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SUMMARY
Lung squamous cell carcinoma (LSCC) is a devastating malignancy with no effective treatments, due to its
complex genomic profile. Therefore, preclinical models mimicking its salient features are urgently needed.
Here we describe mouse models bearing various combinations of genetic lesions predominantly found in
human LSCC. We show that SOX2 but not FGFR1 overexpression in tracheobronchial basal cells combined
with Cdkn2ab and Pten loss results in LSCC closely resembling the human counterpart. Interestingly,
Sox2;Pten;Cdkn2ab mice develop LSCC with a more peripheral location when Club or Alveolar type 2
(AT2) cells are targeted. Our model highlights the essential role of SOX2 in commanding the squamous
cell fate from different cells of origin and represents an invaluable tool for developing better intervention
strategies.
INTRODUCTION

Lung cancer is the leading cause of cancer-related deaths

worldwide, with more than one-quarter (27%) of deaths among

both men and women (Siegel et al., 2015). Non-small cell lung

cancer, which includes adenocarcinoma (ADC), squamous cell

carcinoma (SCC), and large cell carcinoma, is the predominant

histological type, accounting for more than 80% of cases.

More than 50%of cases present amixed histological phenotype,

indicative of the marked heterogeneity in lung cancer (Travis,

2002; Walker, 2008). With more than 400,000 deaths worldwide

each year (Cancer Genome Atlas Research Network, 2012; Je-
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in four well-defined pathways: squamous differentiation path-

way (SOX2, NOTCH), phosphoinositol 3-kinase (PI3K) pathway

(FGFR1, PTEN), cell-cycle regulation (CDKN2A, RB1, TP53),

and oxidative stress response (CUL3, KEAP1, NFE2L2) (Cancer

Genome Atlas Research Network, 2012). The higher molecular

complexity and the absence of predominant actionable driver al-

terations (Bass et al., 2009; Cancer Genome Atlas Research

Network, 2012; Weiss et al., 2010) have hampered the develop-

ment of preclinical models that mimic human LSCC at both ge-

notype and phenotype levels. Single oncogenic alterations intro-

duced in the mouse failed to drive the development of LSCC

while mostly promoting LADC (Lu et al., 2010; Malkoski et al.,

2014).

The first model of LSCC morphologically resembling the hu-

man counterpart is based on the deregulation of IKKa, a protein

kinase, whose reduced activity was already associated with

SCC development in skin and oral cavity but rarely in lung (Liu

et al., 2012). A dominant negative mutant form of IKKa causes

SCC in a variety of tissues but at a very low frequency in lung

(Xiao et al., 2013). Prolonged survival by restricting the dominant

negative effect to the lungs did, however, increase the frequency

of LSCC. Two conditional models recently described are based

on Lkb1 loss, which is found to be inactivated in approximately

2% of human LSCC (Cancer Genome Atlas Research Network,

2012; Travis, 2002). In one model, which combines Lkb1 and

Pten deletion, mice develop LSCC morphologically resembling

the human counterpart with a latency of 40–50 weeks (Xu

et al., 2014). In the other model, mice harboring a conditional

deletion of Lkb1 develop LSCC, and in a few cases LADC,

following intranasal infection with a lentivirus carrying SOX2

and PGK-Cre-recombinase; the latency is shorter (6–10 months)

due to the concomitant overexpression of SOX2, and the pene-

trance of tumor formation is 40% (Mukhopadhyay et al., 2014).

Although the combination of genetic alterations is critical for

the tumor phenotype, increasing evidence also points to the

cell of origin as an important factor in determining tumor charac-

teristics (Sutherland et al., 2011, 2014; Visvader, 2011). LSCC

was thought to mainly arise in the upper airways, but according

to recent reports peripheral LSCC is becoming as frequent as the

central type (Funai et al., 2003; Hayashi et al., 2013; Sakurai

et al., 2004; Yousem, 2009). The multiple locations may have

therapeutic implications if peripheral and central LSCC have a

different cells of origin and, therefore, different growth patterns.

Trachea, mainstem bronchi, and the most proximal region of

the intralobular airway are lined by a pseudostratified columnar

epithelium composed of Basal, Ciliated, Neuroendocrine, and

Club secretory cells. Basal cells serve as tissue-specific stem

cells for the tracheobronchial compartment, since they can

both self-renew and give rise to Club and ciliated epithelial cells

(Hong et al., 2004; Rock et al., 2009). They express high levels of

the transcription factor p63, which is required for development of

the trachea (Daniely et al., 2004), and cytokeratin 5 (K5) and 14

(K14). Their expression profile (p63, K5) and their stem cell prop-

erties make them a likely candidate for the cell of origin of LSCC.

Club cells are more abundant and line the bronchi and bronchi-

oles. They can both self-renew and generate ciliated cells both

under homeostatic conditions and in response to epithelial injury

(Rawlins et al., 2009). The most distal region of the lung is orga-

nized into a complex system of alveoli, composed of alveolar
520 Cancer Cell 30, 519–532, October 10, 2016
type 1 (AT1) and 2 (AT2) cells. The latter are considered to be

the major stem cells of the alveolar epithelium, based upon their

ability to self-renew and give rise to AT1 cells (Adamson and

Bowden, 1974; Evans et al., 1975). Club cells and AT2 cells are

both indicated as cells of origin of lung LADC (Sutherland

et al., 2014). In this study, we define the impact of the cell of

origin on LSCC development.

RESULTS

Targeted Introduction of LSCC Recurrent Aberrations
by Recombinant Adenoviral Vectors
We have previously described a series of adenoviral vectors that

drive Cre-recombinase to Club and AT2 cells in the adult mouse

lung and have demonstrated that they are robust tools for the

assessment of the cell of origin of lung cancer (Sutherland

et al., 2011, 2014). We applied this same approach to target

basal progenitor cells. We utilized the promoter region of K14

or K5 to direct Cre-recombinase to basal progenitor cells (see

Supplemental Experimental Procedures for details).

To assess the specificity and efficiency of Ad5-K14-Cre and

Ad5-K5-Cre, we infected primary keratinocytes and mouse

embryonic fibroblasts (MEFs) isolated from mT/mG mice, a Cre

reporter mouse strain that expresses Tomato (mT) prior to Cre-

mediated excision and membrane-targeted GFP (mG) upon

excision (Muzumdar et al., 2007) (Figures S1A and S1B). Both

Ad5-K14-Cre and Ad5-K5-Cre efficiently delivered and activated

Cre-recombinase expression in keratinocytes, as indicated by

GFP expression (Figure S1A), but not in MEFs (Figure S1B).

We used Ad5-CMV-Cre as positive control of infection and

Ad5-SPC-Cre (Sutherland et al., 2011) as negative control, since

the promoter of SPC drives Cre expression only in AT2 cells. The

result was confirmed by western blot analysis (Figure S1C).

To validate the specificity of adenovirus promoter targeting

in vivo, we intratracheally injected mT/mG mice with a high titer

of either Ad5-K14-Cre or Ad5-K5-Cre, and performed GFP stain-

ing on trachea and lungs collected 3 weeks after infection to

identify switched cells.mT/mGmice were pretreated with naph-

thalene, which depletes Club secretory cells (Hong et al., 2004),

facilitating the access to tracheobronchial basal cells. Indeed,

GFP staining of tracheas isolated from mT/mG mice treated

with corn oil (vehicle control) was negative (Figure 1A), indicating

that under steady-state conditions the tracheobronchial epithe-

lium is relatively refractory to adenoviral infection. This is also the

case when Cre is under the direction of the cytomegalovirus

(CMV) promoter (Figure 1A). In stark contrast, however, Ad5-

CMV-Cre, Ad5-K14, and Ad5-K5-Cre showed a high level of

infection of basal cells when injected following naphthalene

administration (Figure 1A). In the lung, Cre-recombinase-medi-

ated switching occurred in the alveolar compartment of mice in-

tratracheally injected with Ad5-CMV-Cre, regardless whether

they were pretreated with naphthalene or corn oil (Figure 1B).

Ad5-K5-Cre and Ad5-K14-Crewere not able to drive Cre expres-

sion in any of the peripheral lung cell populations when pre-

treated with corn oil (Figure 1B), while naphthalene treatment

gave rise to a readily detectable population of switched cells

along the bronchial lumen (Figure 1B).

To demonstrate that GFP was specifically expressed by

basal cells, we performed dual immunofluorescence (IF)



Figure 1. In Vivo Characterization of Basal

Cell-Specific Adenoviral Vectors Using

mT/mG Reporter Mice

GFP IHC staining of longitudinal sections of tra-

cheas (A) and lungs (B) isolated from mT/mG re-

porter mice 3 weeks after intratracheal injection of

Ad5-CMV-Cre, Ad5-K14-Cre, and Ad5-K5-Cre

following pretreatment with corn oil or naphtha-

lene as indicated. Scale bars, 100 mm (A) and

200 mm (B). Scale bars in insets, 50 mm (B). See

also Figure S1.
staining for GFP and K14, K5, or CC10 on tracheal sections

collected at 7 days after intratracheal injection of either Ad5-

K14-Cre or Ad5-K5-Cre in mice previously treated with naph-

thalene (Figure S1D). The co-expression of GFP with both

K14 and K5, but not CC10, indicated that Cre is specifically

activated in basal cells (Figure S1D). At 21 days the GFP stain-

ing was also found in cells overlaying the basal cells, consis-

tent with prior lineage-tracing experiments (Hong et al., 2004;

Rock et al., 2009) (Figure S1E). GFP staining on trachea

and lungs of mT/mG mice collected 2, 4, 6, 8, and 15 months

after virus injection upon naphthalene treatment indicated

that the specificity is retained over an extended period of

time (Figure S1F). We analyzed 11 mT/mG mice, which did

not show any neoplastic lesions, indicating that naphthalene

does not induce tumors. Taken together, our data indicate

that Ad5-K14-Cre and Ad5-K5-Cre efficiently and specifically

target tracheobronchial basal cells following naphthalene

treatment.

To recapitulate the genomic complexity of LSCC, we devel-

oped amouse model of LSCC based on the deregulation of mul-

tiple pathways involved in LSCC initiation and progression. We

generated compound conditional mutant mice for: (1) overex-

pression of SOX2, a transcription factor involved in squamous

differentiation by suppressing the Notch pathway and whose
Canc
gene is one of the most frequently ampli-

fied in SCC; (2) overexpression of FGFR1,

a tyrosine kinase receptor overexpressed

in 27% of LSCC cases and as such a

possible therapeutic target; (3) deletion

of PTEN, which encodes a phosphatase

that antagonizes the PI3K signaling

pathway and found to be altered in 24%

of LSCC cases; and (4) deletion of

the CDKN2AB locus that encodes for

p16INK4A, p15INK4B, and p14ARF, three

cell-cycle inhibitors with a well-estab-

lished tumor-suppressor function and in-

activated in 72% of LSCC cases (Cancer

Genome Atlas Research Network, 2012).

In the absence of p16INK4A, p15INK4B can

provide a backup function, thereby miti-

gating the effects of p16INK4A loss (Krim-

penfort et al., 2007). Consequently, loss

of both CDKN2A and CDKN2B has

more profound effects and is likely the

reason why both are often co-deleted
in LSCC. These genetic alterations collectively cover a large

fraction of the human cases (Figure 2A).

Mice carrying the conditional allele of either Pten (Ptenflox/flox)

or Cdkn2ab have been previously generated in our laboratory

(Krimpenfort et al., 2007; Marino et al., 2002). Therefore, we

generated mice carrying the combined conditional deletions of

Pten and Cdkn2ab (hereafter PC mice). PC mice were crossed

to mT/mG reporter mice to identify cells in which the alleles

were actually recombined. To determine whether their inactiva-

tion in basal cells is sufficient to induce LSCC, we intratracheally

injected 6- to 8-week-old PC mice with either Ad5-K14-Cre or

Ad5-K5-Cre following naphthalene treatment (Figure 2B). Mice

were euthanized when they started to show signs of disease

(e.g., shortness of breath, weight loss), and trachea and lungs

were sampled for histopathological analysis.PCmice developed

tumors with a latency of 10–15 months and a frequency of 55%

(Table S1). The penetrance was calculated by scoring the mice

based on GFP staining. Mice negative for GFP staining were

not included because this would imply the absence of recombi-

nation. At 6 or 9 months the penetrance was very low (1/7 and

1/9, respectively). At 10–15 months tumor penetrance increased

(10/19; Table S1) and a wide spectrum of tumor lesions was

found (Figure 2C and Table S1). No obvious differences between

Ad5-K14-Cre- or Ad5-K5-Cre-injected PC mice were found.
er Cell 30, 519–532, October 10, 2016 521



Figure 2. Generation of Mouse Models that

Recapitulate the Genomic Complexity of

Human LSCC

(A)Genetic alterationsofCDKN2A,CDKN2B,PTEN,

FGFR1, and SOX2 in the 178 human LSCC speci-

mens in the TCGA dataset. Exon skipping and DNA

methylation for the CDKN2A locus are excluded.

(B) Schematic representation of the experimental

design used for all cohorts of mice: PC, Fgfr1PC,

and Sox2PC. Mice are treated with naphthalene

on day 0 and intratracheally injected with Ad5-

K14-Cre or Ad5-K5-Cre on day 3.

(C) Representative H&E staining on various lung

lesions of PC mice. Scale bars, 100 mm.

See also Table S1.
Taken together, these data demonstrated that tracheobronchial

basal cells can be efficiently transformed by loss of Pten and

Cdkn2ab, giving rise to a variety of tumors.

FGFR1 Overexpression Causes Neoplasia with Sporadic
Squamous Differentiation
To directly test the consequences of overexpressing fibroblast

growth factor receptor 1 (FGFR1) in vivo, we targeted a bicis-

tronic cDNA cassette containing a mutant active form of

FGFR1 (K656E) and the YFP to the Col1a1 locus (Figure S2A).

Validation of the recombinant event in embryonic stem cells

(ESCs) is described in Supplemental Experimental Procedures

and in Figures S2B and S2C. We crossed LSL-Fgfr1K656E mice

with PCmice and withmT/mG reporter mice (hereafter Fgfr1PC;

Figure 3A). Fgfr1PCmice pretreated with naphthalene and intra-

tracheally injected with either Ad5-K14-Cre or Ad5-K5-Cre

developed tumors with a latency of 1.5–6.5 months and a fre-

quency of 76% (16/21; Table S1).

Weobservedbronchoalveolar adenoma, polyp-like spindle cell

neoplasia, ADC, chondroid sarcoma, adenofibroma, and osteo-

sarcoma (FigureS2DandTableS1). In a fewcasessporadic squa-

mous cell differentiation was observed within the heterogeneous

lesion (19%; Figure 3 and Table S1). In general, tumorswere inva-

sive anddidclearly arise fromthebronchial lining (FigureS2D). Le-

sionscontaining squamousdifferentiationwerearrangedasnests

of cells in circular structures (Figures 3B and 3C) strongly positive

for K5 (Figure 3D). Immunohistochemistry (IHC) analysis showed
522 Cancer Cell 30, 519–532, October 10, 2016
that the lesions were positive for GFP

and FGFR1, as expected (Figures 3E and

3F); however, they were negative for p63

(Figure 3G). Taken together, our results

indicate that FGFR1 overexpression

transforms Pten- and Cdkn2ab-deficient

tracheobronchial basal cells at a higher

frequency and at a faster rate. Tumors

are heterogeneous with only sporadic

squamous differentiation.

SOX2 Serves as a Critical Switch
to Drive Heterogeneous Lesions
into LSCC
To overexpress SOX2 in vivo, we used an

approach similar to that described above
for FGFR1 using cDNA for mouse SOX2 and CFP (Figure S2A).

Successful targeting of ESCs and expression of LSL-Sox2 allele

in vivo are described in Supplemental Experimental Procedures

and Figures S2B, S2C, and S2E. We crossed LSL-Sox2 mice

with PCmice, and withmT/mG reporter mice (hereafter Sox2PC;

Figure 4A). Seven to nine months after basal cell virus inocula-

tion, 73% of Sox2PCmice developed multiple LSCC that ranged

from moderately to well differentiated (Figure 4 and Table S1).

The large tumors expanded in the alveolar compartment (Fig-

ure 4B). Squamous cell differentiation was evident from the ker-

atin pearls and the prominent cornification in advanced lesions

(Figure 4B). The cornification was accompanied by infiltration

of inflammatory cells and large areas of necrosis. LSCC was

morphologically characterized by irregular nests or large nodules

(Figure 4C). In some cases, although the squamous cell differen-

tiation was predominant, small areas of ductal/glandular/

mucinous differentiations were observed (data not shown).

Twelve cases of human LSCCs were selected for a compara-

tive study of the Sox2PCmouse model. The selected cases dis-

played a wide spectrum of differentiation features of LSCCs,

from well-differentiated carcinomas showing a pavement-like

arrangement of cells with keratinization (Figure 4D) to poorly

differentiated carcinomas with comedo-like necrosis. Impor-

tantly, 11 of the 12 cases of human tumors expressed SOX2 (Fig-

ure 4E and Table S2). All human cases showed positive IHC for

p63 but were negative for TTF-1, a marker used to distinguish

LSCC from LADC (Figure 4E and Table S2). In line with this,



Figure 3. Combined Overexpression of

FGFR1 Partially Drives Squamous Differen-

tiation within Heterogeneous Neoplastic

Lesions

(A) Schematic representation of the Col1a1 locus

targeted with LSL-Fgfr1K656E transgene before

Cre infection. Fgfr1PC mice were infected with

basal specific adenoviruses.

(B and C) H&E staining of lung sections showing

squamous differentiation with nest of cells with

evident intercellular bridges (arrow in B) in circular

arrangement (C).

(D–G) IHC analysis of lung sections possessing

tumors with squamous differentiation, for K5 (D),

GFP (E), FGFR1 (F), and p63 (G).

Scale bars, 10 mm (B) and 50 mm (C–G). See also

Figure S2 and Table S1.
Sox2PC mouse lesions showed positive staining for SOX2 and

p63 and were negative for TTF-1 (Figure 4E and Table S2). We

performed GFP staining to confirm that LSCC arose from cells

that had switched the conditional alleles (Figure 4F). GFP stain-

ing strongly overlapped with K14 and K5 staining (Figure 4F).

In the remaining 27% of cases, Sox2PC mice showed lesions

of atypical hyperplasia commonly in bronchi (Figure S3A), but

also in proximal and distal bronchioles, as indicated by GFP

staining (Figures S3A and S3B; Table S1). They were positive

for GFP, SOX2, K5, and to a lesser extent p63, indicative of the

early commitment toward squamous differentiation (Figure S3B).

We performed histological examination of all organs and

tissues for six Sox2PC mice to identify putative metastasis. We

observed SCC in the left atrium of the heart only in one case (Fig-

ure S3C). In the samemousewe found large lesions of SCC in the

anterior part of the nasal cavity (Figure S3D).

We also measured the RNA expression level of the endoge-

nous and exogenous SOX2 in the tumor area by performing

real-time RT-PCR analysis using oligonucleotide primers an-

nealed with the 30 UTR (Sox2 end) and with the IRES (SOX2

exo). LSCC isolated from Sox2PCmice showed high expression

of the exogenous SOX2, whereas the endogenous form was un-

detectable (Figure 4G). We used as control LADC samples iso-

lated from Kras;p53 mice and PC mice, where we could only

detect a low level of endogenous Sox2 expression (Figure 4G).

The levels of SOX2 expression were an order of magnitude

higher than what we could observe in LSL-Sox2;CreERT2

MEFs upon tamoxifen treatment (Figure 4H). As described

above, combined Pten and Cdkn2ab loss gives rise to heteroge-

neous neoplastic lesions; however, in Sox2PC mice none of

these heterogeneous lesions were found. These data indicate

that SOX2 overexpression drives a homogeneous LSCC pheno-
Canc
type resembling the histopathological

marker profile and the morphology of

the human counterpart.

An Epidermal Transcription
Program Differentiates Human and
Mouse LSCC from LADC
To molecularly characterize our mouse

model in an unbiased manner, we per-
formedgenome-wide transcriptional analysis of LSCCofSox2PC

(LSCC) mice and LADC of Kras;p53 mice with and without

Eed (Kras;p53±Eed). Initially, we compared the mouse transcrip-

tional landscapes of six Sox2PC LSCC with those of eight

Kras;p53±Eed LADC. In parallel, the gene expression profiles of

18humanLSCCwithSOX2amplificationandCDKN2ABdeletion,

with or without PTEN deletion from the TCGA dataset (Cancer

Genome Atlas Research Network, 2012), were compared with

17 human primary LADC (Cancer Genome Atlas Research

Network, 2014) (Table S3) to generate a list of genotype-specific

LSCC genes. We identified 3,167 differentially expressed (DE)

genes between human LSCC and LADC by applying a log2
(fold change) of R ±1 and a false discovery rate of %0.05. Of

these, 1,599 genes were upregulated in LSCC tumors and

1,568 were downregulated. A comparison between Sox2PC and

Kras;p53±Eed tumor cells yielded 7,812 DE genes, of which

5,208 were upregulated and 2,604 downregulated. Importantly,

679 genes were DE genes in both species (518 upregulated and

161 downregulated; Figures 5A and S4A). Gene set enrichment

analysis (GSEA) showed a correlation between genes that typify

LSCC in mouse and human over LADC (Figures 5B and 5C).

Among thesharedupregulatedgenes,geneontology (GO)anal-

ysis revealed enrichment for 140 genes implicated in squamous

differentiation (p = 1.663 10�6), including SOX2, TP63,NOTCH3,

and several keratins involved in squamous carcinoma (KRT14,

KRT6B,KRT16,KRT84, andKRT4) (Figure 5D). Themost enriched

molecular functions were linked to metalloendopeptidases and

proteases, a hallmark of epidermal cells (Figure 5E). The most en-

riched GO categories were associated with cellular components

transcriptionally regulated by p63, such as cell adhesion and, in

particular, desmosomes (Figure 5F). Metalloendopeptidase

genes included Klk10 and Adam17, and protease genes included
er Cell 30, 519–532, October 10, 2016 523



Figure 4. SOX2 Promotes the Switch

from Heterogeneous Neoplastic Lesions to

Typical LSCC

(A) Schematic representation of the Col1a1 locus

targeted with LSL-Sox2 transgene before Cre

infection. Sox2PC mice were generated and in-

fected with basal specific adenoviruses.

(B and C) H&E staining on mouse lung sections

collected 7–9 months after injection. The tumor

showedprominent cornification (arrow inB), keratin

pearls, and inflammatory infiltration (arrows in C).

(D) H&E staining of well-differentiated human

LSCC.

(E) IHC staining on human and mouse lung sec-

tions with the indicated histopathological markers.

(F) IHC staining for GFP, K14, and K5 on mouse

lung sections.

(G and H) Real-time RT-PCR of Sox2 endogenous

(Sox2 end) and exogenous (SOX2 exo) levels

performed on tumor tissues isolated from the

indicated mouse tumor samples (G) and MEFs

untreated (UNT) or treated with tamoxifen (TAM)

(H). Data represent means ± SD. Samples are

normalized by using actin RNA level.

Scale bars, 200 mm (B) and 50 mm (C–F). See also

Figures S2 and S3; Tables S1 and S2.
Tmprss11d (Figure5G),whoseRNA levelswereconfirmedby real-

time RT-PCR to discriminate mouse LSCC (Sox2PC) and LADC

(Kras;p53). We also confirmed the differential expression of

Dsg3 that encodes an important component of desmosomes (Fig-
524 Cancer Cell 30, 519–532, October 10, 2016
ure 5G). Desmosomal components found

to be upregulated in Sox2PC tumors

included direct p63 target genes such as

Dsg1 andDsc3 (Ferone et al., 2013). Other

p63 direct targets such as Fgfr2 and Irf6,

with an important role in the homeostasis

of squamous epithelia but deregulated in

the presence of p63 mutations (Ferone

et al., 2012; Thomason et al., 2010), were

also upregulated (Figure 5D).

As a complementary subtype assign-

ment, we compared our mouse LSCC

gene expression data with the four previ-

ously identified LSCC subtypes (Wilker-

son et al., 2010). Gene sets specific for

each subtype including basal, primitive,

classical, and secretory were obtained

fromWu et al. (2013). LSCC from Sox2PC

mice was enriched for all four subtypes

(Figure S4B). Taken together, our results

indicate that a p63-mediated epidermal

transcriptional program distinguishes hu-

man and mouse LSCC from their spe-

cies-matched LADC counterpart.

Tumor Microenvironment in the
Development of LSCC
Inflammatory infiltrates were marginal in

PC and Fgfr1PC mice compared with
Sox2PC mice, where large areas of neutrophil infiltrations were

clearly evident at histology (Figure 4B). Interestingly, we found

a sharp distinction between Sox2PC and PC or Fgfr1PC mice

with respect to the presence of tumor-associated macrophages



(TAMs) and tumor-associated neutrophils (TANs), the two major

components of tumor inflammatory infiltrates (Murdoch et al.,

2008). IHC analysis showed that TANs were abundantly present

in LSCCofSox2PCmice, as indicated by the expression of LY6G

(Figure 6A and Table S4) (Xu et al., 2014). To confirm this result,

we performed IHC analysis with antibodies against myeloperox-

idase (MPO). MPO is an antimicrobial enzyme most abundantly

expressed by TANs compared with naive neutrophils (Youn

et al., 2012) and, as expected, was overly present in the tumor

lesions of Sox2PC mice (Figure 6A). TAMs, identified by F4/80,

were poorly represented in LSCC lesions of Sox2PC mice as

compared with TANs (Figure 6A). Conversely, in the heteroge-

neous lesions of PC mice TANs were completely absent as indi-

cated by the negative staining for LY6G and MPO (Figure 6A),

whereas TAMs were the only inflammatory infiltrate found (Fig-

ure 6A). Surprisingly the squamous lesions of Fgfr1PC mice

were also negative for LY6G and MPO (Figure 6A), in favor of a

role for SOX2 in the activation of TANs. However, they showed

low-level expression of F4/80 (Figure 6A), indicative of TAMs.

We then focused on the analysis of immune populations pre-

sent in LSCC of Sox2PC mice compared with human LSCC.

The neutrophil infiltrations were present in all cases of human

LSCC analyzed (Table S4). Moreover, we found a striking similar-

ity in the highly immunogenic environment present in both spe-

cies, as indicated by CD4- and CD8-positive infiltrating cells,

which were readily observed in tumor stroma and tumor nests

of both species (Figure 6B and Table S4). HIF1-a, a transcrip-

tional regulator of cellular response to hypoxia, was detected

to various extents in the tumor cells of both human and mouse

LSCC (Figure 6B and Table S4). Interestingly we also found a

high level of PD-L1 expression, which showed membranous

staining in tumor cells of both human and mouse LSCC (Fig-

ure 6B and Table S4), although the percentage of positive cells

in human varied from 0.5% to 80% (Table S4). PD-1, the receptor

of PD-L1, was mainly observed in clusters of immune cells in

tumor stroma (Figure 6B and Table S4). No differences were

detected between peripheral or central LSCC (Table S4).

Sox2PC Mice Develop Peripheral LSCC when AT2 or
Club Cells Are Targeted
To investigate whether other cell types can serve as the cell

of origin of LSCC, we targeted Club and AT2 cells of Sox2PC

mice. We employed the promoter region of the mouse Cc10

that is expressed by tracheal and bronchiolar Club cells,

including bronchoalveolar stem cells (BASCs) (Kim et al., 2005)

and the promoter region of the mouse Surfactant Protein C

gene (Spc) that is expressed by AT2 cells present in the alveoli

and by BASCs.We injected 6- to 8-week-old Sox2PCmice intra-

tracheally with either Ad5-CC10-Cre or Ad5-SPC-Cre (Suther-

land et al., 2011). Strikingly, all mice developed tumors around

7–8 months after Cre activation, which were well to moderately

differentiated LSCC in more than 90% of cases (Figure S5A

and Table S5). Histologically, these tumors showed the hall-

marks of LSCC differentiation such as keratin pearls, cornifica-

tion, necrosis, and inflammation (Figure S5A) and were positive

for SOX2, p63, and K5 and negative for TTF-1 (Figure S5B and

Table S2). The early lesions were detected by GFP staining,

which overlapped with SOX2 and to a lesser extent with K5

and p63 (Figure S5C).
Although the histopathological profiles were perfectly overlap-

ping, the size, number, and location of the lesions differed be-

tween the two groups. The number of carcinomas versus early le-

sions was substantially higher in Ad5-CC10-Cre-injected mice

compared with Ad5-SPC-Cre (Figure 7A). The difference was

found to be significant by a two-way ANOVA test (Figure 7B).

This finding indicates that only a subset of early lesions originating

fromAT2 cells progresses to LSCC,whereas this process ismore

efficientwhenClubcells are targeted.Singlecells or small clusters

of switchedcells in the alveolar compartment of Ad5-SPC-Cre-in-

jected mice were also found to be positive for CC10 as indicated

by the dual GFP-CC10 IF (Figure 7C and Table S5), and might

represent the previously described subpopulation of AT2 cells ex-

pressing a low level of CC10 (Rawlins et al., 2009). When mice

were injected with Ad5-CC10-Cre, switched single cells or small

clusters were often observed in bronchioles (Figure 7C), at the

bronchoalveolar duct junctions (BADJ) and in few cases also in

the alveolar compartment (data not shown), where a subpopula-

tion of AT2 cells expressing a low level of CC10 was noted (Raw-

lins et al., 2009). Early lesions of either injection in mice strongly

retained CC10 expression, as showed by GFP-CC10 dual IF

(Figure 7D) and, in the case of Ad5-SPC-Cre-injected mice, lost

the expression of SPC while progressing, as indicated by SPC-

CC10dual IF (Figure7DandTableS5).Duringprogression of early

lesions to carcinoma, the expression of CC10 is replaced by K5,

the two cell markers being mutually exclusively expressed in the

lesions of both Ad5-SPC-Cre- and Ad5-CC10-Cre-injected mice

(Figure 7E and Table S5). The transition of CC10+ to K5+ cells is

complete in advanced LSCC of both Ad5-SPC-Cre- and Ad5-

CC10-Cre-injected mice (Figure 7F). Taken together, our data

indicate that SOX2 overexpression in combination with Pten and

Cdkn2ab deletion is able to drive AT2 and Club cells toward

LSCC.Tumorprogression is clearlymore efficientwhenClub cells

are targeted. Inbothsituations the locationof the lesions isperiph-

eral, resembling the human peripheral subtype of LSCC.

By comparing the tumor-free survival of PCmice with Fgfr1PC

and Sox2PC mice, injected with Ad5-K14-Cre, we found that

both FGFR1 and SOX2 are able to accelerate tumor onset (Fig-

ure 8A and Table S1). The tumor-free survivals of Sox2PC

mice injected with Ad5-K14-Cre, Ad5-SPC-Cre, or Ad5-CC10-

Cre are comparable, ranging between 7 and 9 months. In our

model, Pten and Cdkn2ab deletion provides basal cells with

the capability to transform in multiple heterogeneous lesions.

FGFR1 overexpression accelerates tumorigenesis without

imposing a particular differentiation pattern, resulting only in oc-

casional squamous differentiation. In contrast, SOX2 overex-

pression remarkably imposes a squamous phenotype to Basal,

Club, and AT2 cells (Figure 8B).

Early lesions arise in bronchi and bronchioles when Sox2PC

mice are injected with Ad5-K14-Cre; bronchioles, BADJ, and,

to a lesser extent, alveolar space when they are injected with

Ad5-CC10-Cre, and BADJ and alveolar space when injected

with Ad-SPC-Cre (upper panel, Figure 8C). The morphology of

LSCC originating from different cells is identical, but the location

is in line with the different cell of origin (lower panel, Figure 8C).

We performed RNA-sequencing (RNA-seq) analysis and

compared the gene expression profiles of Basal-, AT2-, and

Club-derived LSCC. Our analysis revealed a strong correlation

between their expression profiles, with only 60 genes found to
Cancer Cell 30, 519–532, October 10, 2016 525



Figure 5. Gene Expression Profile Analysis

(A) Venn diagram showing the commonly DE genes betweenmouse and human LSCC found by comparing DE genes between Sox2PC versusKras;p53±Eed and

human LSCC versus LADC.

(B and C) GSEA for genes upregulated in Sox2PC (B) and hLSCC (C) compared with Kras;p53±Eed and hLADC, respectively.

(D) Hierarchical clustering of upregulated genes in both mouse and human LSCC, which are enriched for a squamous differentiation signature.

(legend continued on next page)
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Figure 6. Tumor Microenvironment in the Three Cohorts of Mice and Comparative Analysis of Human and Mouse LSCC
(A) IHC analysis performed on adult lung tissues of Sox2PC, PC, and Fgfr1PC mice, using the indicated antibodies against markers of inflammatory cells.

(B) IHC analysis performed on human and mouse LSCC for the indicated markers of immune cells.

Scale bars, 200 mm (A) and 50 mm (B). Scale bars in insets, 50 mm (A). See also Table S4.
be DE in AT2-derived LSCC versus Basal-derived LSCC, and as

little as 28 differentially expressed genes in Club-derived LSCC

versus Basal-derived LSCC (Figure 8D and data not shown).

These results suggest that enforced expression of SOX2, rather

than the cell of origin, dictates the resulting tumor phenotype.We

suggest that human peripheral LSCC might also arise from pe-

ripheral SPC and CC10 expressing cells.

DISCUSSION

In this study we demonstrate that Pten- and Cdkn2ab-deficient

tracheobronchial basal cells can be efficiently transformed into a
(E and F) Significant GO categories for molecular functions (E) and cellular comp

(G) Real-time RT-PCR of the indicated genes performed on tumor tissues isola

Samples are normalized by using actin RNA level.

See also Figure S4 and Table S3.
variety of lung tumors. The additional overexpression of SOX2,

but not FGFR1, results in a homogeneous LSCC phenotype

closely resembling the human counterpart. Genome-wide tran-

scriptional profiles of tumors from Sox2PC and Kras;p53±Eed

mice revealed the differential regulation of gene categories that

typify human LSCC over LADC, indicating that SOX2 imposes

squamousdifferentiationmost likely by activating a p63-mediated

transcriptional epithelial program.Critically, SOX2overexpression

is also able to impose an LSCC phenotype to Club and AT2 cells,

indicating the potency of SOX2 in directing transdifferentiation.

The gene promoters we used to target basal cells are already

well described as recapitulating the gene expression of K5 and
onents (F).

ted from the indicated mouse tumor samples. Data represent means ± SD.
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Figure 7. Club and AT2 Cells Are Trans-

formed to Give Rise to LSCC in Sox2PC

Mice

(A) Scan images of GFP staining performed on

lungs isolated from Sox2PCmice injected with the

indicated adenoviruses.

(B) Quantification of the comparison of early le-

sions versus carcinoma in Ad5-SPC-Cre- and

Ad5-CC10-Cre-injected mice (Ad-SPC-Cre, p <

0.0001; Ad5-CC10-Cre, p < 0.05). Data represent

means ± SD.

(C–F) Dual IF staining with the indicated markers,

performed on lung tissues isolated from Sox2PC

mice injected with the indicated adenoviruses,

representative of single/small clusters of targeted

cells (C), early lesions (D), intermediate lesions (E),

and advanced LSCC (F).

Scale bars, 20 mm (C, D) and 50 mm (E, F).

See also Figure S5 and Table S5.
K14 (Jonkers et al., 2001; Ramirez et al., 2004), which are estab-

lished markers of basal cells of stratified (skin) and pseudostra-

tified epithelia (trachea). Nevertheless, loss of Pten andCdkn2ab

gave rise to a variety of tumors including sarcomas, osteomas,

and histiocytic lesions. IHC analysis for a panel of EMT markers

including E-cadherin (ECAD), keratin 8 (K8), and vimentin (VIM)

showed residual expression of ECAD and K8 in some mesen-

chymal lesions strongly expressing VIM. In other cases the

epithelial compartment co-existed with a distinct mesenchymal

compartment, pointing to the presence of multiple populations

of basal cells with different lineage commitments. The genotype

including Cdkn2ab deletion might play an important role in this

high plasticity, which becomes restricted to SCC only by forced

SOX2 expression.

Both SOX2 and FGFR1 are frequently amplified in LSCC, in

some cases in the absence of mutations in the CDKN2AB and

PTEN (Cancer Genome Atlas Research Network, 2012). This

led to the hypothesis that they are critical driver oncogenes in

this malignancy. Our data support a role for FGFR1 in acceler-

ating tumor development without forcing the cells toward a

particular tumor subtype. In contrast, SOX2 appears critical in

driving cells toward an aggressive and penetrant LSCC pheno-

type. It will be interesting to assess in future experiments

whether the combination of FGFR1 and SOX2 results in exclu-
528 Cancer Cell 30, 519–532, October 10, 2016
sive LSCC with a much shorter latency

period than observed with SOX2. It will

also be important to determine how

SOX2 amplification synergizes with aber-

rations in TP53 (cell cycle) and NFE2L2

(oxidative stress response) that are also

frequently observed in LSCC (Cancer

Genome Atlas Research Network, 2012).

The most remarkable feature of LSCC

is the amplification on chromosome

3q26 (Bass et al., 2009; Hussenet

et al., 2010; Tonon et al., 2005) where

both SOX2 and TP63 lie. More refined

genomic analyses have shown that

SOX2 is the focus of high-level amplifica-
tions in lung and esophageal SCC (Bass et al., 2009; Liu et al.,

2013). SOX2 is actually amplified and/or overexpressed in 63%

of human LSCC (Cancer Genome Atlas Research Network,

2012) but 80%–90% of LSCC expresses SOX2 at the protein

level (Brcic et al., 2012; Sholl et al., 2010; Tsuta et al., 2011), sug-

gesting that multiple biological mechanisms can ensure its acti-

vation. The homogeneous LSCC phenotype ofSox2PCmice is in

line with this and suggests that human LSCC in which SOX2 is

not amplified might carry other driver mutations with a similar ef-

fect. The expression patterns of SOX2 and p63 clearly overlap;

both proteins showed heterogeneous staining. We showed

that this heterogeneity is maintained in both human and mouse

LSCC regardless of whether the location of the tumor is periph-

eral or central. Importantly, the co-expression with p63, a known

stem cell marker of stratified epithelia (Senoo et al., 2007), sug-

gests a critical role for SOX2-expressing cells in tumor mainte-

nance. This observation is in line with previous studies per-

formed on human skin SCC in which SOX2-expressing cells

marked cancer stem cells able to initiate and propagate the

tumor (Boumahdi et al., 2014). The transcriptional analysis of

LSCC from Sox2PC mice confirmed the strong interplay be-

tween p63 and SOX2. Further analysis, for example chromatin

immunoprecipitation sequencing using antibodies against either

p63 or SOX2 performed on early and late LSCC lesions from



Figure 8. FFGR1 and SOX2 Are Both Tumor

Drivers but Only SOX2 Imposes an LSCC

Phenotype

(A) Lung carcinoma-free survival curve of mice

with the indicated genotypes.

(B) Schematic representation of tumors arising in

mice with different genetic lesions, activated in

distinct lung cell types: LSCC arises from PCmice

following overexpression of SOX2 but not FGFR1.

Sox2PC mice develop LSCC also from AT2 and

Club cells.

(C) LSCC arises in different locations according to

the targeted cell population. Scale bars, 50 mm.

(D) Hierarchical clustering of transcriptional

profiling of the indicated Basal-, AT2-, and Club-

derived LSCC samples. One hundred genes with

the largest variability across samples were used.

Columns are for samples and rows are for genes.
Sox2PC mice, could reveal the sequence of events driving the

development of LSCC.

We observed a highly immunogenic environment in both hu-

man and mouse LSCC. Tumor development is often associated

with the local accumulation of myeloid-derived suppressor cells

(MDSC), which represent a heterogeneous population of cells

including polymorphonuclear neutrophils, monocytes, macro-

phages,myeloid precursor cells, and dendritic cells, that support

tumor growth by suppressing anti-tumor T cell responses. Tu-

mor regression might be achieved by targeting MDSC in LSCC

(Chioda et al., 2011; Condamine and Gabrilovich, 2011; Filipazzi

et al., 2012; Youn and Gabrilovich, 2010; Youn et al., 2008).

Moreover, we found consistently high levels of PD-L1 in LSCC

of Sox2PC mice whereas in human LSCC its expression was

rather variable. This is not surprising, given the high complexity
Canc
of human LSCC genome compared with

the Sox2PC mouse model in which mice

carry the same combination of genetic le-

sions. However, both human andSox2PC

mouse LSCC consistently express PD-1.

Since PD-L1 and PD-1 blockage is an

appealing cancer therapy (Zou et al.,

2016), the Sox2PCmouse is an appealing

model for the assessment of immuno-

therapeutic parameters.

In the LSCC model in which SOX2 was

delivered by intranasal lentivirus adminis-

tration on an Lkb1 null background, mice

developed tumors in 40% of cases and

this percentage included a few LADC

(Mukhopadhyay et al., 2014). In another

model in which SOX2 was overexpressed

in either AT2 or Club secretory cells, mice

developed well-differentiated LADC but

not LSCC (Lu et al., 2010).When targeting

AT2 and Club cells, Sox2PC mice exclu-

sively developed LSCC. These results

indicate that the context of SOX2 over-

expression with other cooperating muta-

tions is decisive in driving these different
cell types toward LSCC transformation. Despite the different

location RNA-seq data showed strong similarities, with only a

small number of genes being DE in LSCC arising from Club

and AT2 cells versus basal cells. In future experiments we will

address whether any of these can serve as a marker of the cell

of origin. Numerous early lesions do not progress to LSCC

when AT2 cells are targeted. Although the targeted cells were

primarily SPC-expressing cells, some of them also showed

CC10 expression. It is possible that the subpopulation of double

CC10+SPC+ cells described in the alveolar compartment and at

the BADJ (Rawlins et al., 2009) have served as the cell of origin of

LSCC when AT2 cells are targeted. The CC10+ lesions then

progress further, losing CC10 expression and acquiring squa-

mous markers. In a way we witness here the reverse transdiffer-

entiation as described earlier for conditional KrasG12D mice in
er Cell 30, 519–532, October 10, 2016 529



which CC10 targeting resulted in the transdifferentiation of

SOX2+CC10+ cells toward SPC+ adenocarcinomas (Sutherland

et al., 2014). There is an ongoing debate about whether periph-

eral and central LSCC have different cells of origin, as this might

be associated with different responses toward therapy (Funai

et al., 2003; Hayashi et al., 2013; Sakurai et al., 2004; Yousem,

2009). Our results point to the likelihood that central and periph-

eral LSCC have different cells of origin but are otherwise very

similar.

In conclusion, we have generated a mouse model that repro-

duces the salient features of human LSCC, expressing a set of

LSCC-specific markers and showing infiltration by distinct sub-

sets of inflammatory cells. Since this mouse model is based on

the mutations frequently found in human LSCC, it is likely that

identical or, at least, very similar signaling pathways are involved.

This makes this model particularly valuable for exploring the ef-

fects of additional lesions and as a model to design and assess

the value of intervention strategies. Furthermore, the set of mu-

tations we used can impose both peripheral and central LSCC,

dependent on the cell types targeted. It will be interesting in

future experiments to investigate whether the LSCC retain any

molecular markers from their cell of origin and whether this pro-

vides new inroads for targeted therapies.

EXPERIMENTAL PROCEDURES

More detailed procedures can be found in Supplemental Experimental

Procedures.

Mouse Strains and Human Samples

All experiments involving animals were performed in accordance with Dutch

and European regulations on care and protection of laboratory animals and

have been approved by the local animal experiment committee at Netherlands

Cancer Institute, DEC NKI (OZP ID 12051). Mice were housed under standard

condition of feeding, light, and temperature, with free access to food and

water.

Ptenflox/flox (Marino et al., 2002), Cdkn2ab flox/flox (Krimpenfort et al., 2007),

Kras;p53±Eda (Jackson et al., 2001; Jonkers et al., 2001; Serresi et al.,

2016), and mT/mG (Muzumdar et al., 2007) mice have been previously

described. LSL-Sox2 and LSL-Fgfr1K656E mice were generated using the

Flp-RMCE technology (see Supplemental Experimental Procedures for de-

tails). All animals were maintained on an FVB background (backcrossed

from strains generated from 129 Ola ESCs).

We collected 12 primary LSCC resections from the archive of the pathology

department of the Antoni van Leeuwenhoek hospital. The study CFMPB459

entitled ‘‘Genomic and Immunohistochemistry Profiling of Human Squamous

Cell Carcinoma’’ has been reviewed and approved by the NKI Institutional Re-

view Board (IRB). The IRB approval procedure for ‘‘secondary use’’ of human

material is according to Dutch legislation (code of conduct). All tumor samples

were reviewed by at least two expert pathologists.

Intratracheal Adenovirus Instillation

Mice were treated with cyclosporine A (Novartis) orally in the drinking water,

1 week prior and 2–3 weeks following adenovirus injection. Three days

before the infection, mice were intraperitoneally injected with naphthalene

(250 mg/kg) or an equal amount of corn oil. On the fourth day they were intra-

tracheally injected with 20 mL of 13 1010 pfu/mL purified Ad5-K14-Cre or Ad5-

K5-Cre viruses (see Supplemental Experimental Procedures for details). Mice

injected with either Ad5-SPC-Cre or Ad5-CC10-Cre were only treated with

cyclosporine A 1 week prior to and 2–3 weeks following adenovirus injection.

Histology and Immunohistochemistry

For histological analysis, lungs were inflated and fixed for 24 hr with ethanol/

acetic acid/formalin (EAF). Trachea was collected separately and also fixed
530 Cancer Cell 30, 519–532, October 10, 2016
EAF. Fixed tissues were subsequently dehydrated and embedded in paraffin,

and sections of 2–4 mm were prepared and stained with H&E for subsequent

histopathological analyses. See Supplemental Experimental Procedures for

details of antibodies used for staining.

Gene Expression Profiling

The procedure is described in Supplemental Experimental Procedures.

ACCESSION NUMBERS

Sequencing data relative to tumors from Kras;p53±Eedmice are available un-

der accession number GEO: GSE61190. Sequencing data relative to tumors

from Sox2PC mice are available under accession number GEO: GSE78948.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,
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Figure S1 (related to Figure 1). Characterization of Ad5-K5-Cre and Ad5-K14-Cre both in vitro and in 
vivo.  
(A) Fluorescent images of mouse keratinocytes isolated from mT/mG reporter mice at P0 and collected 48 hr 
upon infection with 100 MOI of the indicated Cre Adenoviruses: Ad5-CMV-Cre is used as positive control of 
infection and Ad5-SPC-Cre is used as negative control of infection; both Ad5-K14-Cre and Ad5-K5-Cre enable 
keratinocytes to switch from Tomato to GFP. (B) MEFs isolated from mTmG mice and collected 48 hr upon 
infection with either Ad5-CMV-Cre or Ad5-K14-Cre. (C) Immunoblotting analysis of protein extracts isolated 
from keratinocytes 48 hr upon infection with the indicated adenoviruses and incubated with GFP antibody. Actin 
is used to normalize the protein levels. (D) Dual IF with GFP/K14, GFP/K5, GFP/CC10, performed on tracheas 
isolated from mTmG mice 7 days following Ad5-K14-Cre and Ad5-K5-Cre infection; mice were administered 
naphthalene (250 mg/kg) 3 days prior to adenovirus infection.  (E) Dual IF with GFP/K14, performed on 
tracheas isolated from mTmG mice 21 days following Ad5-K14-Cre infection; mice were administered 
naphthalene (250 mg/kg) or vehicle (corn oil control) 3 days prior to adenovirus infection. (F) GFP IHC staining 
showing positive cells in the bronchial lining of mT/mG mice 15 months upon naphthalene treatment and Ad5-
K14-Cre and Ad5-K5-Cre injection. Scale bars, A, B, E, F:100 µm; D:20 µm. Inset in D:10 µm. Inset in E: 20 
µm. 
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Table S1. Related to Figure 2, Figure 3, Figure 4 
Tumor incidence and tumor types in mice with different genotypes 

	
  
	
  

 
            *Sporadic squamous cell differentiation is present in 3 cases out of 16 

	
  
	
  
	
  
	
  
	
  
	
  
	
  
 
 
 
 
 
 
 
 

Genotype 
# Mice with GFP+ 
staining / Total # 

Mice analyzed  

Tumor 
latency 

(months) 

# Mice with Lung 
Tumors / # Mice 
with GFP+ staining 

# Mice with Atypical 
Hyperplasia / # Mice 
with GFP+ staining 

Histopathology of 
Lung Tumors 

PC 19/25 10 -15 10/19 3/19 Broncho-alveolar 
Adenoma 
Polyp-like spindle 
cell neoplasia 
Adenofibroma 
Osteoma 
Adenocarcinoma  
Spindle cell 
sarcoma 
Hemangiosarcoma 
Chondroid sarcoma 
Neoplasia with 
rhabdoid 
differentiation 

Fgfr1PC 21/27 1.5-6.5 16/21* 2/21  
Sporadic squamous 
cell differentiation 
Broncho-alveolar 
Adenoma 
Polyp-like adenoma 
Adenofibroma 
Osteoma 
Adenocarcinoma  
Papillary carcinoma 
Spindle cell 
carcinoma 
Chondroid sarcoma 
 

 Sox2PC 15/21 7-9  11/15 4/15 
Squamous cell 
carcinoma 
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Figure S2 (related to Figure 3 and Figure 4). Generation of the conditional mice LSL-Fgfr1 K656E and LSL-
Sox2  
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(A) Schematic representation of the Flp-recombinase mediated cassette exchange technology: in the first step a 
cassette containing PGK-Neomycin (PGK-Neo) and flanked by FRT sites was targeted to the Col1a1 locus by 
homologous recombination; in the second step, a minicircle DNA containing the cDNA of either SOX2 or 
FGFR1 K656E followed by a reporter protein (respectively CFP and YFP) was transfected in ES cell clones 
positive to the first targeting, together with Flip recombinase, which mediated the cassette exchange.  
(B) Southern blotting of BglII digested genomic DNA, isolated from ES cells and hybridized to the “Col1a1 3’ 
probe”, which is a 842 bp genomic fragment that anneals to a fragment of 1kb in wild-type (WT) mice (Line 1 
and 2) and to a fragment of 4.9 kb in mutant (MUT) mice. Line 2 and 3 are the positive clones derived from the 
1st targeting and used for the second targeting (1st). 5 out of 5 FGFR1 ES clones (Line 5 to 9) and 4 out of 5 
SOX2 ES clones (Line 10 to 14) were correctly targeted. (C) ES cells positive to the Flp recombinase mediated 
cassette exchange and transfected with permeable Cre or left untreated. Left panel: Immunoblotting analysis 
with FGFR1 and SOX2 antibodies showing their expression upon Cre mediated cassette switch; Right panel: 
Confocal images of Cre transfected cells showing the expression of CFP and YFP. VCL (Vinculin) is used to 
normalize the protein levels. 
(D) HE staining of lung sections showing that Fgfr1PC mice develop large, invasive and heterogeneous tumor 
lesions, as indicated. (E) Real time RT-PCR on RNA isolated from mTmG;CreERT2 (mTmG) and LSL-
Sox2;CreERT2 (SOX2) MEFs and treated with 2.5mM of Tamoxifen (tam) for 48 hr or left untreated (unt). 
Data are represented as means ±SD. Samples are normalized by using Actin RNA level. Scale bars, C: 20 µm; 
D: 200 µm. 
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Table S2. Related to Figure 4 
Scoring of IHC analysis of histopathological markers performed on human and mouse LSCC  
	
  
	
  

	
  
1P: peripheral location 
2C: central location 
 
	
  
 

Species Case number SOX2 P63 TTF-1 

Human 1 (P1and C2) ++/+++ +/++ _ 

2 (P and C) 60 %  +/+++ ++ _ 

3 (P) ++/+++ +++ _ 

4 (C) _ +/++ _ 

5 (C) ++/+++ +++ _ 

6 (P) +++ +++ _ 

7 (P and C) +++ +/+++ _ 

8 (C) +++ +++ _ 

9 (C) ++/+++ ++/+++ _ 

10 (P and C) +/++ 
(also cytoplasm) +++ _ 

11 (P) 10% + ++/+++ _ 

Mouse 14GFE121 
(Ad5-K14-Cre) ++ +++ _ 

14GFE121 
(Ad5-K14-Cre) 70% +/+++ 40% + _ 

15GFE019 
(Ad5-K14-Cre) 90 % +/+++ 70% + _ 

15GFE021 
(Ad5-K14-Cre) 70% +/+++ 65% + _ 

15GFE024 
(Ad5-K14-Cre) 90% ++/+++ 80% + _ 

15GFE028 
(Ad5-K14-Cre) 70% +/+++ 60% + _ 

16GFE001 
(Ad5-SPC-Cre) 90% +/+++ 80% + _ 

16GFE003 
(Ad5-SPC-Cre) 90% +/+++ 65% + _ 

16GFE011 
(Ad5-CC10-Cre) 99% +/+++ 80% + _ 

16GFE017 
(Ad5-SPC-Cre) 95% +/+++ 80% + _ 

16GFE018 
(Ad5-SPC-Cre) 90% +/+++ 50% + _ 

16GFE019 
(Ad5-CC10-Cre) 90% +/+++ 70% + _ 

16GFE020 
(Ad5-CC10-Cre) 99% +/+++ 80% - 
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Figure S3 (related to Figure 4) Histological characterization of Sox2PC mice  
(A) Atypical hyperplasia of bronchial cells showed by HE staining (left panel) and monitored by expression of 
GFP (right panel). (B) IHC analysis performed on lung tissues using antibodies against the indicated markers of 
LSCC in proximal bronchioles (Proximal br.) and distal bronchioles (Distal br.). (C) HE staining showing a large 
lesion of SCC in the lumen of the left atrium of the heart (left panel) and its higher magnification (right panel). 
(D) HE staining of sections of nasal cavity, showing a large lesion of SCC (right panel) and its higher 
magnification (right panel). Scale bars, A-B: 20 µm; C-D left panel: 500 µm; C-D right panel: 50 µm. 
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Table S3. Related to Figure 5 
Human RNA seq samples (LSCC and LADC)  downloaded from TCGA  
 

 
	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Human LSCC Human LADC 

TCGA-39-5019-01A-01R-1820-07 TCGA-44-5645-01A-01R-1628-07 

TCGA-34-5929-01A-11R-1820-07 TCGA-44-6146-01A-11R-1755-07 

TCGA-22-5471-01A-01R-1635-07 TCGA-44-6147-11A-01R-1858-07 

TCGA-60-2712-01A-01R-0851-07 TCGA-44-6148-11A-01R-1858-07 

TCGA-22-5489-11A-01R-1635-07 TCGA-44-6776-01A-11R-1858-07 

TCGA-60-2707-01A-01R-0851-07 TCGA-44-6778-11A-01R-1858-07 

TCGA-66-2758-01A-02R-0851-07 TCGA-50-5931-01A-11R-1755-07 

TCGA-66-2781-01A-01R-0851-07 TCGA-44-6777-11A-01R-1858-07 

TCGA-66-2742-01A-01R-0980-07 TCGA-49-4512-11A-01R-1858-07 

TCGA-18-3415-01A-01R-0980-07 TCGA-49-6742-11A-01R-1858-07 

TCGA-66-2794-01A-01R-1201-07 TCGA-49-6743-11A-01R-1858-07 

TCGA-66-2800-01A-01R-1201-07 TCGA-49-6744-01A-11R-1858-07 

TCGA-21-1071-01A-01R-0692-07 TCGA-49-6745-11A-01R-1858-07 

TCGA-66-2770-01A-01R-0851-07 TCGA-50-5931-01A-11R-1755-07 

TCGA-22-5474-01A-01R-1635-07 TCGA-50-5932-11A-01R-1755-07 

TCGA-22-5473-01A-01R-1635-07 TCGA-50-5935-01A-11R-1755-07 

TCGA-46-3768-01A-01R-0980-07 TCGA-55-6968-01A-11R-1949-07 
TCGA-18-4083-01A-01R-1100-07 
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Figure S4 (related to Figure 5) Transcriptional profile of Sox2PC mice 
(A) Unsupervised clustering heatmap for genes differentially expressed between LSCC and LADC of human 
(SCC, ADC on the left) or mouse (Sox2PC and Kras;p53±Eed on the right) origin. (B) GSEA plot for genes 
upregulated (SCC up versus SCC down) in the four different LSCC subtypes. (Classical, Primitive, Basal, 
Secretory). 
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Table S4. Related to Figure 6  
Scoring of IHC analysis of immune cell markers performed on human and mouse LSCC 

 
 

  
1NA: not available 
2Infiltrating cells in the tumor stroma/among tumor cells 
3Human, based on HE staining; mouse, based on LY6G. 

 

 
Species 

 
Case number 

 
PD-L1 PD-12 HIF-1α CD42 CD82 Neutrophils3 

Human 1 (P1and C2) 0.5% + ++ /+ Focally weak + / - ++/+ Sporadic 

2 (P and C) 20% + + /- Partially weak ++ /- +/- +++ 

3 (P) _ ++/+ Partially weak ++ /- ++/- +/++ 

4 (C) 2% + ++/++ Partially weak ++ /+++ I ++/++ ++/+ +++ 

5 (C) 0.5% + _ Weak to strong + /- +/- Sporadic 

6 (P) _ +/- Partially weak + / - +/- Sporadic 
(eosinophils++) 

7 (P and C) 20% + ++/ + Cluster weak ++ / - ++/- Sporadic 

8 (C) One cluster + +/- Partially weak +/- +/- Sporadic 

9 (C) 80% + +/+ Focally weak +/- +/++ Sporadic 

10 (P and C) 2% + ++/ + _ ++/++ ++/- Sporadic 

11 (P) 2% + ++/++ Partially weak ++/+ ++/+ ++ 

12 (P and C) 20% + +/+ Focally weak +/- +/- Sporadic 

Mouse 14GFE121 
(Ad5-K14-Cre) NA1 NA NA NA NA + 

15GFE019 
(Ad5-K14-Cre) 50% + Sporadic Partially + ++/+ +/+ + 

15GFE021 
(Ad5-K14-Cre) 60% + Sporadic Partially + ++/+ +/+ +/++ 

15GFE024 
(Ad5-K14-Cre) 40% + Sporadic Partially + ++/+ +/- ++ 

15GFE028 
(Ad5-K14-Cre) 50% + Sporadic Partially +/++ ++/+ +/+ ++ 

16GFE001 
(Ad5-SPC-Cre) 40% + Sporadic Partially +/++ ++/+ +/+ +/++ 

16GFE003 
(Ad5-SPC-Cre) 60% + Sporadic Partially + +/- +/+ + 

16GFE011 
(Ad5-CC10-Cre) 50% + Sporadic Partially +/++ +/+ +/+ +/++ 

16GFE017 
(Ad5-SPC-Cre) 40% + Sporadic Partially + +/+ _ /+ + 

16GFE018 
(Ad5-SPC-Cre) 50% + Sporadic Partially + +/+ +/+ + 

16GFE019 
(Ad5-CC10-Cre) 40% + Sporadic Partially + +/+ -/+ +/++ 

16GFE020 
(Ad5-CC10-Cre) 40% + Sporadic Partially + +/+ +/+ +/++ 
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Figure S5 (related to Figure 7) Morphology and biomarkers of LSCC isolated from Ad5-SPC/CC10-Cre injected 
mice 
(A) Histopathology of large lesions of LSCC of Sox2PC mice injected with Ad5-SPC-Cre or Ad5-CC10-Cre, as 
indicated. (B) IHC analysis of squamous markers performed on sections of LSCC isolated from Sox2PC mice injected 
with the indicated adenoviruses. (C) A representative early lesion of Ad5-SPC-Cre injected mice stained with the 
indicated squamous markers. Scale bars, A 100 µm; B, C: 50 µm. 
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Table S5. Relative to Figure 7 
Significant differences between Ad5-SPC-Cre and Ad5-CC10-Cre injected Sox2PC mice 
 

 

Adenovirus 

# Mice with 
GFP+ staining 
/ Total # Mice 

analyzed  

# Mice with 
Lung Tumors / 

# Mice with 
GFP+ staining 

Tumor 
latency 

(months) 

 
#Lung 
SCC/ # 
Lung 

Tumors  
 

Average of 
Carcinoma 

vs Early 
lesions  

Biomarker staining 

Ad5- 
SPC-Cre 

6/8 6/6 7 -8 28/30 5 vs 29.5 Single cell/small clusters:  
SPCposGFPposSOX2pos  or 
SPCposGFPposCC10posSOX2pos 
 
Early lesions: 
SPCnegGFPposCC10pos 
SOX2posK5posp63pos 
 
Carcinoma: 
SPCnegGFPposCC10neg 
SOX2pos 
K5posp63pos 
 

Ad5- 
CC10-Cre 

4/6 4/4 7-8 57/59 14.25 vs 
6.25 

Single cell/small clusters:  
CC10posGFPposSOX2pos 
 
Early lesions: 
GFPposCC10pos SOX2pos 
K5posp63pos 
 
Carcinoma: 
GFPposCC10neg SOX2pos 
K5posp63pos 
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Supplemental Experimental Procedures 
 
Mouse generation 
We targeted FVB ES cells with a vector containing a Flp-in module just after the 3′UTR of the Col1a1 locus 
(Beard et al., 2006). This module, named Col1A1-frt, serves as a docking site for introduction of transgene-
coding plasmids by Flp recombinase-mediated integration. The vector contained also a PGK-Neomycin cassette 
for positive selection of ES clones. The Col1A1-frt targeted GEMM-ESC clones were subsequently injected 
into morulae or blastocysts to produce chimeric mice to assess their transmittability. Both injected ES clones 
produced germline competent chimeras.   
In the second step, a transgenic construct was introduced in the Col1A1-frt locus of germline competent ES 
clones, using the Flp recombinase.  
The transgenic construct was carried by a minicircle DNA, devoid of bacterial elements (S2A). It has been 
previously demonstrated that bacterial DNA linked to a mammalian expression cassette resulted in 
transcriptional silencing of the transgene (Chen et al., 2004). The two transgenic constructs we used to generate 
LSL-Sox2 and LSL-Fgfr1K656E, were called Sox2-frt-invCAG and Fgfr1- frt-invCAG, respectively.  They 
contained the cDNA of either SOX2 or FGFR1, which, following Cre mediated inversion is expressed from a 
constitutive CAG promoter (Figure S2A). Before the inversion the transgene is flanked by a Lox-stop-Lox 
cassette. For identification of cells in which recombination had occurred, we inserted an IRES followed by a 
fluorescent protein: YFP to track FGFR1 expression and CFP to track SOX2 expression (Figure S2C). We 
introduced a mutation in the cDNA of FGFR1 (K656E) which results in its activation in the absence of ligand 
(Jin et al., 2003). These vectors were introduced into a Col1A1-frt targeted FVB ES cells with 100% efficiency. 
Colonies were screened by PCR and correctly targeted clones were confirmed by Southern blotting (Figure 
S2B). The Col1a1 locus has been shown to allow for ubiquitous expression of transgenes when combined with 
the CAGGS promoter (Figure S2A) (Huijbers et al., 2014).  
Correctly recombined ES cell clones were treated with a permeable Cre-recombinase in order to validate the 
activation of FGFR1 or SOX2 expression (Figure S2C left panel). ES cells also expressed the fluorescent 
protein, as indicated by confocal images (Figure S2C right panel). To exclude that any rearrangement had 
occurred in vivo, MEFs were isolated from E13.5 embryos obtained by crossing LSL-Sox2 mice with Rosa26-
CreERT2 mice, and treated with Tamoxifen, to switch on the expression of the transgene. Both SOX2 and CFP 
were expressed in MEFs carrying the transgene only upon Tamoxifen treatment, as assayed by real time RT 
PCR (Figure S2E). WT MEFs were obtained from mT/mG E13.5 embryos as control of expression of the 
fluorescent protein (Figure. S2E).  

 
 
Generation of tissue specific Cre Adenoviruses 
In order to target basal cells we utilized adenoviral vectors carrying a Cre-recombinase gene whose expression 
is driven either by a DNA fragment containing the 2 kb human K14 promoter, or the 5.2 kb of upstream 5’ 
flanking and promoter sequences from the bovine K5 locus (pHR2 plasmid generously provided by Sabine 
Werner). 
The Cre open reading frame with an N-terminal synthetic intron and C-terminal polyadenylation signal was 
isolated from pOG231 (O'Gorman et al., 1997) and inserted in pDONRTM221 under the described K5 and K14 
promoters, previously inserted in the same vector. Cloned pDONRTM221 constructs were then recombined into 
promoter-less pAd-PL DEST vectors (Invitrogen) by Gateway LR recombination, to generate Ad5-K5-Cre and 
Ad5-K14-Cre adenoviral constructs. High titer adenoviruses were amplified and purified for use in vivo by the 
University of Iowa Gene Transfer Vector Core, supported in part by the NIH and the Roy J. Carver Foundation, 
for viral vector preparation. 

Cell culture 
Newborn mouse skin was isolated from mT/mG mice and then placed in dispase o/n at 4  °C. The day after 
keratinocytes were isolated from epidermis by enzymatic dissociation in trypsin, and cultured in defined CnT-
Prime Epithelial cell culture medium (CnT07, CELLnTEC) as described previously (Strachan et al., 2008). 
Once attached, they were infected with 100 MOI and analyzed for GFP expression 48 hours upon infection. 
Fluorescent signals were monitored under a Leica CTR6000 image microscope. Protein extracts were also 
collected and samples were analyzed by immunoblotting with anti-GFP antibodies. 
MEFs were isolated from 13.5 postcoitum (p.c.) mouse embryos of either mT/mG;CreERT2 or LSL-
Sox2;CreERT2 and LSL-Fgfr1K656E;CreERT2 mice. The embryos, after removal of internal organs, were 
dissociated and then trypsinized to produce single-cell suspensions. Cells were treated with 4-
Hydroxytamoxifen (0.2mm) to switch on the expression of the transgenes. Total RNA was collected 48 hr upon 
treatment. RNA was extracted in TRIzol reagent (Invitrogen). Complementary DNA (cDNA) synthesis was 
obtained using SuperScript™ III Reverse Transcriptase (Invitrogen). 
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Real-time RT PCR was performed using the SYBR Green PCR master mix (Applied Biosystems) in the 
Applied Biosystems® StepOnePlus™ Real-Time PCR System. Expression of target genes was normalized for 
Actinb. 

Gene expression profile analysis 
Data set 
For mouse LADC, we used GSE61190 dataset, which contains 19 tumor samples isolated from Kras;p53 mice 
with and without Eed. RNAseq profiles for human primary tumor (LSCC and LADC) were obtained from The 
Cancer Genome Atlas (TCGA) dataset. Human LSCC was selected based on SOX2 amplification and deletion 
of PTEN, CDKN2A, CDKN2B (Table S4).  
 
Read mapping, assembly, and expression analysis  
After quality filtering according to the illumina pipeline, 51-bp single-end reads were mapped to the mouse 
genome (assembly NCBIM37.67), using TopHat (2.0.12) (Trapnell et al., 2009). TopHat was run with default. 
Reads with mapping quality less than 10 and non-primary alignments were discarded. Remaining reads were 
counted using HTSeq-cout (Anders et al., 2015). Statistical analysis of the differential expression of genes was 
performed using DESeq2 (Love et al., 2014). Genes with False Discovery Rate (FDR) for differential 
expression lower than 0.05 were considered significant. Batch effect with in tumor samples from different 
source was corrected using ComBat with default options through the Bioconductor package sva 3.10 (Johnson 
et al., 2007; Leek and Storey, 2007). 
 
Determination of differentially expressed genes in mouse and human LSCC 
To identify genes correlating with the phenotypic groups, fold changes of gene expression in mouse LSCC (6 
samples) was compared to mouse LADC (8 samples) and human LSCC (18 samples) compared to human 
LADC (17 samples). Multiple hypothesis testing was corrected for using the Benjamini and Hochberg method 
(BH) (Benjamini et al., 2001), and significantly differentially expressed genes are reported. 
 
To identify genes correlating with the phenotypic groups, we used DESeq2 to compute the variance stabilized 
expression values between three groups: Basal SCC, Club SCC and AT2 SCC. The expression heatmap of 
tumor subtypes are plotted using unsupervised consensus clustering of the top 100 most variable genes. The 
genes with padj < 0.01 and log2fold change > 1 are considered to be significant. 
 
Gene set enrichment and functional set enrichment analysis 
Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) was used to investigate the correlation of 
gene set significantly overrepresented in the transcriptome of either mouse or human LSCC. 
Transcripts were ranked by the difference of classes (metric for gene ranking) and using the following settings: 
number of permutations = 1,000, permutation type = gene set, chip platform = Null, enrichment statistic = 
weighted, gene list sorting mode = real, gene list ordering mode = descending, max gene set size = 500, min 
gene set size = 15. The gene set were manually created specific for unregulated and downregualted genes in 
LSCC over LADC in both mouse and human tumor model. A gene set was identified as significantly enriched 
when associated with p value scores ≤ 0.05. 
Functional enrichment analyses were generated with the DAVID tool (Huang da et al., 2009). The GO 
enrichment analysis was carried out in the “two lists mode”, using the lists of DEGs and as background the 
corresponding list of expressed genes.  
Significant GO terms (p value<0.05) were mapped with the REViGO online tool (http://revigo.irb.hr) with 
default parameters except for the resulting list that was setting as small size, which removes redundant GO 
terms and visualizes the semantic similarity of remaining terms (Supek et al., 2011). The results were visualized 
as bar charts. 
 
 

Antibodies 
We performed IHC for anti-GFP (goat polyclonal, 1:500, Abcam), anti–K5 (rabbit polyclonal, 1:2000, 
Chemicon), anti-Sox2 (mouse monoclonal, 1:1000, Cell signaling), anti-p63 (mouse monoclonal, 1:200, 
SantaCruz); anti-Fgfr1 (rabbit polyclonal, 1:1000, Cell signaling), anti-K14 (rabbit polyclonal, 1:10000, 
Covance), anti-TTF1 (mouse monoclonal, 1:1000, DAKO), anti-Ly6G (monoclonal mouse, 1:500 BD 
Bioscences), anti-F4-80 (clone CI:A3, 1:1000 AbD Serotec), MPO (rabbit polyclonal, 1:300, DakoCytomation), 
anti-CC10 (goat polyclonal, 1:200, Santa Cruz), anti-pro SPC (rabbit polyclonal, 1:1000, Millipore), anti-CD4 
(rat polyclonal, 1:2000 eBioscience), anti-CD8 (rat polyclonal, 1:2000 eBioscience), anti-HIF-1α (rabbit 
polyclonal, NovusBio, 1:6000), anti-PD-1 (rabbit polyclonal, Protein Tech, 1:200), anti-PD-L1 (rabbit 
polyclonal, Protein Tech, 1:200). For IHC performed on human samples we used: anti-TTF1 (Monosan, 
MONX10584), anti-p63 (Immunologic, 4A4), anti-CD4 (Cell Marque, SP35); anti-CD8 (Dako, C8144B), anti-
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PD-1 (AbCam, NAT), anti-PD-L1 (Cell Signalling, E1L3N). Streptavidin-peroxidase (DAKO) or Powervision 
Poly-HRP (Leica Microsystems) was used for visualization and diaminobenzidine as a chromagen (DAKO). We 
performed immunofluorescence analysis for anti-GFP and anti-K14 using as secondary antibodies Alexa Fluor 
488 donkey anti-goat and Alexa Fluor 594 donkey anti-rabbit respectively. 
 
Real time RT-PCR oligonucloetides 
 

Oligonucleotide Name         Oligonucleotide Sequence 
mSox2-total RT For ctggactgcgaactggagaag 
mSox2-total RT rev tttgcacccctcccaattc 
GFP-RT For aagttcatctgcaccaccg 
GFP-RT Rev tgctcaggtagtggttgtcg 
mSox2 endogenous RT For ggcagagaagagagtgtttgc 
mSox2 endogenous RT Rev tcttctttctcccagcccta 
mSox2 exogenous RT For tggctctcctcaagcgtatt 
mSox2 exogenous RT Rev cccatacaatggggtaccttc 
mKLK10-RT For gcaagagtgtcaggtctcagg 
mKLK10-RT Rev ggaacagctcaggctcctatt 
mDsg3-RT For gatgaggacacgggtaaagc 
mDsg3-RT Rev accatcattacgacccagga 
mTMPRSS11D-RT For cagcagctcattgcttcaaa 
mTMPRSS11D-RT Rev tctcagcctagggctcattg 
mADAM17-RT For tgtggttatttaaatgcagatagtga 
mADAM17-RT Rev tctcttcactcgacgaacaaac 
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