target in the development of a
novel vaccine against serogroup B meningococci (32–34).
This alignment seemed especially suitable for evaluating
our method, as there have been conflicting reports
about how many distinct sequence variants can be
found within the sequence cluster (32,33). We based our
analysis on an extended alignment consisting of 114
(47 distinct) sequences from the Genbank database,
including the 64 (21 distinct) sequences used by Fletcher
et al. (33). We skipped the initial clustering step proposed
by Fletcher and co-workers and worked directly on the
complete alignment of 114 sequences, each 263 amino
acids long. Embedding and ordination took �30 s on a
standard desktop computer. Distance-based phylogenetic
analyses carried out by the Fletcher group showed a clear
clustering of the sequences into two separate subfamilies,
each with several further sub-clusters. The authors
concluded from these findings that the sequence family
consists of two major sequence variants (called subfamily

A and B) and recommended representatives of those two
variants to be used for vaccine design.

On the contrary, Masignani et al. (32) reported at least
three major sequence clusters and consequently recom-
mended to use representatives of all three clusters to be
included for vaccine design against serogroup B meningo-
coccal disease.

Application of our method of combined embedding
and ordination of the sequence alignment resulted in a
46-dimensional representation of the data matrix com-
prising 5610 Fisher score columns. The distribution of
the cumulative contribution of the axis to the w2 statistic
showed typical exponential behavior, where seven axes
were sufficient to explain >50% of the total inertia.
Visual inspection of the major contributing axes showed
that axes 1–3 were prominent candidates for the
detection of the major sequence clusters (Figure 2c),
where the signal on axis 2 was mainly due to single nucleo-
tide polymorphisms in otherwise highly conserved
positions.

Investigation of the scatterplot showed clustering of the
sequences in four separate groups (Figure 2c). Axis 1
separated the Fletcher subfamily A (left, negative half-
plane) from subfamily B (right, positive half-plane) with-
out error. From the co-clustered sites it could be seen that
major blocks of conserved sites within the respective
groups, ranging from alignment position 106–261, were
mainly responsible for the observed grouping (Figure 2b,
right side).

To compare our results with classical methods, we
computed a matrix of evolutionary distances between
all 47 unique sequences, which was then visualized as
an evolutionary network using split decomposition (26).
The main cluster, as found by Fletcher et al. (33) and
our analysis of component axis 1, was also recovered in
the evolutionary network (Figure 2a). These findings
strongly suggest that the evolutionary split which lead
to development of subfamilies A and B must have
happened early in the history of this protein.

Remarkably, axis 3 divided both subfamilies A and B
into two sub-clusters (A1, A2 and B1, B2, respectively).
When we investigated the most prominent representatives
of these groups (i.e. the ones closest to the borders of
the plot), the co-clustered sites showed that these groups
contain identical sequence elements (positions 37–69),
including a three-residue long lys-asp-asn insertion
between alignment position 67 and 69.

This indicates that if the development of subfamilies
A and B was prior to the emergence of the second split,
clusters 1 and 2 have developed within subfamily A
(Figure 2a), and parts of the sequence has afterwards
been transferred to members of subfamily B by means
of an horizontal gene transfer (HGT)/recombination
event. This uncertainty in the evolutionary hierarchy
between the sequences is also reflected in the large rectan-
gles contained in the split decomposition visualization
of the distance matrix (Figure 2a). This finding was fur-
ther supported by a PHI test for recombination, which
was carried out on the complete alignment (P-value
<1.07� 10�11) (35).
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Vitamin K epoxide reductase family

Vitamin K is an essential cofactor for the post-
translational g-glutamyl carboxylation of the vitamin
K-dependent proteins such as several coagulation factors,
bone proteins, cell growth regulating proteins and others
of unknown function (36,37). During the carboxylation
vitamin K hydrochinone is converted into vitamin K
2,3-epoxide (38). The recycling reaction of vitamin K
epoxide back to the hydrochinone form is catalyzed by
the vitamin K epoxide reductase (VKORC1) in the
so-called vitamin K cycle (39). VKORC1 is the key protein
in this redox reaction and the molecular target of cou-
marin derivatives, such as warfarin, which act as vitamin
K antagonists (40). They reduce coagulation activity
by interfering with the vitamin K epoxide reductase.
Worldwide, coumarins are used in therapy and prevention
of thromboembolic events and also in higher doses for
rodent pest control. Mutations in the VKORC1 gene
cause one form of combined deficiency of vitamin
K-dependent coagulation factors (VKCFD type 2) as
well as resistance or hypersensitivity to warfarin (41,42).
The human VKORC1 gene is localized on chromosome
16 (43) and consists of three exons encoding a
163-amino acid endoplasmic reticulum membrane protein
with three or four predicted transmembrane a-helices (44).
With the identification of the VKORC1 gene in 2004
(45,46) a paralog gene was discovered, which is called vita-
min K epoxide reductase complex 1-like 1 (VKORC1L1)
and which is highly conserved over the species. Its physio-
logical function is completely unknown.

Extensive database searches in a wide variety of meta-
zoan genomes and subsequent phylogenetic reconstruc-
tion allowed us to time the duplication event to the base
of the vertebrates. To identify candidate positions for
functional analyses, we built a MSA including both
variants over different vertebrates, namely a group of
fish species (danio, tetraodon, fugu and oryzias), a group
of mammals (macaca, pan, human, pongo, mouse, rat,
cow, cat, dog and horse), Monodelphis and Xenopus.
Furthermore, the alignment contained the VKOR
ortholog of Ciona savigny, pre-dating the duplication
event. As expected, a first phylogenetic tree revealed
two groups, VKORC1 and VKORC1L1, and placed the
C. savigny sequence as outgroup. It further clearly
separated the fish species from the rest in both groups
and correctly clustered the subgroups of mammals in
contrast to the singletons Chicken, Monodelphis and
Xenopus (Figure 3a).
Application of our method to this alignment revealed

the following: the first (and most informative) axis
separated all species, i.e. all duplicated genes, from the
C. savigny sequence (data not shown). This corresponds
to the longest branch and rootsplit in the phylogenetic
tree, but as we were more interested in variation between
species with both paralogs present, we did not investigate
this further. We expected axis 2 to either separate the
C1 from the L1 sequences or the fish from the land
animals, in analogy to the phylogenetic tree. Axis 3 in
general separated C1 from L1, for all but the C1 fish
sequences, which came to lie near the origin. Analysis of
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Figure 1. Artificial example: the MSA (a) and its cluster tree (b) as used in our toy example. The subparts (c) and (d) are scatterplots of the first
three component axes, which together account for 100% of the inertia in the data. The CA plots present sequences (black circles) and sites (red
crosses) in an integrated manner. For better interpretation, the most important sites are explicitly shown in the plots with their nucleotide letters
and alignment positions. Roman numbers indicate the splits in the cluster tree and the component axes resolving them.
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the subsequent axes of the ordination results separated
the L1 fish sequences from its main group (axis 5) and
showed that the Danio sequence within the C1 fish
group was evolutionarily more distant to the other C1
fish (axis 4), as reflected in the phylogenetic tree.
The co-clustered sites showed us that positions which

are otherwise completely conserved within the C1 or L1
family were different in the C1 fish sequences. For
example, alignment positions 73–77 (marked with yellow
dots in Figure 3b) showed a typical EHVL motif for
the C1 family and a GSIF sequence for the L1 cluster.
The C1 fish sequences in contrast had a QYFV motif
(QIFT for Danio) instead. The missing information was
caught by axis 2 which separated the C1 fish sequences
from all others (for a combined scatterplot of axes 2
and 3, see Figure 3b). In addition, different positions in
the alignment were identified, where the fish C1 sequences
harbored the same amino acids as the L1 land animal
group but differed from the rest of the C1 group. A prom-
inent example is the Warfarin binding motif which is

found as a TYA in the C1 non-fish and L1 fish sequences,
but as a TYV/TYI/TYL in the C1 fish and L1 non-fish
sequences. Reconstruction of ancient sites revealed that
this motif evolved in the C1 group only after the split of
fishes from the other vertebrates (Figure 3a). Following
this observation, we extracted all positions specific for the
L1 group and the L1/C1 fish groups, respectively.

To analyze their functional relevance, we mapped these
positions onto the transmembrane topology of this protein
[Figure 3b, (44)]. Two clusters of these sites reside on
the cytoplasmic extensions of the transmembrane helices
I and III. Further sites are localized within the transmem-
brane helix II. Here, the positions were placed regularly on
every fourth position (alignment positions 111, 115, 119
and 123, Figure 3b).

With a standard helix turn taking on about every 3.5
amino acids, there seems to be a spatially aligned position,
where the sites of this transmembrane helix are specific
for the subgroups. Although highly speculative, these
findings might suggest the following model of action for
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Figure 2. Analysis of the LP2086 sequence family. (a) Evolutionary network reconstructed from a distance matrix on 47 unique sequences. Fletcher
subfamilies A and B are clearly separated. The further sub-clusters 1 and 2 are marked in color. (b) Schematic representation of the complete
alignment of 114 LP2086 sequences, where major parts of the alignment (from position 100 onward) have a block structure corresponding to Fletcher
subfamilies A and B, a 30 amino acid region in the beginning votes for a different grouping. (c) CA plot of component axes 1 and 3. The method
groups the relevant clusters, isolating each from the rest, and identifies the relevant sites. The groups are colored in analogy to those in the
evolutionary network.
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this family of transmembrane proteins. First, a substrate,
differing between the C1 and L1 subfamilies, is bound by
the cytoplasmic extensions of helices I and III. Possibly,
a further region in the first, large cytoplasmic loop
(position 73–77 in Figure 3b) assists in substrate recog-
nition. Second, the substrate is channeled into the mem-
brane along one site of transmembrane helix II. Finally,
it is presented to the catalytic center built by the CIVC
motif residing in helix III (blue dots, Figure 3b).

DISCUSSION

Recent advances in genome sequencing technology have
lead to a noticeable shift in focus toward methods dealing
with contig- or genome-sized sequences, be it for contig
assembly or phylogenomics. Nevertheless, accurately

reconstructed MSAs on the gene or protein level are still
of major importance. Most tools or algorithms introduced
in this context are dedicated to a specific task like the
reconstruction of phylogenetic trees, transmembrane pre-
diction or conservation profiling.
The method we propose here is different in that it is a

method for the explorative unsupervised analysis of
MSAs. It decomposes the alignment into its major signals
and co-clusters sequences and sites, thereby simultan-
eously finding sequence groups and the sites responsible
for their grouping. The probabilistic model (pHMM) used
to describe the alignment is a known and approved
method for sequence modeling (10) and due to their
nature the Fisher score embedding is advantageous to
other embeddings proposed and applied before (3,13).
These advantages include the possibility to directly
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Figure 3. Analysis of the VKOR sequence family. (a) Phylogenetic tree of the VKOR protein family. (b) Sequence logo of the MSA including the
proposed membrane topology of VKORC1 with conserved positions for VKORC1L1 (44). The conserved VKORC1L1-specific amino acids are
marked in yellow. Pink-labeled amino acids are specific to VKORC1L1 and to the VKORC1 protein of fish. In the third transmembrane domain, the
blue circles symbolize the redox center (CIVC motive) and the supposed warfarin binding site with the TYA motive is highlighted in red.
(c) Scatterplot of the second and third principal factors. Sequences are depicted as black circles, sites as red crosses. Closeness of sequences and
sites in the plot shows strength of association.
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model and encode transition probabilities of the pHMM
and thereby insertions and deletions in the alignment.
Further, apart from a pure probabilistic representation
of the alignment itself, the HMM fitting process allows
integration of prior knowledge about amino acid dis-
tributions. Biologically meaningful priors can be derived,
e.g. via Dirichlet mixtures (47,48) or from log-odds-based
substitution matrices (49). These incorporate the desired
biological signal into the pHMM, giving, e.g. amino acid
positions with similar chemical or physical properties,
more similar probabilities than obtained from the align-
ment alone.
Fisher scores are known to be ‘sufficient statistics’ for

the underlying HMM parameters, i.e. they contain all
available information about the parameters (14). In con-
trast to a direct embedding via the HMM scores or
site probabilities, they do not suffer from the effect that
highly divergent, but from the HMM’s perspective equally
probable sequences receive the same representation. This
would project those unrelated sequences close to each
other during the ordination step. Additionally, Fisher
scores are a fixed-length representation of the original
sequences, thus preventing length-driven biases in the
analyses. Computational problems due to the high
dimensionality of the Fisher score representation itself
can be circumvented by application of the economy-
sized SVD variant. The computational complexity of the
Fisher score calculation is similar to the forward–
backward algorithm [O(N2T) for N states and sequence
length T].
Even though our proposed method of ordination (CA)

was originally designed for two-way contingency tables
(17), it has been shown earlier that the method is very
suitable for the analysis of continuous datasets, in which
dependencies between rows and columns of a data matrix
are of interest (31).
We compared our method to a standard approach of

ordination with an Euclidean metric (e.g. PCA). Repre-
sentatives are, for example, the SeqSpace and Jalview
programs (3,13,50), although these tools additionally
suffer from the inexpressiveness of the binary embedding
employed. For a fair competition, we compared our
CA decomposition to classical PCA on the same dataset,
in both cases embedded via Fisher scores, and found CA
to be more sensitive toward biological signals. For
example, PCA analysis of the LP2086 dataset moved
sequences ACB38144.1 and ACI31835.1 (close to the
blue HGT candidate group in Figure 2c) even though
they do not share the 30 amino acid region characteristic
for sequences of that cluster (Figure 2b). In the original
CA ordination, they clearly separate from the other
sequences of their cluster on the x-axis (the two points
on the far right side of Figure 2c), but show no grouping
with the HGT candidates. Similar effects were found in
other regions of the sequence and in the VKOR example
(data not shown). It seems that CA profits from applica-
tion of the w2 distance in that it focuses on sequence–
site associations rather than simple one-way Euclidean
ordination. We finally also directly loaded our datasets
into Jalview, but as the software is missing the ordination
of sites in the alignment, no functional annotation of

sequence clusters could be made. The SeqSpace software,
which is supposed to also cluster the sites, was not avail-
able anymore at the time of this writing.

The advantages of detecting associations in terms of the
w2 distance become apparent in the fHBP example.
Neither sequence-based nor site-based methods are on
their own able to detect any recombination event.
Phylogenetic algorithms average over the length of the
alignment, rightfully discarding the subtle 30 amino acid
transfer region in the beginning of the alignment. The
HGT never shows in the tree, it can be suspected from
the evolutionary network, but due to the short length
and the low number of representatives carrying the
motif, the signal is only weakly reflected in the distance
matrix and therefore in the split decomposition.
Conservation profiles like sequence logos or clustering
procedures on sites would not reveal the HGT either,
which can only be identified by detection of incompatible
sites (35), i.e. sites for which contradicting sequence
clusters can be built. Our method was able to resolve the
recombinated group and identify the responsible sites. It
allows for an explorative analysis of the MSA without
focusing on any specific type of signal, e.g. phylogenetic
signals or HGT alone. It is important to note that this
is by no means a test for recombination nor a method to
thoroughly find all possible sites of HGT within an
alignment, but it can provide an unbiased and structured
view on an MSA from different perspectives.

Studying the VKOR protein family again showed how
major phylogenetic signals appear on one of the first
axes in the ordination, like separation of the C. savignyi
outgroup. But it is also a good indication of how
interesting features of the alignment are completely
missed by sequence-based methods, like the phylogenetic
tree, or site-base methods, like the depicted sequence
logo alone. The co-clustering of species and sites, i.e. the
identification of associations between the two, bring
insight into the dependencies and—maybe—functional
relations, between sequences in the alignment, thereby
annotating them with the necessary sequence features. It
showed us for example, that in contrast to the L1 fish
sequences, the C1 fish sequences do not share the typical
C1-L1 site differences of the other groups and identified
the positions where those sequences differed. Recovering
this tiny signal covered by the large phylogenetic trend
would not be possible by methods considering complete
sequences, as in the calculation of phylogenetic trees.

From these findings we are convinced that the method
proposed here provides researchers with a new and unique
way to analyze MSAs. Our method provides a structured
decomposition of an alignment and depiction of its
information content with increasing granularity. The
modularity of the approach allows for a variety of statis-
tical methods applicable to high-dimensional datasets
to be used. Its explorative nature can give rise to hypo-
theses which might then be validated by, for example,
statistical tests. On the modeling side, future work might
extend the algorithm to include combined sequence struc-
ture alignments suitable for analysis of RNA sequences.
In general, all types of sequential data (DNA, RNA and
protein sequences) are in principle suitable for such an
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analysis, provided they can be modeled in a probabilistic
fashion via, for example, an HMM and from which Fisher
scores can be derived.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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