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Introduction

Undoubtedly, Alzheimer’s disease (AD) represents one of 
the most dramatic threats to healthy aging in all societies 
and devising effective treatments for this devastating con-
dition remains a major challenge in biomedical research. 
Much has been learned about the molecular concepts that 
govern proteolytic processing of the amyloid precursor pro-
tein (APP) to amyloid-β peptides (Aβ), and how acceler-
ated accumulation of neurotoxic Aβ peptides causes neu-
rodegeneration in rare familial but also common sporadic 
forms of AD (see “Box” for details). Targeting the accu-
mulation of Aβ in the brain of patients holds great promise 
for success in the clinics. However, currently, this approach 
is limited to few targets, such as β- and γ-secretases, the 
enzymes that breakdown APP to Aβ [18, 21]. Thus, major 
efforts have been undertaken in recent years to identify 
additional players in Aβ metabolism and action, and to val-
idate their relevance as therapeutic targets in treatment of 
AD.

Out of a plethora of proposed modulators of APP pro-
cessing, one protein emerges as a promising candidate in 
AD pathology, a sorting receptor called sorting-related 
receptor with A-type repeats (SORLA) (also known as 
SORL1 or LR11). Independent approaches using human 
genetics, clinical pathology, or functional studies in animal 
models all converge on this receptor that is now considered 
an important factor in AD-related processes by many. This 
review provides a timely overview of the evidence implicat-
ing SORLA in AD. We describe the association of SORL1, 
the gene encoding SORLA, with the occurrence of sporadic 
but also autosomal-dominant forms of AD. We detail stud-
ies in cell and animal models that identified the molecular 
mechanism of SORLA as neuronal sorting receptor in con-
trol of amyloidogenic processes in the brain. We discuss the 
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functional implications of sequence variations in SORL1 
found in individuals with AD, and we review (pre)clinical 
data that explore the predictive value of SORLA levels in 
assessment of risk and outcome of AD, and that document 
the therapeutic benefit of strengthening receptor activity in 
treatment of AD-related conditions.

excessive Aβ accumulation, is responsible for synaptic 
dysfunction and eventual neuronal cell death in the AD 
brain [96]. Similar to rare early onset AD, the more com-
mon sporadic or late-onset form of AD (>95 % of cases) 
also has a strong genetic component. Many risk genes 
have been identified that promote onset and progres-
sion of late-onset AD, chief among which is the gene for 
apolipoprotein (APO) E, a lipid transporter in the brain 
[19, 91]. Conceptually, risk factors for sporadic AD may 
work via numerous mechanisms to aggravate neurode-
generative processes. Still, many of them are believed to 
also act through enhancing the accumulation and neuro-
toxic action of Aβ. 
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Box: The amyloid cascade hypothesis

The amyloid cascade hypothesis represents a widely 
accepted concept to describe the cellular events under-
lying neurodegenerative processes in AD [34, 88, 89]. 
Central to this hypothesis is the amyloid precursor pro-
tein (APP), a 110–130 kDa type-1 transmembrane protein 
expressed in three major isoforms APP695, APP751, and 
APP770. All APP variants (including neuronal APP695) 
share a peptide sequence as part of their transmembrane 
and extracellular domains called the Aβ peptide. In a nat-
ural process occurring in many cell types, APP undergoes 
two alternative processing pathways [88]. In one pathway 
(figure panel a, to the right), APP is cleaved by a pro-
tease activity called α-secretase that produces soluble (s) 
APPα and a membrane-anchored fragment CTFα. Sub-
sequently, the multimeric γ-secretase complex cleaves 
CTFα into peptide P3 and the APP intracellular domain 
(AICD) [49]. Because α-secretase cleavage destroys the 
Aβ peptide, this pathway acts non-amyloidogenic. In con-
trast, the disease-promoting (amyloidogenic) pathway 
is initiated by the cleavage of APP by β-secretase at the 
amino terminal end of Aβ, followed by γ-secretase cleav-
age at its carboxyl terminus [14, 94]. These steps pro-
duce Aβ peptides of mainly 40–42 amino acids length, as 
well as sAPPβ and the AICD (figure panel a, to the left). 
Recently, a novel secretase activity, termed η-secretase, 
has been identified that also acts on the APP precursor 
polypeptide (panel b in the figure) [99]. This protease 
produces a carboxyl terminal stub CTFη that serves as 
alternative substrate to α- and β-secretases in non-amy-
loidogenic and amyloidogenic processing, respectively. 
Evidence that the extent of breakdown of APP to Aβ 
determines onset and progression of AD stems from rare 
autosomal dominant, early onset forms of AD caused by 
mutations in the genes encoding APP or in presenilin-1 or 
-2 (PSEN1, PSEN2), subunits of the γ-secretase complex. 
These mutations are typically associated with an overall 
increase in the production of Aβ or with a shift towards 
generation of the more disease-prone variant Aβ42 [45]. 
Although the causal role of Aβ in AD is undisputed, its 
mode of action is still a matter of investigation. Accord-
ing to current hypotheses, soluble oligomeric forms of Aβ 
act as physiological modulators of synaptic activity and 
aberrant suppression of synaptic transmission, caused by 

SORLA, a neuronal sorting receptor in APP 
processing

The first evidence implicating SORLA in AD came from 
a study by Scherzer and colleagues who performed global 
gene expression profiling to identify genes differentially 
expressed in lymphoblasts and in brain autopsies from AD 
patients compared to control subjects. This study identi-
fied a 2.5-fold decrease in brain SORLA levels in some 
sporadic cases of AD. Loss of protein expression was 
seen in cortex and hippocampus, but not in the cerebellum 
of affected individuals [83]. SORLA is a 250 kDa trans-
membrane protein that was identified prior in a quest for 
novel lipoprotein receptors expressed in the mammalian 
brain [42, 102]. Although SORLA showed some structural 
resemblance to lipoprotein receptors, a novel structural ele-
ment not seen in any mammalian protein before was most 
noteworthy (Fig. 1). This so-called VPS10P domain is a 
700 amino acid module in the extracellular domain of the 
receptor that folds into a ten-bladed β-propeller and that 
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represents a binding site for peptide ligands [46, 70]. The 
VPS10P domain had been identified initially in the vacu-
olar protein sorting 10 protein (VPS10P), a sorting factor in 
yeast that directs target proteins from the Golgi to lysoso-
mal compartments [58]. Today, this domain is the unifying 
structural motif of a group of five related VPS10P domain 
receptors that act in intracellular sorting processes in neu-
ronal and multiple non-neuronal cell types in the mamma-
lian organism (reviewed in [101]) (Fig. 1).

Abundant expression of SORLA was seen in neurons 
throughout the central nervous system including cortex, hip-
pocampus, cerebellum, and spinal cord [42, 102]. In neu-
rons, SORLA mainly localized to intracellular compartments 
in the cell soma, suggesting a role for this receptor in vesicu-
lar protein transport [63]. Based on this assumption, two 
subsequent studies proposed a molecular concept whereby 
SORLA acts as a sorting factor for APP, guiding intracel-
lular trafficking and processing of this precursor protein [4, 
68]. In these studies, overexpression of SORLA in cell lines 
reduced [4, 68] while loss of expression in gene-targeted 
mice increased Aβ production [4], providing an explanatory 
model for why reduced SORL1 expression in some individu-
als with sporadic AD may promote neurodegeneration.

SORL1 is genetically implicated in late‑ and early 
onset forms of AD

Initial data on the role of SORLA in AD were met with con-
siderable skepticism as SORLA appeared as one of many 
proposed modulators of APP processing. However, strong 
support for a causal involvement of this receptor in neuro-
degenerative disease came with genetic studies associat-
ing SORL1 gene variants with the occurrence of sporadic 
AD. In a pioneering study, Rogaeva et al. used a candidate 
gene approach to document association of inherited vari-
ants in SORL1 with sporadic AD in Caucasians [76]. This 
finding was replicated in some association studies, while 
others failed to confirm it (summarized in [74]). This con-
troversy was attributed to allelic heterogeneity in various 
ethnicities and to the lack of statistical power due to small 
cohort sizes. Ultimately, this discrepancy was resolved by 
combining the findings of many studies in meta-analyses 
substantiating the association of SORL1 variants with spo-
radic AD [44, 74, 97]. Recently, genome-wide association 
studies (GWAS) confirmed association of SORL1 with the 
sporadic late-onset form of AD in populations of Caucasian 
and Asian origin [51, 62].
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Fig. 1  SORLA, a member of the VPS10P domain receptor gene 
family of neuronal sorting receptors. Sorting-related receptor with 
A-type repeats (SORLA) is member of the vacuolar protein sort-
ing (VPS10P) domain receptor gene family, a group of five related 
type-1 transmembrane proteins found in mammalian cell types [101]. 
Other family members are sortilin as well as sorting receptor CNS 
expressed (SORCS) 1, SORCS2, and SORCS3. All receptors share 
an extracellular VPS10P domain, a single transmembrane domain, 
and a short cytoplasmic tail. The receptors are produced as precur-
sor proteins containing a short pro-peptide at the amino terminus that 
blocks ligand binding in the VPS10P domain. Proteolytic processing 

of the pro-peptide by convertases in the Golgi is a precondition for 
activating the ligand-binding capability of the receptors [41]. SORLA 
is unique among the members of the VPS10P domain receptor gene 
family as it contains additional functional modules not shared by the 
other receptors including domains for protein–protein interaction 
(fibronectin-type III domains, complement-type repeats) or for pH-
dependent release of ligands in endosomes (6-bladed β-propeller). 
Complement-type repeats and the β-propeller are functional elements 
also found in lipoprotein receptors, such as the low-density lipopro-
tein receptor, suggesting the possibility of SORLA to act in cellular 
lipoprotein transport [80]
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Taken together, a number of single nucleotide polymor-
phisms (SNPs) in SORL1 have been associated with the 
occurrence of sporadic AD. These SNPs include coding 
as well as non-coding sequence variations and cluster in 
two haplotype blocks in the 5′ and 3′ regions of the gene 
on human chromosome 11q23-q24 (see Fig. 2 for number-
ing of the SNPs). Refined clinical analyses document asso-
ciation of individual SNPs with distinct neuropathological 
features including deposition of senile plaques (SNP#8) 
and fibrillary tangles (SNP#10, rs11218343) [9, 25], and 
with loss of gray matter volume (SNP#23) [39] and hip-
pocampal atrophy (SNP#21-26) [20]. SNPs in the 3′ hap-
lotype block are associated with pathological alterations of 
AD biomarkers in cerebrospinal fluid (CSF), such as Aβ 
and tau [2, 24, 31, 47, 55], whereas SNP#8 [6], SNP#19 
[75], and rs11218343 [64] predict longitudinal cognitive 
change. Interestingly, SNP#19 appears to have a gender 
bias impacting cognitive decline stronger in females than 
in males [75].

An exciting twist in the genetic of SORL1 came with the 
observation that sequence variations in this gene are also 
found in individuals suffering from autosomal-dominant 
forms of AD, rendering SORLA a potential culprit in both 
late- and early onset types of this disease [65, 69, 95]. So 
far, mutations in three genes have been shown to cause 
the rare early onset form of AD, namely APP, PSEN1 
and PSEN2. However, the majority of individuals suffer-
ing from early onset AD lack obvious mutations in APP, 
PSEN1, and PSEN2, indicating the existence of additional 
genes that cause this aggressive form of neurodegeneration 

[30]. Using whole exome sequencing or candidate gene 
approaches, coding sequence variations in SORL1 have 
been identified in early onset cases of AD in which inherit-
ance was consistent with autosomal-dominant transmission. 
Identified sequence variants in SORL1 include nonsense 
and frame shift as well as potentially damaging missense 
alterations [65, 69, 95]. Many of these coding variants were 
not seen in control subjects as exemplified in the study by 
Nicolas and colleagues [65] that identified a total of 50 rare 
missense variants (minor allele frequency <1 %), with 37 
variants in AD cases but only 17 in control subjects. These 
data reached exome-wide significance when the analysis 
was restricted to a subset of patients with a positive family 
history. These observations still need to be interpreted with 
some caution as documentation of cosegregation of these 
variants in affected relatives has so far only been shown 
for two cases, p.G511R [69] and p.Y1816C [95]. How-
ever, if substantiated in further studies, these findings sug-
gest SORL1 as a novel disease gene in autosomal-dominant 
forms of AD, lending further support to the central role of 
amyloidogenic processing in the etiology of this disorder.

SORLA, an inhibitor of amyloid‑β peptide 
accumulation in the brain

What is the mechanism whereby SORLA acts as a risk fac-
tor in AD? This question has initially been addressed in cell 
lines (summarized in [100]), and recently also substanti-
ated in transgenic mouse models, identifying SORLA’s 

Fig. 2  Single nucleotide polymorphisms in SORL1 associated with 
sporadic AD. Selected coding (red) and non-coding (black) sin-
gle nucleotide polymorphisms (SNPs) in human SORL1 associated 
with sporadic AD are indicated. The numbering of the SNPs fol-
lows the nomenclature introduced by Rogaeva and colleagues [76]. 
Most SNPs cluster in two haplotype blocks in the 5′ and 3′ region 

of the gene locus. SNPs rs11218343 and rs3781834 are associated 
with sporadic AD at a genome-wide level in individuals of Caucasian 
and Asian origin [51, 62]. The structure of SORL1 on chromosome 
11q23-q24 is indicated below with exons represented by vertical 
lines. For coding variants, the change in amino acid sequence is given 
in brackets [12]
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mode of action as a neuronal sorting receptor for APP and 
Aβ. The basis for its action is the complex trafficking path 
whereby APP moves between intracellular compartments 
and the cell surface, determining the extent of Aβ accumu-
lation (reviewed in [81]). In a simplified scheme (Fig. 3a), 
newly synthesized APP molecules traffic through the secre-
tory pathway to the cell surface. In route, they encounter 
α-secretase, resulting in non-amyloidogenic cleavage (see 
also “Box”). Precursor molecules escaping non-amyloi-
dogenic processing are internalized from the cell sur-
face into endosomes. In endocytic compartments, APP is 

processed by β- and γ-secretases producing Aβ [28, 32, 72, 
82]. Intracellular accumulation [8] as well as secretion of 
Aβ peptides, involving exosomes [71] and other means of 
exocytosis [7], contributes to the amyloidogenic burden in 
the brain. As it turns out, SORLA impairs amyloidogenic 
processes in two ways, both of which involve its ability 
to shuttle target proteins between secretory and endocytic 
compartments of the cell [41, 66, 85]. In one mechanism, 
SORLA acts as a sorting factor for APP retrogradely mov-
ing internalized precursors from early endosomes back 
to the trans-Golgi network (TGN) and slowing down exit 

Fig. 3  SORLA-dependent 
sorting of APP and Aβ. a 
Nascent APP molecules move 
through the trans-Golgi-
network (TGN) to the cell 
surface where they are subject 
to non-amyloidogenic process-
ing initiated by α-secretase (α) 
cleavage. APP molecules not 
cleaved by α-secretase at the 
cell surface undergo endocy-
tosis and move to endosomes 
where they are processed by 
β- and γ-secretases (β, γ) 
producing Aβ. Aβ peptides are 
released from cells through 
various exocytic mechanisms. b 
SORLA acts as a sorting recep-
tor for APP causing retrograde 
endosome to TGN retrieval 
and slowing down exit from 
the Golgi to reduce the number 
of APP molecules subjected 
to amyloidogenic processing. 
SORLA also acts as antero-
grade sorting factor that directs 
newly produced Aβ molecules 
to lysosomal degradation, 
further decreasing the amyloi-
dogenic burden. Anterograde 
sorting also results in lysoso-
mal breakdown of SORLA, 
negatively regulating receptor 
levels [23]. Some cytosolic 
adaptors required for shuttling 
of SORLA between TGN and 
endosomes are indicated and 
include GGAs (Golgi-local-
izing, y-adaptin ear homol-
ogy domain, ARF-interacting 
proteins) for anterograde as well 
as retromer and PACS1 (phos-
phofurin acidic cluster sorting 
protein 1) for retrograde sorting. 
Figures adapted from [100]
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from the Golgi, thereby reducing the number of APP mol-
ecules subjected to amyloidogenic processing (Fig. 3b). 
Consequently, overexpression of SORLA in neuronal and 
non-neuronal cell lines blocks APP processing and reduces 
Aβ production [4, 68, 76], while loss of SORLA increases 
Aβ levels and senile plaque burden in several mouse mod-
els of AD [4, 22, 77]. The second mode of receptor action 
involves the anterograde sorting of SORLA from the TGN 
to endosomes. This pathway not only serves to replen-
ish receptor levels in endosomal compartments for APP 
retrieval, but it also results in lysosomal targeting of Aβ 
molecules that have been identified as another receptor 
ligand (Fig. 3b) [13].

Jointly, retrograde sorting of APP to the TGN and anter-
ograde movement of Aβ to lysosomes reduce brain levels 
of Aβ and contribute to the protective action of SORLA in 
the brain. Its pathological relevance has been confirmed in 
unbiased siRNA screens that also identified this receptor as 
a major determining factor of Aβ levels in cells [15]. The 
quantitative contribution of either activity to the overall 
protective function of SORLA is difficult to assess. Based 
on mathematic models, the kinetic of SORLA and APP 
interaction appears as a major determinant of Aβ levels, 
arguing for a predominant role of the APP sorting pathway 
in defining the risk of AD [1, 53, 84]. In the healthy brain 
cortex, SORLA and APP are expressed in almost equimo-
lar ratio, suggesting near complete saturation of APP mol-
ecules with sorting receptors [84]. Thus, reduced levels of 
SORLA, as in some individuals with sporadic AD, likely 
act through loss of protection of APP from processing.

Molecular and structural basis of SORLA action

Two protein modules in SORLA define its function as a 
neuronal sorting receptor in AD, namely binding sites for 
APP and Aβ in the extracellular region as well as recogni-
tion motifs for cytosolic adaptors in the receptor tail that 

govern intracellular trafficking. Cell and structural biology 
approaches have provided an in-depth view of the struc-
tural basis of these domains for receptor function.

The binding site for APP in SORLA has been mapped to 
the cluster of eleven complement-type repeats in the extra-
cellular domain of the receptor that forms a 1:1 stoichio-
metric complex with a region in the extracellular domain 
of APP referred to as the carbohydrate-linked domain [4, 
5]. Deleting this cluster of complement-type repeats abol-
ishes the ability of SORLA to protect APP from process-
ing [61]. A second site of interaction may involve the cyto-
solic domains of both proteins as shown by fluorescence 
life-time imaging microscopy [90] and by mutagenesis of 
the APP tail [50]. The interaction of SORLA and APP is 
blocked by signaling through β-adrenergic receptors via 
a yet unknown mechanism, resulting in impaired Golgi 
retrieval and in increased endosomal accumulation of APP 
[16]. The binding site for Aβ in SORLA has been mapped 
to the VPS10P domain using X-ray crystallography [46]. 
Disruption of this binding site reduces lysosomal catabo-
lism of Aβ without impacting APP processing rates, sug-
gesting that sorting of Aβ and APP is two distinct receptor 
functions [13]. The complement-type repeats are a feature 
of SORLA not shared by other VPS10P domain recep-
tors (see Fig. 2). Also, Aβ binds to the VSP10P domain 
of SORLA but not to the closely related domain in sorti-
lin [13], arguing for a unique role of SORLA among the 
members of the VPS10P domain gene family in control of 
amyloidogenic processing.

The second structural element with a decisive role 
in SORLA activity is the cytoplasmic tail of the recep-
tor. This 54 amino acid domain harbors multiple motifs 
for protein–protein interaction and for post-translational 
modification (Fig. 4). Specifically, the tail includes bind-
ing sites for three cargo adaptor complexes, termed PACS1, 
GGA, and retromer that mediate the shuttling of SORLA 
between TGN and endosomes. Phosphofurin acidic cluster 
sorting protein 1 (PACS1) interacts with an acidic motif 

Fig. 4  Protein interactions at the cytoplasmic domain of SORLA. 
The amino acid sequence of the cytoplasmic domain of human 
SORLA (Q92673, Uniprot) is shown. Binding sites for GGAs, 
PACS1, AP1 and 2 as well as for the VPS26 subunit of the retromer 

complex are color coded in green. Binding sites for SPAK, ROCK2, 
and PKC in the receptor tail are currently unknown. Amino acid resi-
due serine 2206 is subject to phosphorylation by ROCK2
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D2190DLGEDDED to mediate retrograde Golgi-to-endo-
some transport of the receptor [11, 85]. Retrograde sort-
ing of SORLA is also governed by the retromer complex 
through binding of its VPS26 subunit to the motif F2172AN-
SHY in the receptor tail [26, 86, 87]. In contrast, antero-
grade sorting of SORLA is guided by the clathrin adaptors 
GGA1 and GGA2 (Golgi-localizing, γ-adaptin ear homol-
ogy domain, ARF-interacting proteins) that bind to the 
D2207DVPMVIA element in the SORLA tail [36, 43, 85]. 
Adaptor protein (AP) 1 and 2 are tetrameric adaptor com-
plexes that link cargo to the clathrin coat of endosomal and 
TGN vesicles. They also interact with the acidic motif in 
SORLA and possibly regulate endocytosis (AP2) and retro-
grade receptor sorting (AP1) [66]. Adaptor interactions are 
crucial for SORLA-dependent sorting and processing of 
APP, as deletion of individual adaptor-binding sites in the 
tail of SORLA causes the inability of the receptor to sort 
properly and results in aberrant routing and enhanced pro-
cessing of APP in cells [11, 26, 36, 66, 85]. These distinct 
roles of anterograde versus retrograde sorting of SORLA 
have recently also been substantiated in vivo. Expression of 
mutant SORLA variants lacking the binding sites for ret-
romer [23] or PACS1 [11] results in impaired retrograde 
routing of SORLA, and causes increased amyloidogenic 
processing of APP in the brain of transgenic mice. In con-
trast, in vivo disruption of the binding site for GGA blocks 
anterograde receptor sorting and reduces lysosomal catabo-
lism of Aβ (and of SORLA) without impacting APP pro-
cessing [23].

As well as directing receptor sorting, interactions at the 
tail of SORLA may also control receptor activities through 
signal transduction pathways, although the underlying 
concepts are not fully understood. Thus, binding of sev-
eral kinases, including Ste-20-related proline-alanine-rich 
kinase (SPAK) [73], protein kinase C, as well as Rho-asso-
ciated coiled-coil containing protein kinase (ROCK) 2 [37, 
52] to the receptor tail has been documented. Phosphoryla-
tion of the cytoplasmic domain of SORLA at serine 2206 
(possibly by ROCK2; Fig. 4) increases receptor activity 
and reduces APP processing [37].

Functional implications of SORL1 gene variants 
in AD

Having defined the molecular basis of SORLA action, one 
can now start to appreciate how rare SORL1 variants in 
the human population may influence the risk of sporadic 
or autosomal-dominant forms of AD. Obviously, many 
identified SNPs may not represent true functional vari-
ants, but be in linkage disequilibrium with yet unidentified 
sequence alterations. Still, the causal role of several SNPs 

in impacting SORLA expression and activity has been con-
firmed as detailed in the following.

Conceptually, non-coding SNPs may work through a 
change in SORL1 transcription (Fig. 2). Little is known 
about the mechanisms that control expression of SORL1 
in cells, such as neurons. Typically, expression of SORL1 
is higher in proliferative cell types and decreases upon 
cellular differentiation as shown for neuroblastoma cells 
[38]. SORL1 expression is controlled by DNA methyla-
tion [104] and by an enhancer element in exon 17 of the 
gene [10]. Several factors induce receptor expression, 
including hypoxia-inducible factor 1α [67], the omega-3 
fatty acid DHA [57], and brain-derived neurotrophic fac-
tor (BDNF) [79]. Interestingly, neuronal expression of 
SORL1 may not only be controlled at the level of gene 
transcription but also by alternative splicing. Full-length 
but also SORL1 transcripts lacking exons 2 or 19 are 
found in the human brain. Levels of the transcript encod-
ing the full-length receptor, but not those of the exon 2 
deletion, are reduced in individuals with sporadic AD 
[29]. A long non-coding RNA that maps in an antisense 
direction to exon 1 in SORL1 induces alternative splic-
ing and reduces expression of the full-length receptor. 
Expression of this non-coding RNA is up-regulated in the 
AD brain and coincides with increased Aβ formation in 
cells [17].

Consistent with a suspected impact of some risk SNPs 
on SORL1 transcription, Rogaeva and colleagues identified 
SNP#22-24 in the 3′ haplotype block (Fig. 2) to be asso-
ciated with a 50 % reduction in mRNA levels in lympho-
blasts of sporadic AD patients. Others showed association 
of SORL1 mRNA levels with rs661057 in the 5′ gene region 
[29] or with the 5′ haplotype block in a cohort of healthy 
controls [59]. Sequence variations encoded by the 5′ haplo-
type block (SNPs #8-10; Fig. 2) result in loss of inducibil-
ity of SORL1 by BDNF [103], while SNP#21 may impact 
splicing as predicted by in silico analysis [48]. Even some 
coding variants in SORL1 may act by altering SORLA 
expression. For example, four coding sequence variants 
found in cases of early onset AD (p.D54 fs, p.G447 fs, 
p.W1216X, p.C1478X) are proposed to reduce transcript 
levels through nonsense-mediated RNA decay [65, 95]. A 
silent mutation encoded by SNP #19 (p.S1187=) reduces 
the efficiency of SORLA translation by changing from fre-
quent to rare codon usage in the disease-associated minor 
allele [12]. Collectively, different mechanisms have been 
suggested to underlie the observed association of SORL1 
risk alleles with the production of functional transcripts. 
Why reduced expression of the receptor in some instances 
may cause late-onset, but in other cases early onset of 
AD remains a puzzling question that warrants further 
investigation.
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Perhaps even more informative may be coding variants 
in SORL1 that abrogate distinct receptor functions as they 
may help in further elucidating the molecular architecture 
of the receptor polypeptide (Fig. 5). Mutation p.G511R was 
identified in two affected individuals from a pedigree con-
sistent with an autosomal-dominant mode of inheritance of 
AD [69]. This mutation disrupts the binding site for Aβ in 
the VPS10P domain of SORLA, resulting in the inability 
of the mutant receptor to facilitate lysosomal catabolism of 
Aβ [13]. Three additional coding variants found in cases 
of sporadic AD map to the VPS10P domain (p.E270K, 
p.A528T) or to the β-propeller (p.T947M; Fig. 5). All three 
receptor variants coincide with impaired retrograde sort-
ing of APP and enhanced Aβ production when expressed in 
cells [93]. Additional SORLA coding sequence variants in 
early onset AD cases target the cluster of complement-type 
repeats, the fibronectin-type 3 domains, or the retromer 
recognition motif in the cytoplasmic receptor tail [65, 95]. 
Although no functional data are available as yet, these 
sequence alterations may disrupt APP or adaptor interac-
tion with SORLA.

SORLA, a target for diagnosis or treatment 
of AD?

SORLA is subject to proteolysis by metalloproteases, such 
as tumor necrosis factor-converting enzyme, resulting in 
shedding of the soluble ectodomain of the receptor [33, 35]. 
This soluble ectodomain can be detected in plasma and CSF. 
Ectodomain shedding disrupts the ability of SORLA to act 
as an intracellular sorting receptor but may serve to produce 
a soluble receptor fragment, termed soluble (s)SORLA, that 
acts as a signaling molecule. Such a function for sSORLA 
has recently been documented in bone morphogenetic pro-
tein signaling in adipose tissue [98]. While the relevance of 
sSORLA for AD-related processes still awaits clarification, 
the circulating levels of this fragment may provide an estimate 
of full-length receptor level or activity in brain tissue. Accord-
ingly, several studies aimed at correlating sSORLA levels 
in CSF with brain pathology or with established biomarkers 
of AD, yet the results have been inconsistent so far. In some 
cohorts, the levels of sSORLA were significantly reduced in 
the lumbar samples of patients with mild to moderate proba-
ble AD as well as in ventricular CSF from autopsy-confirmed 
AD cases [56]. This observation would be in line with low 
levels of full-length SORLA being risk bearing. In contrast, 
others reported increased sSORLA levels in AD cases [40] 
or a positive association of sSORLA with BACE-1 activity 
[92] or sAPPβ and tau levels [3] in CSF of AD patients. As 
for these latter cases, a positive correlation of sSORLA lev-
els with AD biomarkers may argue for enhanced ectodomain 
shedding as a pathological mechanism reducing the levels of 
active full-length receptor in the brain parenchyma.

While additional studies are warranted to substantiate 
sSORLA as a biomarker of AD, the therapeutic benefit of 
raising receptor levels to reduce the amyloidogenic burden 
is undisputed. As a proof of concept, increasing SORLA lev-
els in the brain of transgenic mouse models has been shown 
to reduce Aβ levels, a mechanism attributed to the enhanced 
shunt of newly produced Aβ peptides into lysosomal catabo-
lism in neurons [13]. Also, increasing brain SORLA levels 
by intracranial injection of BDNF has proven successful 
in reducing Aβ levels in mice [79]. An alternative strategy 
to strengthening the SORLA pathway may be provided by 
small molecules that stabilize the retromer complex. In cells, 
these molecular chaperones promote retrograde sorting of 
APP and decrease amyloidogenic processing, a mechanism 
that possibly works in a SORLA-dependent manner [60].

Outlook

This review has focused on a role of SORLA in sorting of 
APP and Aβ to provide working models for a protective 
function of this receptor in AD. However, undoubtedly, 
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Fig. 5  Functional modules in SORLA targeted by coding disease 
gene variants. Structural organization of the mature SORLA poly-
peptide indicating proposed functions for the various protein mod-
ules (to the left). Selected sequence variations identified in late- (red) 
or early onset (black) cases of AD are shown to the right. Mutations 
p.E270K, p.A528T, and p.T947M cause missorting of the receptor 
and APP ligand, increasing the extent of amyloidogenic processing 
[93]. Mutation p.G511R disrupts the binding site for Aβ, impairing 
SORLA-dependent lysosomal catabolism of this peptide [13]. Other 
domains in SORLA harboring AD-associated sequence alterations are 
the complement-type repeats, the fibronectin-type III domain, and the 
cytoplasmic tail as exemplified by the indicated coding variants [65, 
95]. Whether these sequence variations also alter receptor functions is 
unresolved so far
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this receptor is not specific to sorting of APP and Aβ, but 
has other protein targets as well. Of particular relevance to 
neurodegenerative processes, SORLA is able to sort several 
neurotrophin receptors, including the BDNF receptor TrkB 
[78], the receptor for glial cell-line-derived neurotrophic 
factor called GFRα1 [27], and the ciliary neurotrophic fac-
tor receptor α [54]. Thus, SORLA may represent a disease 
gene on which pathways in amyloidogenic processing and 
in trophic support of neurons converge. Obviously, further 
investigations are required to explore this intriguing con-
cept, but they certainly offer the potential for exciting new 
insights into the genetic basis and pathological mechanisms 
of neurodegenerative disease.
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