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Abstract In contrast to transcriptional regulation, the function of alternative splicing (AS) in stem

cells is poorly understood. In mammals, MBNL proteins negatively regulate an exon program

specific of embryonic stem cells; however, little is known about the in vivo significance of this

regulation. We studied AS in a powerful in vivo model for stem cell biology, the planarian

Schmidtea mediterranea. We discover a conserved AS program comprising hundreds of alternative

exons, microexons and introns that is differentially regulated in planarian stem cells, and

comprehensively identify its regulators. We show that functional antagonism between CELF and

MBNL factors directly controls stem cell-specific AS in planarians, placing the origin of this

regulatory mechanism at the base of Bilaterians. Knockdown of CELF or MBNL factors lead to

abnormal regenerative capacities by affecting self-renewal and differentiation sets of genes,

respectively. These results highlight the importance of AS interactions in stem cell regulation across

metazoans.

DOI: 10.7554/eLife.16797.001

Introduction
Stem cells are found in all animals and are defined by their capacity to self-renew and to differentiate

into different cell types (Sánchez Alvarado and Yamanaka, 2014). In mammals, embryonic stem

cells (ESCs) derived from pre-implantation embryos can be cultured in vitro and differentiated into

virtually any cell type (Martello and Smith, 2014); however, a similarly potent cell type has not been

found in adults. In contrast, in other animals, pluripotent stem cells are maintained during the entire

life, and are often associated with extraordinary regenerative capabilities (Solana, 2013; Tanaka and

Reddien, 2011). One of the most extreme examples are freshwater planarians, from which almost

any body part can regenerate a complete organism in a few days. This ability relies on a large num-

ber of stem cells present in the adult, called neoblasts. Illustrating their pluripotency, single neo-

blasts transplanted into lethally irradiated hosts can rescue this lethality, restore tissue turnover,

generate all cell types of the adult planarian and completely transform the genotype and phenotype

of the host into that of the donor (Wagner et al., 2011). However, recent analyses at single-cell res-

olution showed that the neoblast pool is highly heterogeneous, also including multiple lineage-com-

mitted precursors (van Wolfswinkel et al., 2014). Despite significant progress, how neoblasts are
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regulated and enable planarian cell turnover as well as regeneration upon wounding is still largely

unknown.

Initial transcriptomic analyses of planarian neoblasts have revealed hundreds of genes that are dif-

ferentially enriched in both planarian and mammalian stem cells compared to all differentiated cell

types despite 500 million years of independent evolution (Labbé et al., 2012; Onal et al., 2012;

Reddien et al., 2005; Resch et al., 2012; Rouhana et al., 2010; Solana et al., 2012), suggesting

the existence of universal regulatory features across animal pluripotent cells. However, this conserva-

tion does not include the major transcriptional regulators of mammalian stem cells. In ESCs, pluripo-

tency is maintained by a core set of transcription factors that include OCT4, NANOG and SOX2, but

these factors and their interactions are largely not conserved beyond the vertebrate lineage (Fernan-

dez-Tresguerres et al., 2010; Gold et al., 2014; Onal et al., 2012). For instance, no homolog of

NANOG has been described to date in any invertebrate species, despite extensive search

(Scerbo et al., 2014). Therefore, elucidating how the regulation of pluripotency in invertebrates

occurs in the absence of this core set of factors is crucial to understand the biology of animal stem

cells.

Post-transcriptional regulation is more recently emerging as another key mechanism for control-

ling ESC biology (Ye and Blelloch, 2014). In particular, various reports have established the impor-

tance of alternative splicing (AS) for ESCs and somatic cell reprogramming (Han et al., 2013;

Ohta et al., 2013; Venables et al., 2013; Ye and Blelloch, 2014). AS is the process by which introns

and exons are selectively included or excluded from the pre-mRNA to produce multiple mRNA and

protein isoforms. AS can therefore expand transcriptomic complexity in a cell type- or developmen-

tal stage-specific manner, adding an extra layer of regulation to the control of gene expression.

Moreover, highly regulated alternative exons often encode disordered regions of proteins that

embed binding motifs, and thus have the potential to rewire protein-protein interactions in a con-

text-specific manner (Buljan et al., 2012; Ellis et al., 2012).

AS is chiefly regulated by RNA binding proteins (RBPs), which are themselves often differentially

expressed in a cell type-regulated manner. These factors typically bind to pre-mRNAs in a sequence-

and position-specific fashion, thereby modulating inclusion or exclusion of the target alternative

eLife digest Stem cells are specialized cells found in all animals that can develop into several

different types of mature cells. Stem cells are therefore well suited for maintaining organs that are in

heavy use, such as the intestine, and for regenerating tissues that are prone to injury, like the skin.

One reason why stem cells differ from mature cell types is because they activate, or “express”,

different sets of genes. In addition, many genes can be expressed as one of several versions. These

variants, also known as isoforms, are generated by a process called alternative splicing. In mature

cells in mammals, a group of proteins called the MBNL proteins help to prevent the expression of

gene isoforms that are characteristic to stem cells.

The adult flatworm Schmidtea mediterranea contains stem cells that can regenerate any part of

the body. Solana, Irimia et al. have now investigated whether alternative splicing is important for

controlling how the worm’s stem cells behave. After establishing which gene isoforms are expressed

in the stem cells and the mature cells, the levels of different sets of proteins that control alternative

splicing were experimentally reduced.

The results indicate that just as seen in mammals, the MBNL proteins reduce the expression of

stem cell-related gene isoforms in the flatworms. Furthermore, Solana, Irimia et al. found that

another protein called CELF counteracts MBNL proteins by helping to express gene isoforms that

are active in stem cells.

The interplay between the MBNL and CELF proteins has also been observed in human cells.

Thus, it appears that this way of controlling alternative splicing is common to flatworms and

mammals and is therefore evolutionarily ancient. This suggests that other similar ways of controlling

stem cells by interactions between regulatory proteins might be working in all animal stem cells.

Further studies are now needed to investigate these control proteins.

DOI: 10.7554/eLife.16797.002
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sequence. For example, members of the MBNL family of RBPs are lowly expressed in mammalian

ESCs, but show higher levels of expression in all profiled differentiated samples – ranging from

transformed cell lines (e.g. HeLa, 293T, etc.) to highly histologically and functionally diverse adult tis-

sue types (including multiple brain regions, muscle, liver, kidney, testis, etc.) – where they repress a

program of alternative exons that are characteristic of ESCs (Han et al., 2013). Knockdown of MBNL

in differentiated cultured cells thus induces ESC-like AS patterns and this is sufficient to enhance

somatic cell reprogramming (Han et al., 2013). MBNL targets are involved in diverse cellular pro-

cesses, from cytoskeletal dynamics to gene regulation, and include disparate actors, from protein

kinases to transcriptional regulators. For instance, MBNL-regulated AS of the transcription factor

FOXP1 in mouse and human embryonic stem cells changes its DNA-binding properties, so that its

stem cell specific isoform (FOXP1-ES) promotes transcription of pluripotency genes and represses

differentiation genes, while its canonical isoform activates genes involved in differentiation

(Gabut et al., 2011). Consistently, FOXP1-ES is repressed by MBNL upon differentiation by direct

binding to intronic regions in the pre-mRNA (Han et al., 2013).

Intriguingly, members of another RBP family, CELF, have been shown to regulate AS in an antag-

onistic manner to that of MBNL factors in mammals. For example, during heart development, CELF

factors promote embryonic AS patterns, which are later replaced by adult heart AS patterns pro-

moted by MBNL proteins (Kalsotra et al., 2008). Multiple exons have been shown to antagonisti-

cally respond to CELF and MBNL factors in a variety of mammalian differentiation, disease and cell

culture systems (Dasgupta and Ladd, 2012; Kalsotra et al., 2008; Lee and Cooper, 2009;

Wang et al., 2015). CELF factors, however, have not been linked so far to regulation of AS in stem

cells.

Despite these studies, the degree to which regulation by AS is conserved or whether AS plays

any role in non-mammalian stem cells is still entirely unknown. To address these questions, we here

investigated the regulatory role and functional importance of AS in planarian stem cells and

regeneration in vivo. Our results show that AS and the factors involved in its regulation, as well as

their specific interactions (i.e. functional antagonism between MBNL and CELF proteins), are crucial

for planarian stem cell biology and regeneration and likely a deeply conserved feature of animal

stem cells.

Results

Genome-wide annotation of planarian intron-exon structures
We used a recent de novo transcriptome assembly (Liu et al., 2013) to annotate intron and exons in

the genome of Schmidtea mediterranea (assembly version 3.1; Figure 1—figure supplement 1A–B,

Materials and methods). Most planarian protein-coding genes (75%) are multiexonic (Figure 1—fig-

ure supplement 1C). Intron length displays a sharp bimodal distribution: whereas most introns are

relatively small, with lengths centred on 57 bp, another subset ranges between 1 and 10 Kbps (Fig-

ure 1—figure supplement 1D). Next, we produced and compiled over 30 samples of novel and

available deep coverage RNA sequencing (RNA-Seq) data from multiple sources (Figure 1—source

data 1). These consist of FACS-isolated cell populations – including neoblast-enriched (X1), neoblast

progeny-enriched (X2) and differentiated cell-enriched (Xins) fractions (Figure 1A) – as well as wild

type and neoblast-depleted whole animals. We employed these data and previously described

methodologies to comprehensively identify all types of AS in planarians and quantify their alternative

sequence inclusion levels using the ‘Percentage Spliced In’ (PSI) metric ([Braunschweig et al., 2014;

Irimia et al., 2014], methods). These approaches yielded 12,276 AS events, the majority of which

(56.2%) corresponded to alternatively retained introns (Figure 1—figure supplement 2A). We also

identified 2529 alternative exons that can be either fully included or skipped from the mRNAs,

including single and multi-cassette events, as well as 262 microexons (exons of length �27 nucleoti-

des (nt) (Irimia et al., 2014), 72 of which had length �15 nt) (Figure 1—figure supplement 2A).

Identification of a stem cell-specific AS program in planarians
By comparing neoblasts versus differentiated cells and whole worms depleted of neoblasts (meth-

ods), we identified 246 and 256 AS events with increased and decreased alternative sequence inclu-

sion levels in neoblasts, respectively (X1-included and X1-excluded, together referred to as
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Figure 1. Alternative splicing is differentially regulated between planarian stem cells and differentiated cells. (A) Planarian Stem cells (’Neoblasts’), their

differentiating progeny, and differentiated cells are purified with FACS (’X1’, ’X2’, ’Xins’, respectively). RNA-seq and computational analyses were

Figure 1 continued on next page
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’neoblast-differential’; Figure 1B and Figure 1—figure supplement 2B, Figure 1—source data 2).

Most of these events had intermediate inclusion levels in X2 samples (which comprise a mixture of

stem cells and their early differentiation progeny, Figure 1C), while inclusion levels in whole worm

(WW) samples largely matched those of Xins samples. This latter correlation is expected since ~80%

of the cells in adult planarians are differentiated (Baguñà and Romero, 1981). In contrast to the

global AS pattern (Figure 1—figure supplement 2A), the majority of neoblast-differential AS events

involved cassette exons (61.4%, Figure 1B). RT-PCRs using primers (Supplementary file 1) flanking

alternative exon sequences confirmed all (22/22) tested neoblast-differential exons and showed a

high correlation between RT-PCR and RNA-Seq inclusion level estimates (Figure 1D and Figure 1—

figure supplement 3; R2 = 0.92, n = 88). Among these cassette exons, we detected 64 microexons

that were differentially regulated between X1 and Xins fractions, the majority of which (82.8%) were

more included in differentiated cells (Figure 1E). Consistent with this bias towards differentiated

cells, vertebrate microexons have been recently shown to display enrichment in neural and muscle

tissues compared to ESCs (Irimia et al., 2014).

The majority of neoblast-differential exons (68.5%) overlapped protein-coding regions and con-

served the reading frame; therefore, they were predicted to generate distinct protein isoforms in

neoblasts and differentiated cells. This set of AS events were significantly enriched in genes involved

in cytoskeleton and cell signalling functions (Figure 1—figure supplement 4A), gene ontology cate-

gories that were also enriched among ESC-differential alternatively spliced genes in mammals

(Han et al., 2013). Planarian genes with neoblast-differential exons were associated with a wide

range of functions, and included cytoskeleton regulators (e.g. add3), membrane trafficking proteins

(e.g. tpd52), metabolic enzymes (e.g. pcca), translation factors (e.g. eif3h) and protein kinases (e.g.

map4k3), among others. Interestingly, neoblast-differential exons significantly more often over-

lapped disordered regions of proteins and avoided structured domains compared to general alter-

natively spliced and constitutive exons (Figure 1—figure supplement 2C,D; p � 4.7 � 10�5 for all

comparisons, 3-way Fisher test and proportion tests, respectively). A similar pattern was described

for tissue-specific exons in mammals (Buljan et al., 2012; Ellis et al., 2012), suggesting that neo-

blast-differential exons may also contribute to modulate protein-protein interactions in planarian

cells.

Figure 1 continued

subsequently used to identify X1-differential AS at a genome-wide scale. (B) Distribution of AS events with increased/decreased inclusion of the

alternative sequence in X1. Alt3/5, alternative splice site acceptor/donor selection; IR, intron retention; AltEx, cassette exons. (C) Heatmap of inclusion

level values for 293 representative X1-differential AS events. Bars in the dendrogram correspond to AS types in B. (D) Representative RT-PCR assays

monitoring AS patterns in FACS isolated cell fractions. Red and blue exons indicate those exons with higher and lower inclusion in X1 compared to Xins

fractions, respectively. Scatter plot shows correspondence between PSI estimates by RNA-Seq and RT-PCR in whole worms and X1, X2 and Xins

fractions for 22 events (R2 = 0.92, n = 88). (E) Proportion of alternatively spliced exons by length class with increased inclusion in X1 (’X1-inc’) or Xins

(’X1-exc’) fractions, or not differentially regulated between X1 and Xins fractions (’Non-X1 reg’)

DOI: 10.7554/eLife.16797.003

The following source data and figure supplements are available for figure 1:

Source data 1. Schmidtea mediterranea RNA-seq samples used in this study.

DOI: 10.7554/eLife.16797.004

Source data 2. List of neoblast-differential AS events.

DOI: 10.7554/eLife.16797.005

Figure supplement 1. Genome annotation pipeline and summary statistics.

DOI: 10.7554/eLife.16797.006

Figure supplement 2. Identification and analysis of neoblast differential AS in planarians.

DOI: 10.7554/eLife.16797.007

Figure supplement 3. RT-PCR validation of neoblast-differential AS events.

DOI: 10.7554/eLife.16797.008

Figure supplement 4. Gene Ontology analysis of X1-differential AS events.

DOI: 10.7554/eLife.16797.009
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Unexpected abundance of neoblast-specific retained introns
Intron retention (IR) consists in the selective retention of a given intron in the mature mRNA. Nota-

bly, 107 IR events were differentially enriched in X1 fractions compared to only 41 in Xins

(Figure 1B). RT-PCRs confirmed all (11/11) tested X1-included introns compared to half (2/4) of X1-

excluded (Figures 2A and Figure 1—figure supplement 3; R2 = 0.68, n = 56, for all neoblast-differ-

ential introns tested). X1-included introns were usually longer than other intron types (Figure 2B,

P = 7.1 � 10�10, Wilcoxon Sum Rank test), and belonged to genes that were more highly expressed

in differentiated cells than in neoblasts and their progeny (Figure 2C–D). Importantly, in contrast to

cassette exon events, which were predicted to generate different protein isoforms in neoblast and

differentiated cells, nearly all X1-included IR events were predicted to disrupt the reading frame spe-

cifically in neoblasts (Figure 2E; p<2.2 � 10�16, chi-squared test). Moreover, these introns preferen-

tially affected genes that were significantly enriched in functions related to cell differentiation,

negative regulation of proliferation and cell type-specific metabolic pathways (Figure 1—figure sup-

plement 4B–C). Therefore, altogether these data suggest that neoblast-specific IR may be operating

to ensure that a subset of early-transcribed differentiation genes is not active in neoblasts. These

genes might then be selectively activated upon differentiation by splicing out the ’detained’ intron,

similar to recent reports in mammalian ESCs (Boutz et al., 2015; Braunschweig et al., 2014).

Planarian neoblast-differential AS is evolutionary conserved
To investigate whether the neoblast-differential AS program of S. mediterranea has been conserved

during evolution, we mapped our validated set of AS exons (Figure 1—figure supplement 3) to a

transcriptome assembly of the planarian species Dugesia japonica (Nishimura et al., 2015), which

has diverged from S. mediterranea approximately 85 million years ago (Lazaro et al., 2011), similar

to the estimated time for the human-mouse divergence. We used this information to design D.

japonica-specific primers (Supplementary file 1), and then performed RT-PCRs in FACS isolated

populations from D. japonica and compared them to S. mediterranea. Strikingly, 20/21 (95.2%) of

the probed cassette exons were also present and alternatively spliced in D. japonica, and 16/20

(80%) of these showed conserved differential regulation between X1 and Xins fractions in the two

species (Figure 3A and Figure 3—source data 2). Moreover, half of the IR events that could be

probed despite the lack of a reference genome sequence in D. japonica also displayed conserved

neoblast-differential regulation (3/6; Figure 3A). This level of neoblast-differential conservation is

even higher than that observed between ESC-differential exons in mammals (Han et al., 2013), and

strongly argues for the functional relevance of this AS program in planarians.

We next asked whether neoblast-differential exons were conserved between neoblasts and

human ESCs. We identified 15 orthologous gene groups with neoblast/ESC-differential exons in

both planarian and humans (Figure 3—source data 1, Materials and methods). Remarkably, in ten

of these orthologous groups, planarian and human stem cell regulated exons fall in similar regions of

the protein, and in at least four of them (add3, eml4, fmnl3 and ppfibp1) the intervening sequences

are partly orthologous, despite extensive rearrangement of intron-exon structures (Figure 3B and

Figure 3—source data 2). Therefore, although neoblast and ESC AS programs are largely lineage-

specific, AS may impact some proteins in a similar manner in both species.

CELF and MBNL factors are major regulators of planarian neoblast-
differential AS
We next sought to identify trans-acting RBP factors that regulate neoblast-differential AS. Based on

homology searches and presence of RNA binding domains, we identified over 300 putative RNA

binding proteins in planarians (Figure 4—source data 1). Homologs of well-known mammalian tis-

sue-specific AS factors were then selected as potential regulators of the planarian neoblast AS pro-

gram (Figure 4A). To first assess their differential enrichment in neoblast or differentiated cell

fractions, we compared their gene expression levels across our RNA-Seq panel with those of single-

copy core spliceosomal components (genes associated with KEGG terms for spliceosomal complex

A, B and C; Figure 4—source data 2). Strikingly, a member of the CELF family (Smed-bruno-like,

bruli) of AS regulators showed the strongest differential expression enrichment in X1 fractions

among the multiple probed AS factors (Figure 4A and Figure 4—source data 1), and had been pre-

viously reported to be needed for planarian stem cell self-renewal and regeneration (Guo et al.,
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2006). Most other investigated AS factors showed no differential enrichment in X1 fractions com-

pared to the core spliceosome (e.g. Smed-ptbp-1, -2, Smed-rbfox-1), or were differentially enriched

in Xins fractions (e.g. Smed-mbnl-1, Smed-esrp-1,2, etc.) (Figure 4A and Figure 4—source data 1).

To query the role of these factors in the regulation of the neoblast AS program and in regenera-

tion, we performed RNAi of these genes separately or in combinations (for paralogs with similar

enrichment in X1 or Xins fractions). A total of eight RNAi groups comprising two single RNAi and six

multiple RNAi combinations (Figure 4—source data 3) were knocked down in parallel with a control

Figure 2 continued

fractions. P-value corresponds to a Wilcoxon Sum Rank test between X1 and Xins expression values. (E) Percent of X1-differential AS events by type that

are predicted to generate alternative ORF-preserving isoforms (black), disrupt the ORF in neoblasts or differentiated cells (dark/light grey), or overlap

non-coding sequences (white).
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fractions from D. japonica. Scatter plot shows correspondence between DPSI (X1-Xins) estimates by RT-PCR in S.

mediterranea and D. japonica for 21 cassette exons (circles) and 6 retained introns (diamonds). Conservation of

regulation is observed for both alternative sequences with higher (’X1-inc’, red) and lower (’X1-exc’, blue) inclusion

in neoblasts. (B) Schematic examples of the occurrence of neoblast-differential AS (blue bars) with respect to

protein domain organization in two pairs of gene homologues in human and planarian. The examples show that

AS events fall in similar protein regions in both human and planarian orthologs.

DOI: 10.7554/eLife.16797.011

The following source data is available for figure 3:

Source data 1. Orthologous gene groups with neoblast/ESC-differential exons in both planarian and humans.

DOI: 10.7554/eLife.16797.012

Source data 2. Conservation of stem cell-differential AS events.

DOI: 10.7554/eLife.16797.013
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Figure 4. Identification of bruli and mbnl as major regulators of neoblast-specific AS. (A) Scattered plot highlighting differential gene expression for

selected tissue-specific AS factors in planarians. X-axis: differential gene expression in X1 vs Xins cell fractions for selected AS factors (color dots) and

core spliceosomal components (grey dots). The red line is the median enrichment value for the core spliceosomal components. An AS factor is thus

considered to be enriched in X1 or Xins fractions if it is located to the right or to the left of this line, respectively. Y-axis: gene expression levels in whole

worms (WW), using the cRPKM metric. (B) Test of regeneration speed after head ablation upon AS factor knockdown. Identification of normally looking

eyespots was used as proxy for complete regeneration for 10 individuals per experimental condition. (C) DPSI estimates in X1 cell fractions by RT-PCR

for two X1-included exons (red), one X1-included retained intron (c17orf39, orange) and five X1-excluded exons (blue) 10 days after RNAi treatment with

dsRNA coding for AS factor combinations. DPSI values for each event and experiment are calculated respect to the average PSIs in three wild type

samples. (D) Percent of neoblast-differential exons with sufficient read coverage that change their inclusion levels (DPSI � 15) in whole worms towards

the X1 pattern (as expected for a negative regulator of neoblast-differential AS) upon knockdown of each AS factor.

DOI: 10.7554/eLife.16797.014

The following source data and figure supplements are available for figure 4:

Source data 1. Annotation of RBPs in planarians.

DOI: 10.7554/eLife.16797.015

Source data 2. Annotation of spliceosomal components in planarians.

DOI: 10.7554/eLife.16797.016

Source data 3. Single and multiple splicing factor knockdown RNAi groups.

DOI: 10.7554/eLife.16797.017

Figure supplement 1. Identification of bruli and mbnl as major regulators of neoblast-specific AS.

DOI: 10.7554/eLife.16797.018

Figure supplement 2. Enrichment of RBP binding motifs associated with neoblast-differential exons.

DOI: 10.7554/eLife.16797.019
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RNAi. Tests of regeneration capability upon head ablation in these knockdowns showed diverse

defects for several AS factor groups (Figure 4B). As previously reported, bruli(RNAi) showed a dra-

matic phenotype with no regeneration. A similar phenotype was also observed for the ptbp(RNAi)

group. Combined knockdown of the three other CELF factors, enriched in Xins fractions, induced

elongation and movement defects, but did not seem to affect regeneration time dynamics. Finally, a

significant delay in regeneration was observed for the mbnl group.

To evaluate the transcriptomic impact of these factors in regulating neoblast-differential AS in

stem cells, we FACS-sorted planarian X1 cell populations from these eight RNAi groups 10 days

after RNAi (when the neoblast population was still not decreased upon bruli RNAi treatment, Fig-

ure 4—figure supplement 1), and performed semi-quantitative RT-PCR for eight representative

neoblast-differential AS events (Figure 4C). Only bruli(RNAi) treatment induced dramatic changes in

inclusion levels in X1 fractions compared to the control RNAi in the expected direction (i.e. towards

the differentiated pattern; Figure 4C), suggesting that bruli may act as a positive regulator of the

neoblast AS program. Next, to assess the importance of the AS factors that were enriched in differ-

entiated cells, we performed RNA-Seq of whole worms from these eight RNAi groups. Knockdown

of the mbnl group [a four-gene knockdown: Smed-mbnl-1;Smed-mbnl-like-1, -2, -3(RNAi), hereafter

mbnl(RNAi)] (Figure 4—source data 3) showed the most widespread changes in the X1-differential

AS program towards the neoblast pattern (Figure 4D), suggesting that MBNL proteins may act as

negative regulators of the neoblast AS program. Remarkably, RNA sequence motif enrichment anal-

yses using a library of RNAcompete-derived binding profiles for over 100 animal RBPs (Ray et al.,

2013) showed that MBNL consensus motifs are also the most significantly enriched in the down-

stream introns of X1-excluded cassette exons (Figure 4—figure supplement 2). This result is consis-

tent with planarian MBNL proteins enhancing X1-excluded exons via binding to their downstream

introns, as described for mammalian MBNL proteins (Han et al., 2013; Wang et al., 2012). Based

on these data, we decided to investigate the role of BRULI and MBNL factors as putative positive

and negative regulators of the neoblast-differential AS program, respectively.

CELF and MBNL factors are needed for planarian regeneration
We found four potential mbnl orthologs in the planarian transcriptome, comprising a canonical

MBNL ortholog with two pairs of zinc finger domains (Smed-mbnl-1, hereafter mbnl-1), as well as

three orthologs with only one pair (Smed-mbnl-like-1,2,3, hereafter mbnl-like-1,2,3) (Figure 5—fig-

ure supplement 1). All mbnl orthologs displayed expression enrichment in Xins fractions

(Figure 4A). Whole mount in situ hybridizations showed that mbnl-1 has a widespread expression

pattern, while mbnl-like-1 and mbnl-like-2 are expressed mainly in gut tissue

(Figure 5A; no expression was detected for mbnl-like-3). Analysis of recently published single-cell

sequencing data further revealed expression of mbnl-1, mbnl-like-1 and mbnl-like-2 in epidermis,

which is commonly lost in whole-mount in situ protocols, and confirmed the widespread expression

of mbnl-1 (Wurtzel et al., 2015). In contrast, as previously reported (Guo et al., 2006), bruli was

specifically expressed in neoblasts, as shown both by in situ hybridization (Figure 5A) and single-cell

sequencing data (Wurtzel et al., 2015).

To further investigate the role of CELF and MBNL factors in the regulation of the neoblast AS

program and regeneration, we performed RNAi of these genes, separately or in combinations (in

the case of the mbnl paralogs). In the case of mbnl, a significant delay in regeneration was observed

for the combined knockdown of all four mbnl homologues. These regeneration defects were even

stronger when regenerating tails were examined (Figure 5—figure supplement 2A). When knocked

down individually, only Smed-mbnl-1 had minor effects on regeneration (Figure 5—figure supple-

ment 2A). These observations were mirrored at the transcriptomic level, as shown by RT-PCRs for

several representative AS events in whole worms (Figure 5B). Importantly, while the regeneration

phenotype was observed 22 days after the RNAi injection, effects on AS inclusion levels where

observable as soon as five days after the initiation of the treatment, plateauing after day 10 post-

injection (Figure 5—figure supplement 2B).
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Direct antagonistic regulation of planarian stem cell-specific AS by
CELF and MBNL factors
In order to investigate the concerted transcriptomic-wide impact of CELF and MBNL factors in the

regulation of neoblast-differential AS, we next FACS-sorted X1 and Xins populations from bruli

(RNAi), mbnl(RNAi) and control(RNAi) animals 10 days after RNAi in duplicates and subjected them

to RNA-Seq. Consistent with our RT-PCR results (Figure 4C), bruli knockdown induced strong inclu-

sion level changes in X1 fractions towards the differentiated pattern (Figure 6A; P = 1.4 � 10�19,

binomial test). In particular, X1-included alternative sequences became less included after bruli

knockdown (Figure 6A, red dots) while X1-excluded ones were more included (Figure 6A, blue

dots). On the other hand, mbnl knockdown induced changes in the opposite direction in Xins frac-

tions (Figure 6B; P = 2.1 � 10�11, binomial test). These changes in inclusion levels obtained by
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B
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Figure 5. Combined mbnl knockdown has stronger effects than individual knockdown. (A) Whole worm in situ

hybridization for bruli, mbnl-1 and mbnl-like1, 2 and 3. Scale bar is 0.5 mm. (B) DPSI in whole worm estimates by

RT-PCR for two X1-inc exons (red), one X1-inc retained intron (c17orf39, orange) and five X1-exc exons (blue) 10

days after RNAi treatment with dsRNA coding for bruli, mix of dsRNAs against the four mbnl genes [mbnl(RNAi)],

mbnl-1, mbnl-like-1, mbnl-like-2, and mbnl-like-3. Two independent controls samples were included; DPSI values

are relative to the first control sample.

DOI: 10.7554/eLife.16797.020

The following figure supplements are available for figure 5:

Figure supplement 1. BRULI and MBNL factors domain architecture and effects on regeneration and alternative

splicing.

DOI: 10.7554/eLife.16797.021

Figure supplement 2. bruli and mbnl factors effects on regeneration and alternative splicing.

DOI: 10.7554/eLife.16797.022
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Figure 6. bruli and mbnl antagonistically regulate neoblast-specific AS. (A) High negative association (p<1.4 � 10�19, one-sided binomial test) between

differences in inclusion levels (DPSI) of X1-differential AS events in X1 versus Xins fractions, and differences in bruli and control RNAi treated X1

fractions. Red/Blue dots correspond to X1-included/excluded AS events. (B) High positive association (p<2.1 � 10�11, one-sided binomial test) between

differences in inclusion levels (DPSI) of X1-differential AS events in X1 versus Xins fractions, and differences in mbnl and control RNAi treated Xins

fractions. Only AS events with sufficient read coverage in the control and KD samples and an absolute DPSI>15 are plotted. (C) RT-PCR assays

monitoring AS patterns for 5 representative X1-differential AS events in FACS isolated cell fractions treated with bruli, control or mbnl RNAi. (D) Most

X1-differential AS events that are affected by both bruli and mbnl knockdown are regulated in an antagonistic manner (p<2.2 � 10�7, one-sided

binomial test). (E) 2-dimensional histogram of RNA-compete 7-mer Z-scores, comparing the sequence-specific binding of planarian and human

proteins. Unspecific 7-mers with Z-score <0 for both RBPs were excluded. �, Spearman rank correlation; R, Pearson correlation. Top 10 planarian motifs

are highlighted. (F) Motif-enrichment analysis. Each intronic box corresponds to a 20-nucleotide bin at the indicated location relative to the AS exon

(middle box). Color encodes the significance of enrichment (Fisher’s exact test, Bonferroni corrected for the number of tested bins) of high affinity 7-

mers for BRULI or MBNL, comparing each differentially spliced exon set with an unaffected background set. Exon sets (I-IV) correspond to those in

quadrants indicated in panels B and C.

DOI: 10.7554/eLife.16797.023

The following figure supplements are available for figure 6:

Figure supplement 1. Examples of neoblast-differential AS events regulated by bruli and/or mbnl.

DOI: 10.7554/eLife.16797.024

Figure 6 continued on next page
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RNA-seq analyses were independently validated by RT-PCR assays (19/19 changes, 100%; R2 = 0.87,

n = 225; Figure 6C and Figure 6—figure supplement 1). Remarkably, 33/87 (37.9%) mbnl-regu-

lated AS events (14 cassette exons, 11 microexons, and 8 retained introns) were also affected by

bruli knockdown in the opposite direction (Figure 6D; P = 2.2 � 10�7, binomial test; corresponding

to 33/141 (23.4%) bruli-regulated AS events). As expected, the number of AS changes of bruli and

mbnl knockdown in Xins and X1 fractions respectively was lower and was not significantly associated

with neoblast-differential regulation (Figure 6—figure supplement 2A,B). Of note, 37/110 (33.6%)

of X1-retained introns showed decreased retention upon bruli knockdown (DPSI � 15), suggesting

that BRULI regulates coordinated IR events in planarian stem cells. On the other hand, mbnl knock-

down affected a large fraction of Xins-enriched microexons (20/54, 37%).

To investigate the mechanisms by which BRULI and MBNL regulate neoblast-differential AS, we

performed RNAcompete assays (Ray et al., 2009; Ray et al., 2013) to identify their consensus RNA

binding motifs. Purified GST-tagged RBPs were incubated with a 75-fold excess of an RNA pool and

the binding preferences of the RBP elucidated by analysing bound RNAs by microarray analyses.

The top scoring motifs (Figure 6E and Figure 6—figure supplement 2C) for BRULI and MBNL-1

contained the 3-mer UGU and 6-mer GCUUGC, respectively, consistent with previous reports for

their mammalian homologs. Moreover, the binding specificities of the planarian and mammalian

homologs strongly correlated (Figure 6E) and highly significantly overlapped (Figure 6—figure sup-

plement 2D; p<5.5 � 10�89 for all pairwise homolog comparisons, hypergeometric test) across all

measured 7-mers in RNAcompete assays. Thus, the planarian MBNL and CELF factors and its mam-

malian homologs have conserved binding specificities. Next, to investigate if planarian MBNL and

CELF binding motifs were significantly associated with neoblast-differential alternative exons that

show changes upon splicing factor knockdown (Figure 6A,B), we analysed the presence of these

motifs in the regulated exons and their flanking introns compared to sets of control exons (see

Materials and methods). Both BRULI and MBNL-1 motifs were highly significantly enriched in the

downstream introns of exons downregulated upon the respective KD, whereas MBNL-1 motifs were

also significantly enriched in exonic sequences of exons upregulated upon mbnl KD (Figure 6F).

These locations are consistent with the enhancing or repressive functions, respectively, from RNA

regulatory maps described for these factors in mammals (Han et al., 2013; Wang et al., 2012), and

strongly suggest a direct regulatory role in AS regulation in planarians.

CELF and MBNL factors have antagonistic effects on planarian stem
cells
Next, to investigate how knockdown of bruli and mbnl impairs planarian regeneration at the cellular

level, we sequenced mRNA extracted from whole worms at different time points after RNAi injec-

tions and evaluated the levels of cell type-specific markers (Figure 7A). It was previously described

that bruli knockdown induces a conspicuous neoblast loss phenotype (Guo et al., 2006). Consis-

tently, we observed a strong downregulation of neoblast markers after bruli knockdown (Figure 7—

figure supplement 1), which were not affected by mbnl knockdown. Strikingly, the progeny markers

prog-1 and prog-2-1, which are expressed in postmitotic epidermal progenitors (Eisenhoffer et al.,

2008; van Wolfswinkel et al., 2014), changed their expression levels in opposing directions upon

bruli/mbnl knockdown. More precisely, bruli knockdown induced loss of these markers, whereas

mbnl knockdown led to an increase in their expression (Figure 7B and Figure 7—figure supplement

1). Similar results were found with recently described markers for lineage-committed subclasses of

neoblasts (van Wolfswinkel et al., 2014) (Figure 7—figure supplement 1) and epidermal progeni-

tors (Zhu et al., 2015) (Figure 7B, Figure 7—figure supplement 1), which were confirmed by qPCR

for prog-1, prog-2-1 and prog-1-1 (Figure 7C). This concomitant decrease and increase in the

expression of multiple progeny markers for bruli and mbnl knockdown, respectively, is likely due to

the loss and accumulation of progenitors, respectively, rather than to specific changes in the expres-

sion levels of these markers in an invariant pool of progenitor cells.

Figure 6 continued

Figure supplement 2. bruli and mbnl antagonistically regulate neoblast-specific AS.

DOI: 10.7554/eLife.16797.025
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control or mbnl RNAi. (D) Proportion of genes belonging to each of the 6 clusters defined in (Onal et al., 2012) based on their X1vs Xins enrichment

that are decreased 20, 25 and 30 days after bruli and mbnl RNAi treatment. P-values correspond to hypergeometric tests for Clusters 1 (P = 5.6

� 10�56, P = 4.0 � 10�113, P = 2.7 � 10�178, for bruli(RNAi) days 20, 25 and 30, respectively) and 6 (P = 1.2 � 10�3, P = 1.0 � 10�14, P = 1.2 � 10�16, for

mbnl(RNAi) days 20, 25 and 30, respectively). All other tests were not significant. Black histograms on the right side indicate schematically, for each

cluster, the relative gene expression levels in each cell fraction. (E) In situ hybridization of three representative Cluster 1 (red bars) and Cluster 6 (blue

bars) genes in whole worms. (F) qPCR-based gene expression estimates of three representative Cluster 1 (red bars) and Cluster 6 (blue bars) genes in

whole worms 25 days after bruli, control or mbnl RNAi. (G) Principal Component 1 separates transcriptomes from bruli RNAi treated samples together

with Smed-H2B(RNAi)(which affects neoblast self-maintenance) from mbnl RNAi treated samples together with Smedwi-2(RNAi)(which impairs neoblast

differentiation).

DOI: 10.7554/eLife.16797.026

The following figure supplements are available for figure 7:

Figure supplement 1. bruli and mbnl knockdown have contrasting effect of specific gene markers.

DOI: 10.7554/eLife.16797.027

Figure supplement 2. Gene Ontology analysis of genes downregulated upon bruli and mbnl knockdown.

DOI: 10.7554/eLife.16797.028
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Next, we compared the effect of bruli and mbnl knockdown on the levels of gene sets previously

defined by clustering common patterns of expression in X1, X2 and Xins fractions (Onal et al.,

2012). Cluster 1 comprises genes with strong differential expression enrichment in neoblasts, while

Cluster six genes are conversely expressed mainly in differentiated tissues and excluded from the

neoblast compartment. Consistent with a prominent neoblast loss (Guo et al., 2006), Cluster 1

genes were highly significantly decreased upon bruli knockdown (Figure 7D ; p<5.6 � 10�56 for the

three time points, hypergeometric test). In contrast, mbnl knockdown impacted predominantly Clus-

ter six genes (Figure 7D ; p<0.01 for the three time points, hypergeometric test). The expression

patterns of three decreased genes from Clusters 1 and the from Cluster 6 were confirmed by in

situ hybridization (Figure 7E). The three Cluster 1 transcripts were observed in neoblasts as previ-

ously described; on the other hand, the three Cluster six genes impacted by mbnl knockdown were

expressed only in differentiated cells (comprising gut and secretory-like cells). We then confirmed

the depletion of these markers after bruli and mbnl RNAi by qPCR. (Figure 7F). The three Cluster 1

transcripts were strongly decreased after bruli knockdown, while the three Cluster six genes were

decreased only after mbnl knockdown. These results are thus consistent with prominent neoblast

loss after bruli RNAi, on the one hand, and progressive scarcity of differentiated cell types due to

impaired neoblast differentiation after mbnl knockdown, on the other hand. These opposed effects

of bruli and mbnl were also reflected in the gene functions altered upon knockdown, with stem cell

function-related terms enriched in bruli(RNAi) decreased genes, compared to differentiated tissue

function associated terms for mbnl(RNAi) (Figure 7—figure supplement 2). In addition, a Principal

Component Analysis (PCA) showed that the first PC sharply separated bruli samples together with

Smed-H2B(RNAi)(which affects neoblast self-maintenance [Solana et al., 2012]) from mbnl samples

together with Smedwi-2(RNAi)(which impairs neoblast differentiation [Reddien et al., 2005])

(Figure 7G), further showing their opposing effects in stem cell properties. Taken together our

results show that both CELF and MBNL factors are required for regeneration in planarians in vivo,

and that they act by antagonizing each other in the control of neoblast self-renewal and

differentiation.

Discussion
In this study we systematically characterized AS in planarian stem cells. We find widespread and

strong differences in the pre-mRNA processing of genes expressed in both stem and differentiated

cells. Most of these AS differences were evolutionarily conserved between two planarian species,

strongly arguing for functional importance (Irimia et al., 2009). Furthermore, even several human

genes undergo stem cell-specific AS in similar regions to those of their planarian orthologs. More-

over, we also found a large number of introns that are specifically retained in neoblast transcripts

and that reduce the production of functional proteins in this cell type. Our results thus provide evi-

dence that IR may play an important and distinct role in the regulation of stem cell gene expression.

Our results further indicate that BRULI and MBNL proteins functionally interplay to regulate pla-

narian regeneration. bruli is highly expressed in stem cells and contributes to shape neoblast-specific

transcriptomes at least in part through regulation of exon skipping and intron retention. Depletion

of bruli results in neoblast loss and thus in a complete lack of regeneration. On the other hand, mbnl

factors are more expressed in differentiated cells, where they contribute to establish differentiated

gene expression. Therefore, loss of mbnl function is likely to affect neoblast differentiation, thereby

reducing and/or slowing down regeneration. Our computational, biochemical and functional experi-

ments indicate that CELF and MBNL proteins functionally antagonize by directly binding to their tar-

gets to control stem cell biology and regeneration in planarians (Figure 8). Thus, these two families

of RBPs not only play antagonistic roles in the regulation of multiple mammalian differentiation sys-

tems (Kalsotra et al., 2008; Lin et al., 2006; Ward et al., 2010), but directly control stem cell-spe-

cific AS in an evolutionarily distant organism. Moreover, MBNL proteins have been shown to be

major direct negative regulators of mammalian ESC-differential AS (Han et al., 2013;

Venables et al., 2013), similarly to what we describe here for planarian neoblast AS. While MBNL

targets are largely not shared between planarians and humans (only seven orthologous gene groups

have MBNL-regulated, non-homologous, exons in both species), the upstream role of MBNL pro-

teins as repressors of stem cell-differential AS appears equivalent in both species. This suggests that

direct negative regulation of stem cell transcriptomes by MBNL proteins, and perhaps positively by
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CELF factors, is a deeply conserved ancestral feature of animal stem cells. Indeed, a recent study has

shown that sponges – the most basal metazoan lineage –also differentially express a CELF homolog

in their stem cells and an MBNL homolog in differentiated cells (Alié et al., 2015). However, since

the true homology status of planarian, poriferan and human stem cells is unclear, it also possible

that CELF and MBNL proteins form an ancestral developmental regulatory module that has been

deployed to regulate pluripotent vs. differentiated transcriptomes multiple times across evolution.

For instance, in Drosophila melanogaster a Bruno homolog (aret) is only highly expressed in the early

pluripotent embryo stages (from 0 to 4 hr post fertilization) during development, while the embry-

onic expression of the single Mbnl ortholog (mbl) gradually increases from 6 hr post fertilization

(Graveley et al., 2011). Furthermore, we have shown that not only the antagonistic expression but

also the binding specificities of BRULI and MBNL proteins are very similar to those of their human

counterparts, an observation that is in line with the high level of conservation of binding specificities

and positional regulatory codes described for several other RBPs (Brooks et al., 2011; Irimia et al.,

2011; Lareau and Brenner, 2015; Ray et al., 2013; Wang et al., 2012; Loria et al., 2003). The

dual regulation by CELF and MBNL suggests that other interactions between factors in the control

of AS might exist.

In summary, we have unveiled an ancient post-transcriptional antagonistic regulatory switch

formed by CELF and MBNL factors that is associated with pluripotency in multiple animal systems.

This evolutionary conservation contrasts with the apparent high turnaround of stem cell regulation at

the transcription factor level, in which the core set of TFs that regulate mammalian ESCs is likely a

lineage-specific innovation (Fernandez-Tresguerres et al., 2010). Future investigation of post-tran-

scriptional regulation in other in vivo systems of stem biology and regeneration should further con-

tribute to establishing ancestral mechanisms for the control of pluripotency in metazoans.
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Figure 8. Model for BRULI and MBNL regulation of neoblast-specific AS. Schematic representation of BRULI and

MBNL regulation of AS in different planarian cell fractions and respective RNAi mediated knockdown phenotypes.
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Materials and methods

Planarian genome annotation
We used the publically available assembly version 3.1 of the genome of the freshwater planarian

Schmidtea mediterranea. Given the relatively fragmentary nature of this genome assembly, we used

a recent de novo genome-independent transcriptome assembly based on multiple RNA-Seq data

sources (Dresden transcriptome - http://planmine.mpi-cbg.de/) as transcript reference for the anno-

tation. The 26,562 transcripts from this transcriptome were mapped to the genome using blat with

the following parameters:–q = rna –fine (to search for initial and terminal exons in high quality tran-

scripts). The output was then sorted using pslSort, and then filtered using pslCDnaFilter with the

following parameters: -minCover = 0.75 -minId = 0.96 -globalNearBest = 0.005 –filterWeirdOver-

lapped. If multiple redundant mappings (i.e. of overlapping sequences in the query) of a single tran-

script fulfilled these conditions, only the hit with the best blat score was kept. If different regions of

a transcript mapped to different scaffolds (936 transcripts), the transcript was split into two or more

gene models, one in each scaffold (gene sub-models were designated with suffixes following ’_2’,

’_3’, etc.).

Next, a series of filters were applied to remove usual annotation errors. First, the strand of a

gene model was flipped if there were more CT-AC than GT-AG introns (often occurring in gene chi-

meras in opposite orientations; 301 gene models). Second, extra multiple-mapping transcript

regions within the same scaffold were filtered out (in 281 gene models). Third, exons separated by

annotated introns shorter than 30 nucleotides (usually 1–5 nucleotides) were collapsed into single

exons (these often reflected UTR polymorphisms or discrepancies between the transcriptome and

genome assemblies; 7665 merged exons). This resulted in a GTF containing 23,161 single-transcript

gene models. We next used TransDecoder (version 1) (Haas et al., 2013) with default parameters

and compared against the Pfam A database to identify coding sequences (CDS). A total of 15,008

gene models had detected open reading frames (ORFs). For those cases in which TransDecoder

detected more than one ORF in a given transcript (usually due to assembly errors that introduce

PTCs), we generated multiple transcript identifiers (designated with suffixes following ’_b’, ’_c’, etc.).

Custom perl scripts were then used to add start_codon and stop_codon lines to the GTF. Finally, to

provide meaningful gene names, we performed tblastx (e-value 0.001, without low complexity filter)

of the original planarian transcriptome against human mRNAs from Ensembl v71 and assign the

gene symbols of best human hits (for 12,171 cases). This genome annotation was used as reference

for our pipeline for alternative splicing (AS) identification, which includes multiple steps to identify

non-annotated exons and splice sites (see below).

Library preparation and RNA sequencing
Libraries for RNA sequencing generated in the present study were produced with poly-A selected

RNA and according to the manufacturer’s directions. All sequences were generated using Illumina

HiSeq2000 machines in high yield mode. Read lengths, number of reads and percentage of reads

mapped to the genome, as well accession number and sources for public RNA-Seq data are pro-

vided in Figure 1—source data 1.

Genome-wide identification and quantification of alternative splicing
Identification and quantification of major types of AS events, including exon skipping (comprising

events with single or multiple cassette exons and microexons between 3–27 nucleotides), intron

retention (IR), and alternative 3’ and 5’ splice sites (Alt3 and Alt5) were performed using vast-tools, a

recently described multi-module pipeline that has been applied to human, mouse and chicken

(Gueroussov et al., 2015; Irimia et al., 2014). Here, we provide a summary of its main features and

the specific modifications related to the planarian annotation.

For exon skipping (AltEx), we used three complementary approaches, as described in

(Irimia et al., 2014). First, a ’transcript-based’ approach uses full transcript information from multiple

sources to identify single or groups of multiple cassette exons (consecutive alternative internal exons

flanked by constitutive exons). Given the limited availability of Expressed Sequence Tags (ESTs) and

cDNAs for planarians, we used other published de novo transcriptome assemblies as ESTs

(Adamidi et al., 2011; Blythe et al., 2010; Labbé et al., 2012; Onal et al., 2012; Resch et al.,
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2012; Rouhana et al., 2012). In addition, we also used RNA-Seq-based transcript annotations,

derived from our multiple samples (Figure 1—source data 1) individually using STAR (Dobin et al.,

2013) and cufflinks (Trapnell et al., 2010). Novel junctions obtained in the ’splice site-based’ mod-

ule (see below) were also incorporated. Finally, 215 additional cassette exons identified from previ-

ous transcriptomic assemblies (Labbé et al., 2012; Onal et al., 2012) were incorporated manually

(indicated as ’CASSETTEd’ in the Sme.EXSK.Template.*.txt files from vast-tools, see below). With

this information, we identified individual or groups of neighbouring internal exons that are skipped

in certain transcripts. Next, to quantify their inclusion levels, we mapped RNA-Seq reads to combina-

tions of exon-exon junctions (EEJs) that define each splicing event. For the case of single exon skip-

ping events, we generated EEJs for C1A, AC2 and C1C2 (A represents the alternative exon and C1

and C2 represent the neighboring constitutive exons), requiring a minimum of eight positions from

each exon. For multi-exon events we generated all possible forward combinations from C1 to C2

exons. If multiple alternative 5’ and/or 3’ splice sites were associated with any alternative, C1 or C2

exons, they were also included in the combinations.

Second, a ’splice site-based’ module utilizes the joining of all hypothetically-possible EEJ forward

combinations from annotated and de novo splice sites (as described in (Han et al., 2013), where it

was used to identify Embryonic Stem Cell [ESC]-differential exons). To identify splice sites de novo,

for each annotated splice site donor/acceptor, we scanned two downstream/upstream introns for

potential splice site acceptors/donors that would constitute a novel EEJ. Next, after subtracting the

reads that map to the genome, we mapped our RNA-Seq data (Figure 1—source data 1) to this

library of all potential EEJs, and considered ’novel splice sites’ those supported by at least five reads

mapped to multiple positions of the EEJ. Identification and quantification of cassette exons was

done as described in (Han et al., 2013). Third, a ’microexon module’ includes de novo searching of

pairs of donor and acceptor splice sites in intronic sequence to detect novel, very short (i.e. 3–15 nt)

microexons and subsequent quantification of inclusion levels using exon-microexon-exon junctions

(EEEJ) (Irimia et al., 2014). The outputs from the three AltEx modules were combined to produce a

non-redundant list of cassette exons and associated quantifications. For exons that are identified by

more than one module, the representative with the highest overall read coverage is kept. In case of

equal coverage, priority is given to events derived from the ’transcript-based’ module, followed by

those from the ’microexon’ module. For intron retention (IR), we used the approach described in

(Braunschweig et al., 2014). Finally, to detect and quantify Alt3 and Alt5 events, we used the out-

put from mapping RNA-Seq reads to the EEJ library generated by the ’splice site-based module’,

which provides information on the usage of every hypothetical splice site donor and acceptor, as

described in (Irimia et al., 2014). In all modules, quantification of alternative sequence inclusion in

the transcripts is derived only from junction reads (either EEJs or EIJs). Raw RNA-seq reads were

processed and EEJ/EIJ read counts corrected for mappability obtained as previously described

(Irimia et al., 2014). These counts were used to derive alternative sequence inclusion levels using

the ‘Percent Splice In’ metric (PSI; percent of transcripts from a given gene that include the alterna-

tive sequence).

The different modules to detect and quantify AS have been integrated into vast-tools (https://

github.com/vastgroup/vast-tools; species key ’Sme’). Associated VASTDB files can be downloaded

at http://vastdb.crg.eu/libs/vastdb.sme.31.1.15.tar.gz.

Finally, steady state mRNA levels for each gene were quantified using the metric ’corrected (for

mappability) Reads Per Kilobase pair per Million mapped reads’ (cRPKMs, [Labbé et al., 2012])

using the original de novo transcriptome employed for genome annotation (Dresden transcriptome -

http://planmine.mpi-cbg.de/), and it is also implemented in vast-tools (option –expr in vast-tools

align).

Alternative splicing definition and minimum read coverage
For all types of events, we used the same definition for a given sequence to be considered alterna-

tively spliced: 10 � PSI/PSU/PIR � 90 in at least 10% of the samples with sufficient read coverage

and/or a range of PSI/PSU/PIRs � 25 across all samples with sufficient read coverage. A given event

was considered to have sufficient read coverage in a particular RNA-Seq sample according to the

following criteria:
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- For AltEx (except for those quantified using the microexon pipeline): (i) �10 actual reads (i.e.

before mappability correction) mapping to the sum of exclusion EEJs, OR (ii) �10 actual reads map-

ping to one of the two inclusion EEJs, and �5 to the other inclusion EEJ.

- For microexons: (i) �10 actual reads mapping to the sum of exclusion EEJs, OR (ii) �10 actual

reads mapping to the sum of inclusion EEEJs.

- For IR: (i) �10 actual reads mapping to the sum of skipping EEJs, OR (ii) �10 actual reads map-

ping to one of the two inclusion EIJs, and �5 to the other inclusion EIJ.

- For Alt3 and Alt5: �10 actual reads mapping to the sum of all EEJs involved in the specific

event.

The total number of AS events by type identified using all the RNA-Seq data described above are

depicted in Figure 1—figure supplement 2.

Definition of neoblast-differential alternative splicing
To identify AS events that were differentially regulated between X1 and Xins cell fractions, we first

required that any given AS event has sufficient read coverage (see above) in a minimum of 3 out of 6

X1 and 3 out of 8 differentiated samples (either Xins or neoblast-depleted whole worms; referred

below as ’diff’). We implemented a set of non-mutually exclusive definitions to maximize the detec-

tion of different patterns of neoblast AS regulation, including both quantitative (i.e. with large PSI

differences between the samples from the X1 and diff groups) and qualitative (i.e. in which one of

the isoforms is present only in the set of X1 or differentiated cell samples, even if with relatively small

PSI differences between both groups). The following definitions were employed:

1. absolute (MeanX1 - Meandiff) � 25 AND

[RangeX1 < absolute (MeanX1 - Meandiff)/2 OR

Rangediff < absolute (MeanX1-Meandiff)/2 OR

SDX1 < absolute (MeanX1 - Meandiff)/2 OR

SDdiff < absolute (MeanX1 - Meandiff)/2]
2. absolute (MeanX1 - Mean80diff) � 20 AND

[SDX1 < absolute (MeanX1 - Meandiff)/4 OR

SDdiff < absolute (MeanX1 - Meandiff)/4]
3. Total_samples diff � 4 AND

Total_samplesX1 � 4 AND

[(MinX1 � 98 AND Maxdiff < 90) OR

(MaxX1 � 2 AND Mindiff > 10) OR

(Mindiff � 98 AND MaxX1 < 90) OR

(Maxdiff � 2 AND MinX1 > 10)]

where Total_samplesX1/diff is the number of X1/differentiated samples with enough read cover-

age; MeanX1/diff is the mean PSI/PSU/PIR for all X1/differentiated samples; Mean80diff are the mean

PSI/PSU/PIR for the differentiated samples excluding the 20% of samples with the most distant PSI/

PSU/PIRs from the X1 mean value (i.e. ninth to 10th deciles); MinX1/diff is the minimum PSI/PSU/PIR

value for X1/differentiated samples; MaxX1/diff is the maximum PSI/PSU/PIR value for X1/differenti-

ated samples; RangeX1/diff is the difference between MaxX1/diff and MinX1/diff; and SDX1/diff is the stan-

dard deviation of PSI/PSU/PIR values for X1/differentiated samples. In addition, we required bona

fide neoblast-differential AS events to have a p<0.05 when comparing X1 and differentiated samples

using the B-statistic, i.e. the empirical Bayes log-odds of differential PSI/PSU/PIRs (Smyth, 2004) (as

implemented in ’ebayes’, from the limma package in R). AS events not differentially regulated

between X1 and differentiated cells (’AS_nonX1’ events) were defined as those AS events (as

defined in the section ’Alternative splicing definition and minimum read coverage’) that had (i)

enough read coverage in at least 3 X1 samples and 3 differentiated samples, (ii) |(MeanX1 - Meandiff)|

< 10, and (iii) p � 0.05 on the Bayesian test.

Gene Ontology and KEGG enrichment analysis
GO terms were mapped and extracted from an InterProScan (Zdobnov and Apweiler, 2001) anno-

tation. Enrichment was performed using the library GOstats (Falcon and Gentleman, 2007) (testDir-

ection = ’over’, conditional = TRUE). The background was defined as all expressed transcripts (log2

(TPM+1)>1.5) in all samples any given experiment. For time course experiments the test set was
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defined as the union of downregulated transcripts in days 20, 25 and 30 (threshold log2 FC <�0.7).

KEGG annotation was performed using the KEGG Automatic Annotation Server (Moriya et al.,

2007) (KAAS) with single best hit and a custom set of species (Homo sapiens (hsa), Mus musculus

(mmu), Gallus gallus (gga), Xenopus laevis (xla), Danio rerio (dre), Strongylocentrotus purpuratus

(spu), Drosophila melanogaster (dme), Caenorhabditis elegans (cel), Helobdella robusta (hro), Lottia

gigantea (lgi), Schistosoma mansoni (smm), Nematostella vectensis (nve), Amphimedon queensland-

ica (aqu), Saccharomyces cerevisiae (sce)). KEGG enrichment was assessed using the same subsets as

in the cluster enrichment analyses and using the GOstats library (testDirection = ’over’, conditional =

TRUE).

Comprehensive analysis of RNA-binding protein effects on AS
We annotated RNA binding proteins (RBPs) in our reference transcriptome. RBPs were identified

using the InterProScan annotation by filtering PFAM (Finn et al., 2014) ids associated with known

RNA binding domains [RRM (PF05172, PF08675, PF00076, PF04059, PF08777, PF13893, PF14259,

PF03467, PF03468, PF10598, SM00360, PS50102); KH (PF00013, PF07650, SM00322); helicases

(PF00270) and other domains (PF12171, PF05741, PF12251, PF14709, PF00035, PF02037, PF00806,

PF01423, PF02171, PF12701, PF14438)] and top BLAST (Camacho et al., 2009) hits against com-

plete proteomes (Uniprot [UniProt 2015]) of several species (Human, mouse, C. elegans, fruitfly, S.

mansoni, Dugesia japonica, zebrafish, chicken and xenopus) filtered for relevant key terms (RNA-

binding, RNA, binding). From this list, a shortlist of candidate AS factors known to regulate AS in

other organisms were selected (Figure 4—source data 1) and those with the highest evidence were

selected for RNAi studies (Figure 4—source data 1, colored). We grouped those in clusters of

orthology using KEGG annotations. When the X1/Xins ratio of different orthologs of the same group

differed greatly (indicating differential expression of the orthologs), the group was split into two

groups to separate the orthologues highly specifically expressed in X1 from the highly specifically

expressed in Xins (Figure 4—source data 3). Since in a previous version of the transcriptome (BIMSB

[Adamidi et al., 2011]) the mbnl-1 locus had two different transcripts IDs (isotig19687 and iso-

tig20952), one dsRNA was designed against both of them (noted as mbnl-1 and mbnl-1*,

Supplementary file 1).

Comparison to spliceosomal components was done to gain insight of housekeeping gene expres-

sion in stem cells vs. differentiated cells. We selected core spliceosomal components from Com-

plexes A, B and C by searching the relevant KEGG terms in our KEGG annotation. When two or

more paralogs with the same KEGG term were found those were removed since their expression

patterns were frequently more divergent, indicating possible subfunctionalization of paralog genes.

The final list of transcripts used and their expression values is in Figure 4—source data 3.

RNAi was done as described below. Regeneration tests were performed 22 days after RNAi treat-

ment. RNAs from FACS samples and whole worm samples for sequencing were extracted 10 days

after RNAi treatment as described below. Since only one replicate was performed or this experi-

ment, we used a more stringent minimum read coverage:

- For AltEx (except for those quantified using the microexon pipeline): (i) �15 actual reads (i.e.

before mappability correction) mapping to the sum of exclusion EEJs, OR (ii) �15 actual reads map-

ping to one of the two inclusion EEJs, and �10 to the other inclusion EEJ.

- For microexons: (i) �15 actual reads mapping to the sum of exclusion EEJs, OR (ii) �15 actual

reads mapping to the sum of inclusion EEEJs.

For each AS factor group, we quantified the percent of X1-differential alternative exons with suffi-

cient read coverage across the 8 RNAi treated samples (n = 173) that showed a DPSI �15 between

the treated and the control samples towards the PSI in X1.

Prediction of the impact of AS events on proteomes
Alternative sequences were first mapped to coding (CDS) or non-coding (UTRs) sequences based on

our TransDecoder-based genome annotations. For those alternative sequences that are not present

in our reference annotation, mapping was projected based on the information of the upstream

exon. Then, sequences that contained in-frame stop codons (based on annotations and in-frame

sequence translation from the upstream exon) or start codons (based on annotations) were flagged.

Following a recent study (Irimia et al., 2014), AS events were predicted to generate alternative
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protein (ORF-preserving) isoforms upon both inclusion and exclusion when they fall in the CDS, do

not disrupt the reading frame (i.e. they have lengths multiple of three nucleotides), and do not con-

tain in-frame stop codons predicted to trigger non-sense mediated decay (NMD; those stop codons

that fall further than 50 nucleotides away from a downstream EEJ). Furthermore, if an alternative

sequence is predicted to introduce an in-frame stop codon that would not trigger NMD but would

generate a protein >100 aminoacids shorter than the annotated isoform, it was also considered as

an ORF-disrupting event. For multiexonic cassette events (arrays of more than one alternative exon),

NMD/ORF-disruption was assessed for all exons as a group based on their inclusion patterns in neo-

blast and differentiated samples (e.g. if one frame-shifting exon is downregulated in neoblast sam-

ples and another upregulated, both the neoblast and differentiated isoforms can have intact reading

frames). For ORF-disrupting AS events, two main categories were defined: ORF-disruption upon

sequence inclusion or upon sequence exclusion. Therefore, depending on the neoblast inclusion pat-

tern, we defined events that cause ORF disruption in neoblast samples, but not in other tissues

(’ORF disruption in X1’), or the opposite, AS events that disrupt ORFs only in differentiated samples

(’ORF disruption in Xins’).

To investigate the overlap of alternative exons with disordered regions and protein domains we

first mapped the alternative exons as well as the upstream (C1) and downstream (C2) exons to the

proteome as annotated in our genome annotation (see above). Next, to include unannotated exons,

we recreated novel protein isoforms by introducing the exonic sequence downstream of the

upstream C1 exon. The final set of proteins was used to run de novo predictions using Disopred2

(for structural disorder, [Ward et al., 2004]), and Pfam (for protein domains, (Finn et al., 2014); only

domains from the A module were used), both with default parameters. For both disorder and Pfam

domains, the fraction of residues from alternative exons overlapping those features are reported.

For consistency, for all exon classes, only exons that would generate protein isoforms both when

included and skipped (i.e. internal exons with lengths multiple of three nucleotides without in-frame

stop codons) were analyzed.

Study of evolutionary conservation in D. japonica
With the aim of designing D. japonica-specific primers for all validated neoblast-differential AS

events (Figure 1—figure supplement 4), we first blasted the S. mediterranea alternative sequences,

as well as the neighbouring upstream and downstream exons against a recently published transcrip-

tome assembly of D. japonica. If at least two of these sequences mapped against the same contig as

the best hit, this was designated as the best ortholog and primers were designed in equivalent D.

japonica sequences. Next, for those cases that we could not match using this strategy, we blasted

the translated S. mediterranea full protein sequence again the D. japonica transcriptome using

tblastn. The best D. japonica hit was considered as the potential ortholog, and further manual anno-

tation through exon-specific alignments was performed to identify the region homologous to the S.

mediterranea AS event. All primer D. japonica sequences are provided in Supplementary file 1.

Conservation of neoblast-differential and human ESC-differential AS
events
We used two approaches to assign orthology between planarian and human genes with neoblast-dif-

ferential and ESC-differential, respectively. First, Inparanoid v8.0 (Ostlund et al., 2010) was run for

one reference protein per gene in planarian and human using default parameters. If the planarian

and human proteins were grouped in the same cluster, they were considered putative orthologs.

Second, we blasted the planarian proteins against the human reference proteome and the first three

hits were matched against the subset of genes with ESC-differential exons. From these two comple-

mentary approaches, orthology calls were manually verified and dubious mis-assignments were dis-

carded. In total 15 orthologous groups comprising 17 planarian genes (with neoblast-differential 30

exons) and 20 human genes (harbouring 22 ESC-differential exons). Next, to assess orthology at the

exonic level, we mapped intron positions into protein sequence alignments, as previously described

(D’Aniello et al., 2008); in addition, conserved protein domains were used as milestones to define

homologous protein regions (Figure 3—source data 2). With this information, we evaluated whether

(i) the exons fall in equivalent protein regions (e.g. within two protein domains), (ii) the sequence

was orthologous, and (iii) the exons were orthologous (based on the intron position alignments). The
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exons were defined to be in ’similar protein regions’ (Figure 3—source data 1) if they fall in the

same relative region of the protein (as per (i)) and the distance in the alignment is lower than 100

residues.

RNAcompete and motif enrichment analyses
The Full-length version of bruli, mbnl-1 (both the X1- and Xins-enriched isoforms), mbnl-like-1 and

mbnl-like-2 were cloned into GST-tagged vector (pTH6838) using primers listed in

Supplementary file 1. GST-tagged proteins were expressed and purified from Escherichia coli as

previously described (Ray et al., 2009, 2013).The RNA pool generation, RNAcompete pull-down

assays, and microarray hybridizations were performed as previously described (Ray et al.,

2009, 2013). Briefly, GST-tagged RBPs (20 pmoles) and RNA pool (1.5 nmoles) were incubated in

1 mL of Binding Buffer (20 mM HEPES pH 7.8, 80 mM KCl, 20 mM NaCl, 10% glycerol, 2 mM DTT,

0.1 mg/mL BSA) containing 20 mL glutathione sepharose 4B (GE Healthcare) beads (pre-washed 3

times in Binding Buffer) for 30 min at 4˚C, and subsequently washed four times for two minutes with

Binding Buffer at 4˚C. One-sided Z-scores were calculated for the motifs as described previously

(Ray et al., 2013).

Motif analysis
For the alternatively spliced exons from each of the test sets (I-IV in Figure 5) and corresponding

background sets (’AS_nonX1’ events [see above] that showed a DPSI < 5 between bruli or mbnl KD

and control), the sequences of the flanking introns, as well as the alternative exons themselves, were

fetched from the planarian genome. The sub-sequences corresponding to the first and last 80nt of

each intron were further subdivided into 20-nt bins. Introns shorter than 160-nt were excluded from

the analysis (see below). Next, all 7-mer occurrences within each bin were counted and summed for

corresponding bins over all events in the signal and background sets. We then selected the top 10%

7-mers with the highest affinity for an RNA-binding protein, as measured by RNAcompete (z-score).

For each bin, we computed the sum-total occurrences of the high affinity 7-mers in the signal and

control events. If enrichment was observed, a P-value was calculated using Fisher’s exact test. If sig-

nificance was reached (p<0.01) the bin is represented as a filled rectangle, with the saturation of the

color proportional to �log10(P-value). Non-significant bins are represented as empty rectangles.

Similar results were obtained when 80 nucleotides upstream and downstream the exon were

assayed, without discarding shorter introns.

To calculate enrichment of general RBPs in sequences associated with X1-included and X1-

excluded exons (Figure 4—figure supplement 1), we used the entire CISBP-RNA database

(Ray et al., 2013) and performed a similar analysis for each of the available RBP records, using all

’AS_nonX1’ events as background. We sorted the RBPs by the strongest significance in any of the

bins and employed a cutoff of p<10�4 to restrict the output to the most significant hits.

Animals and RNAi treatments
All animals belonged to the Berlin-1 strain of asexual type Schmidtea mediterranea, recently gener-

ated from one single individual. For RNAi experiments, dsRNAs were synthesized as previously

described (Solana, 2013). Animals were injected with dsRNA against the coding region of the gene

of interest (control(RNAi) planarians were injected with dsRNA coding for GFP) for three consecutive

days (days one, two and three after RNAi) and kept at 20˚C, as previously described. dsRNAs were

delivered at a concentration of 1 mg/ml. When multiple dsRNAs were used simultaneously, each

dsRNA was injected at a concentration of 1 mg/ml in the same solution. Since in a previous version of

the transcriptome (BIMSB) the mbnl-1 locus had two different transcripts IDs (isotig19687 and iso-

tig20952), one dsRNA was designed against both of them (Supplementary file 1). When appropri-

ate, the concentration of negative control dsRNA coding for gfp was adjusted in the control samples

to the maximum concentration of dsRNA injected in the experimental groups.

FACS experiments
FACS experiments were performed as previously described (Hayashi et al., 2006; Onal et al.,

2012). Essentially, planarians were cut into little pieces on ice and in the presence of trypsin to help

cell dissociation. Cells were then sequentially filtered through 40 mm and 20 mm filters and stained
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with the cytoplasmic dye Calcein-AM (BD Biosciences, at a final concentration of 0.5 mg/ml) and the

nuclear dye Hoechst 33,342 (Fluka Biochemika, at a final concentration of 20 mg/ml). Propidium

Iodide was used to discard dead cells. Cells were then sorted with a BD FACSAria III directly into Tri-

zol LS containing tubes. X1 gating is achieved by sorting the population of cells with double content

of DNA. From the single content, those cells with low calcein staining were gated as X2 and those

with high calcein staining were gated as Xins. Control extractions with irradiated planarians were

used to assist correct gating. RNA was extracted using Trizol LS (Ambion) following manufacturer

instructions. For Dugesia japonica experiments, minor adjustments in the nuclear staining and the

FACS gating were applied since this species has a larger DNA content (Nishimura et al., 2015).

RT-PCR, qPCR and in situ hybridization
For RT-PCR and qPCR analyses, RNA was extracted with self-made Trizol reagent (modified from

[Chomczynski and Sacchi, 1987]) reverse transcribed with an oligodT primer using Maxima H Minus

Reverse Transcriptase (Thermo Scientific, Waltham, MA). RT-PCRs were visualized in 2.5–3.3% aga-

rose gels. Relative ratios between the two isoforms were then calculated based on the relative inten-

sity of the PCR bands, measured using Image J. qPCR experiments were technically replicated

twice, and performed with 2 biological replicates of each condition. Each sample was always loaded

in triplicates. In situ hybridization was performed as previously described (King and Newmark,

2013) using an Intavis Vsi Pro robot. Probes were synthesized from PCR amplicons as previously

described (Solana, 2013). All primers used in each experiment and provided in Supplementary file

1.

Regeneration speed tests
For regeneration tests, 10 planarians per time point and condition were selected, cut at various time

points, and observed and scored daily under the scope. At each scoring time point, identification of

normally looking eyespots was used as proxy for complete regeneration. Trunk (amputated head

and tail) and trunk/tail (only head was amputated) pieces were observed for 10 days, tail pieces were

observed for 12 days as their regeneration time is slower. All control trunk/tail, trunk and tail pieces

used in this study had visible eyespots by day 6, 7 and 10 respectively.

Transcriptomic analysis of knockdown experiments
RNA-Seq reads were processed and filtered for low quality and 3’ and 5’ adapter removal using

Flexbar v2.5 (Dodt et al., 2012). in-silico ribosomal depletion was performed with bowtie2

(Langmead and Salzberg, 2012) in local mode (bowtie2 –local –very-sensitive-local -x rRNA_INDEX

-p 8 -U FASTQ –un FILTERED.fastq) against a pool of platyhelminthes rRNA index. Filtered reads

were then mapped to the reference planarian transcriptome using bowtie2 default parameters. Tran-

script quantification was performed using htseq-count (Anders et al., 2015).

To assess differential expression we resorted to previously described clustering of genes by gene

expression profiles in FACS sorted populations (Onal et al., 2012).Transcripts from the original

source were first mapped to our reference transcriptome using BLAT (Kent, 2002) and pslReps with

the options -minCover = 0.5 and -minAli = 0.1 -nearTop = 0.005 filtering parameters. The clusters

were assigned by matching 1-to-many. In case of multiplicity, the following rules were applied: if a

transcript was matched to cluster 1 and 2 or 5 and 6, cluster 2 and cluster 6 were assigned, respec-

tively. Other combinations were considered ambiguous and discarded and the cluster left blank.

Next, the control samples were normalized using quantile normalization with the function normalize.

quantiles (R-base library - http://www.R-project.org) to reduce biases by rRNA contamination. The

dataset was then filtered for reliably detected transcripts using a threshold of log2(TPM+1)>1.5 lay-

ing a total of 12,599 transcripts. Two conditional sets (bruli KD downregulated, mbnl KD downregu-

lated) were defined as transcripts below a threshold of �0.7 log2 FC over the corresponding control

sample. Differential enrichment of downregulated genes from specific clusters compared to the

global transcriptome was assessed using hypergeometric test, using all expressed transcripts

(12,599) as background and performing multiple testing Bonferroni correction on the p-value.
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