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The time-of-day of myocardial infarction onset
affects healing through oscillations in cardiac
neutrophil recruitment
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Abstract

Myocardial infarction (MI) is the leading cause of death in Western
countries. Epidemiological studies show acute MI to be more preva-
lent in the morning and to be associated with a poorer outcome in
terms of mortality and recovery. The mechanisms behind this asso-
ciation are not fully understood. Here, we report that circadian
oscillations of neutrophil recruitment to the heart determine
infarct size, healing, and cardiac function after MI. Preferential
cardiac neutrophil recruitment during the active phase (Zeitgeber
time, ZT13) was paralleled by enhanced myeloid progenitor produc-
tion, increased circulating numbers of CXCR2hi neutrophils as well
as upregulated cardiac adhesion molecule and chemokine expres-
sion. MI at ZT13 resulted in significantly higher cardiac neutrophil
infiltration compared to ZT5, which was inhibited by CXCR2 antago-
nism or neutrophil-specific CXCR2 knockout. Limiting exaggerated
neutrophilic inflammation at this time point significantly reduced
the infarct size and improved cardiac function.
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Introduction

The incidence of cardiovascular events, such as MI, ischemic stroke,

and arrhythmias, exhibits time-of-day dependency in humans, peak-

ing around the sleep-to-wake transition period (Muller et al, 1987a,b;

Chen & Yang, 2015). The underlying mechanisms for this time-of-day

dependency are thought to involve circadian fluctuations of glucocor-

ticoids and catecholamines, blood pressure, heart rate, blood viscos-

ity, and platelet reactivity, thereby predisposing for plaque rupture

and thrombus formation (Tofler et al, 1987; Chen & Yang, 2015). In

addition to the increased prevalence of MI in the morning, experimen-

tal and clinical evidence suggests that the outcome after MI exhibits a

similar time-of-day dependency. A circadian variation of infarct size

has first been described in a mouse model of ischemia/reperfusion,

showing significantly larger infarct size, fibrosis, and adverse remod-

eling after ischemia onset at the sleep-to-wake transition period

(Durgan et al, 2010). Likewise, several clinical studies reported a

correlation between infarct size assessed by peak creatine kinase and

the time-of-day of ischemia onset (Suarez-Barrientos et al, 2011;

Fournier et al, 2012; Reiter et al, 2012).

In recent years, circadian oscillations of immune cell functions

and circulating mediators (e.g. hematopoietic stem cells, glucocorti-

coids) have emerged (Scheiermann et al, 2013). Circulating leuko-

cytes oscillate between blood and peripheral tissue, peaking in mice

at ZT5 (where ZT0 refers to lights on and ZT12 to lights off) in the

blood and at ZT13 in muscle tissue and bone marrow (Scheiermann

et al, 2012). In humans, which have an opposing sleep–wake cycle,

blood neutrophils oscillate throughout the day with an amplitude of

0.31 109/l and a high point around 8:30 pm (Sennels et al, 2011).

These fluctuations in immune cell trafficking into tissues coincide

with sensitivity to acute inflammatory stimuli, being highest at the

beginning of the active phase (Scheiermann et al, 2013). Whether

these oscillations in immune cell activity occur in the heart after an

infarction and which consequences this would have on myocardial

healing is unknown.

High numbers of circulating neutrophils are generally considered

detrimental for post-MI outcome (Kyne et al, 2000; Chia et al,

2009). Neutrophils massively infiltrate the ischemic myocardium

within the first 24 h post-MI, especially when reopening of the
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occluded coronary artery is achieved (Frangogiannis, 2012). Deplet-

ing neutrophils during the reperfusion phase limited acute tissue

injury in experimental models (Romson et al, 1983; Litt et al, 1989).

Nevertheless, despite their detrimental role during the acute post-

ischemic inflammatory role, a limited number of neutrophils might

be important for coordinated resolution of post-MI inflammation

and repair (Frangogiannis, 2012). This is supported by our own

recent findings that neutrophil depletion in a mouse model of

permanent LAD occlusion negatively affects cardiac healing after MI

(when induced during the acrophase of neutrophils in the blood,

ZT5; Horckmans et al, 2016).

In the present study, we raised the question whether the magni-

tude of neutrophil-driven inflammatory response and quality of the

healing response in a murine MI scenario is influenced by circadian

oscillations of neutrophil recruitment to the heart. We found that

the migration of neutrophils to the heart preferentially occurs during

the active phase (ZT13). MI at this time point resulted in signifi-

cantly higher cardiac neutrophil infiltration, in a CXCR2-dependent

manner. Consequently, an ischemic event occurring during the

active phase resulted in an exaggerated neutrophilic inflammation

and worsened cardiac repair. Limiting neutrophil counts at this time

point reduced the infarct size and improved cardiac function. Our

findings suggest that the time-of-day of ischemia onset is a critical

determinant when considering anti-inflammatory treatments for

improving MI outcome.

Results

Circadian oscillations of neutrophils in the mouse heart under
steady state

We first investigated whether a rhythmic recruitment of neutrophils

to the cardiac muscle occurs, as previously reported for skeletal

muscle (Scheiermann et al, 2012). The analysis of blood counts in

resting WT mice confirmed a peak of blood granulocyte counts at ZT5

and lowest levels around ZT13 (Fig 1A). The flow cytometric analysis

of digested hearts revealed more than twofold higher neutrophil

counts in the myocardium at ZT13 compared to ZT5 (Fig 1B). We also

performed immunohistological staining which revealed the presence

of a limited number of neutrophils in the healthy myocardium, with

markedly more cells at ZT13 compared to ZT5 (Fig 1C). In support of

enhanced adhesion and subsequent extravasation of neutrophils into

the cardiac tissue, cardiac ICAM-1 and VCAM-1 adhesion molecule

mRNA expression increased during the active phase (ZT13-17;

Fig 1D), which was paralleled by enhanced mRNA levels of chemoki-

nes mediating neutrophil chemotaxis, that is, CXCL1, CXCL2, CXCL5,

CCL3, and CCL5 (Fig 1D). Analysis of the corresponding chemokine

receptor for CXCL1, CXCL2, and CXCL5 on circulating and cardiac

neutrophils, CXCR2, revealed an increased expression level in both

compartments at ZT13 (Fig 1E).

Increased cardiac neutrophil infiltration after MI during active
phase is associated with enhanced myelopoiesis and
neutrophil mobilization

We next investigated whether onset of MI during the peak of cardiac

neutrophil counts would lead to increased neutrophil recruitment.

Indeed, mice subjected to LAD occlusion at ZT13 had higher neutro-

phil counts in the heart 12–24 h post-MI compared to ZT5 infarcts

(Fig 2A). Of note, 12 h post-MI induced at ZT13 is the time point

when oscillating neutrophil counts in tissues are lowest under

steady-state condition. Neutrophils were mobilized from the bone

marrow, resulting in a significant decrease in neutrophil counts in

femurs 12–24 h post-MI, which was much more dramatic in ZT13-

infarcted mice (Fig 2B). In line with enhanced cardiac infiltration

after ZT13 MI, blood counts of granulocytes tended to be lower in

mice with ZT13 MI compared to ZT5 MI (12–24 h post-MI), albeit

the differences were not significant (Fig 2C). To confirm the rele-

vance of circadian time and light for the reported effects on cardiac

neutrophil recruitment, we entrained mice to an inverted light cycle.

Under these conditions, we found a similar increase in cardiac

neutrophil recruitment and enhanced bone marrow mobilization

24 h after ZT13 MI compared to ZT5 MI (Fig 2D).

To better understand the mechanisms of neutrophil mobilization,

we further assessed progenitor numbers in the bone marrow. We

found higher baseline granulocyte–monocyte progenitor (GMP)

counts in the bone marrow at ZT13 compared to ZT5, which were

even higher 24 h after MI (Fig 2E). In agreement with published

data (Mendez-Ferrer et al, 2008), bone marrow levels of the reten-

tion signal CXCL12 decreased from ZT5 to ZT13; however, there

was no further reduction in the bone marrow of ZT13-operated mice

(Fig 2F). We therefore reasoned that enhanced neutrophil mobiliza-

tion after MI at ZT13 might be triggered by enhanced circulating

levels of neutrophil chemoattractants. We found a remarkable

upregulation of TNF-a, CXCL1, CXCL2, CCL3, CCL5, and G-CSF

levels in the plasma of ZT13- versus ZT5-operated mice 24 h post-

MI (Fig 2G). Of note, no difference in chemokine and cytokine

plasma levels between ZT5 and ZT13 was found without infarction,

and there was no induction of CXCL5 plasma levels after MI.

MI during active phase leads to larger infarcts and reduced
cardiac function

In support of the concept that exaggerated neutrophil presence in

ZT13-infarcted hearts results in increased cardiac damage, mice

subjected to LAD occlusion at ZT13 resulted in larger infarcts

compared to mice with ZT5 MI (Fig 3A). The morphometric analysis

was confirmed by elevated plasma levels of troponin I (Fig 3B) and

higher numbers of dead cardiomyocytes after ZT13 MI (Fig 3C). A

similar increase in troponin I levels was observed in infarcted mice

with shifted light cycle (Appendix Fig S1). The mortality rate after

ZT13 MI was significantly higher than after ZT5 MI, with increased

incidence of ventricular rupture in this group (Fig 3D).

In agreement with larger infarcts, ZT13 infarcts had more

myofibroblasts 7 days after MI (Fig 3E and Appendix Fig S2A),

resulting in an increased area of fibrosis (Fig 3F). However, the

anterior wall thickness was significantly reduced in ZT13 infarcts.

More detailed analysis of the collagen composition revealed lower

density of thicker collagen type I fibers in ZT13 infarcts (Fig 3G and

Appendix Fig S2B). Thus, insufficient stabilization of the infarct scar

might contribute to the increased incidence of ventricular rupture

after ZT13 MI. Mice with ZT13 infarcts also had significantly lower

ejection fractions at day 3 to day 14 compared to mice subjected to

MI at ZT5, as well as significant increase in the left ventricular end-

diastolic and end-systolic volume (Fig 3H).

EMBO Molecular Medicine Vol 8 | No 8 | 2016 ª 2016 The Authors

EMBO Molecular Medicine Time-of-day dependence of MI healing Maximilian J Schloss et al

938

Published online: May 25, 2016 



Reduction in neutrophil-mediated inflammation during active
phase preserves cardiac function after MI

To confirm that the larger infarct size and decreased cardiac

function after ZT13 MI are mainly driven by an exaggerated

neutrophilic inflammatory response, we investigated whether

systemic reduction in neutrophils would limit this process. Mice

subjected to MI at ZT13 received neutrophil-depleting Ly6G anti-

body (Fig 4A), resulting in a significant reduction in cardiac

neutrophils (Fig 4B), approximately to the levels observed at

ZT5 reported in Fig 3, and lower plasma levels of pro-inflamma-

tory cytokine TNF-a 24 h after MI (Fig 4C). Mice with ZT13 MI

receiving anti-Ly6G had significantly smaller infarcts and lower

plasma troponin I levels compared to isotype-treated controls,

whereas anti-Ly6G treatment of mice with ZT5 MI had no effect

(Fig 4D). This is in agreement with our recently published data

(Horckmans et al, 2016). Moreover, ZT13 infarcts of Ly6G-

treated mice had less fibrosis and thicker left ventricular anterior

wall (Fig 4E) with significantly more collagen type I fibers (Fig 4F),

and a higher ejection fraction as well as less ventricular

dilatation (Fig 4G).

Enhanced cardiac neutrophil recruitment during the active phase
is CXCR2 dependent

To further explore the underlying mechanisms of circadian neutro-

phil recruitment to the myocardium, we focused on CXCR2, as its

expression levels coincided with the peak of neutrophils in the heart

(Fig 1E). There is emerging evidence that circulating neutrophils are

heterogeneous, due to aging and replenishment from the bone

marrow (Casanova-Acebes et al, 2013). Previous in vitro findings

have suggested that aged neutrophils exhibit reduced chemotactic

activity and ability to respond to inflammatory stimuli (Whyte et al,

1993). Similar to the oscillations at baseline, we found significantly

higher percentage of CXCR2hi-expressing neutrophils in the blood of

mice subjected to MI at ZT13 compared to ZT5 MI, with highest

levels 8 h after ZT13 MI (Fig 5A). All cardiac neutrophils were

CXCR2 positive regardless of the time point of LAD occlusion (mea-

sured 12 h post-MI at ZT5 versus ZT13); however, the level of

CXCR2 surface expression was much higher at ZT13 compared to

ZT5 (Fig 5B). In order to clarify the causal relationship between

time-of-day-dependent changes in CXCR2 expression levels on

circulating neutrophils and their recruitment to the ischemic

A

D

E

B C

Figure 1. Circadian oscillations of neutrophils, adhesion molecules, and chemokines in the mouse heart at steady state.

A Baseline blood counts of granulocytes. One-way ANOVA; n = 8 mice per ZT; *P = 0.0001 ZT5 versus ZT13.
B Flow cytometric quantification of neutrophils in digested hearts. The representative dot plots show the gating strategy for cardiac neutrophils (CD45+Ly6G+CD11b+)

at ZT5. One-way ANOVA; n = 5 mice per ZT; *P = 0.0001 ZT5 versus ZT13.
C Representative immunostainings for neutrophils in the myocardium (left ventricle), identified as Ly6G positive (20× magnification).
D Cardiac mRNA expression levels normalized to HPRT. One-way ANOVA; n = 5 mice per ZT; ZT5 versus ZT17: *P = 0.0064 (CXCL1), *P = 0.0007 (CXCL2), *P = 0.0007

(CXCL5), *P = 0.0001 (ICAM-1), *P = 0.0009 (VCAM-1), *P = 0.0181 (CCL3), *P = 0.0360 (CCL5).
E Mean fluorescence intensity (MFI) of CXCR2 expression by neutrophils in blood and heart. One-way ANOVA; n = 3 mice for ZT1, ZT17, ZT21 and n = 5 for ZT5, ZT9,

ZT13; ZT5 versus ZT13: *P = 0.0425 (blood), *P = 0.0078 (heart).

Data information: All data are expressed as mean � SEM.
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Figure 2. Inflammatory response after MI during active (ZT13) or resting phase (ZT5).

A Flow cytometric analysis of neutrophils in hearts and representative immunostainings for neutrophils in the infarct area, identified as Ly6G positive (5× and
20× magnifications). Two-way ANOVA followed by Bonferroni post hoc test; n = 5 mice for no MI, n = 5 for 12 h post-MI, n = 3 for 24 h post-MI, and n = 3 for 72 h
post-MI in both ZT groups; ZT5 versus ZT13: *P = 0.0161 (12 h MI), *P = 0.003 (24 h MI).

B Flow cytometric analysis of neutrophils in bone marrow. Two-way ANOVA followed by Bonferroni post hoc test; n = 5 mice for no MI, n = 5 for 12 h post-MI,
n = 4 for 24 h post-MI, and n = 4 for 72 h post-MI in both ZT groups; ZT5 versus ZT13: *P = 0.0471 (12 h MI), *P = 0.0035 (24 h MI).

C Blood counts of granulocytes. Two-way ANOVA followed by Bonferroni post hoc test; n = 9 mice for no MI, n = 10 for 12 h post-MI, n = 13 for 24 h post-MI, and
n = 10 for 72 h post-MI in both ZT groups; ZT5 versus ZT13: *P = 0.0364 (24 h MI).

D Flow cytometric analysis of neutrophils in hearts and bone marrow under inverted light cycle conditions. Two-way ANOVA followed by Bonferroni post hoc test;
n = 3 mice for no MI in both ZT groups, n = 5 for ZT5 and n = 6 for ZT13 at 24 h post-MI; ZT5 versus ZT13: *P = 0.0147 (24 h MI).

E Representative gating strategy for GMPs in the bone marrow, identified as lineage negative (CD11b�, Gr1�, B220�, CD3�, and Ter119�) and Sca-1�, c-kit+, CD16/32+,
and CD34+. Flow cytometric quantification of GMP in the bone marrow. Two-way ANOVA followed by Bonferroni post hoc test; n = 4 mice for no MI and 24 h post-
MI in both groups; ZT5 versus ZT13: *P = 0.0077 (no MI), *P = 0.0013 (24 h MI).

F CXCL12 levels in bone marrow lavage. Two-way ANOVA followed by Bonferroni post hoc test; n = 7 mice for no MI and n = 6 for 24 h post-MI in both groups; ZT5
versus ZT13: *P = 0.0077 (no MI), *P = 0.0013 (24 h MI).

G Plasma levels of pro-inflammatory cytokines and chemokines. Two-way ANOVA followed by Bonferroni post hoc test; n = 11 mice for no MI in both ZT groups, n = 7
for ZT5 and n = 8 for ZT13 at 24 h post-MI; ZT5 versus ZT13: *P = 0.0271 (CXCL12, no MI), *P = 0.0108 (TNF-a, 24 h MI), *P = 0.001 (G-CSF, 24 h MI), *P = 0.005
(CXCL1, 24 h MI), *P = 0.0005 (CXCL2, 24 h MI), *P = 0.0016 (CCL3 24 h MI), *P = 0.0144 (CCL5, 24 h MI).

Data information: All data are expressed as mean � SEM.
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Figure 3. MI during active phase (ZT13) leads to infarct expansion and reduced cardiac function.

A Permanent LAD occlusion was performed at ZT5 or ZT13. TTC staining (white, infarct; red, vital myocardium) and quantification of infarct size normalized to the left
ventricle (LV). Student’s t-test; n = 4 mice for ZT5 and n = 5 for ZT13 MI; *P = 0.0041.

B Plasma troponin I levels 24 h after MI. Student’s t-test; n = 4 mice for ZT5 and n = 5 for ZT13 MI; *P = 0.0007.
C Flow cytometric analysis of dead cardiomyocytes (CD45�, Zombie+) 24 h after MI. Student’s t-test; n = 3 mice in both groups; *P = 0.0072.
D Survival rates after MI and cause of death. Log-rank test; n = 87 mice in both groups; *P = 0.0006.
E Myofibroblasts within infarcts were quantified by alpha-smooth muscle actin (aSMA) staining as ratio between stained and total area of random fields. Student’s

t-test; n = 4 mice in both groups; *P = 0.0134.
F Masson’s trichome staining of fibrosis (blue, collagen; red, vital myocardium) and quantification relative to total LV (*P = 0.0095) as well as LV anterior wall thickness

(*P = 0.0068) 7 days after MI. Student’s t-test; n = 6 mice for ZT5 and n = 7 for ZT13 MI.
G Analysis of relative collagen type I content identified by Sirius Red staining 7 days after MI. Student’s t-test; n = 4 mice for ZT5 and n = 5 for ZT13 MI; *P = 0.0175.
H Echocardiographic assessment of ejection fraction (EF), end-systolic volume (ESV), and end-diastolic volume (EDV). Two-way ANOVA; n = 6 mice for no MI for both

groups, n = 6 for ZT5 and n = 9 for ZT13 at 72 h post-MI, n = 8 for both groups at 7 days post-MI, and n = 7 for ZT5 and n = 5 for ZT13 at 14 days post-MI; ZT5
versus ZT13: *P = 0.0001 (EF, 3 days), *P = 0.0042 (EF, 7 days), *P = 0.0121 (EF, 14 days); *P = 0.0253 (ESV, 3 days), *P = 0.0421 (ESV, 7 days), *P = 0.0005 (ESV,
14 days); *P = 0.0053 (EDV, 14 days).

Data information: All data are expressed as mean � SEM.
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myocardium, we did functional blocking experiments with CXCR2

antagonist SB225002. CXCR2 antagonism induced a massive

reduction in CXCR2hi-expressing blood neutrophils in mice with

ZT13 MI (Fig 5C). Remarkably, the percentages of CXCR2hi blood

neutrophils in the ZT5 MI group remained unchanged after

SB225002 treatment (Fig 5C). Likewise, the CXCR2 antagonist did

not affect neutrophil numbers in bone marrow and heart of mice

with ZT5 MI (Fig 5D and E), whereas cardiac neutrophil recruitment

in ZT13 infarcts was significantly inhibited by CXCR2 antagonism

(Fig 5D). This was paralleled by reduced mobilization from the

bone marrow in these mice (Fig 5E).

To validate the role of CXCR2 in circadian rhythm-dependent

cardiac neutrophil recruitment, we performed additional experi-

ments with lethally irradiated wild-type mice transplanted with

Mrp8-Cre-CXCR2flox bone marrow. Transplantation with bone

marrow from CXCR2flox littermates served as wild-type control. We

A

D

F G

E

B C

Figure 4. Limiting neutrophilic inflammation during active phase (ZT13) reduces MI damage.

A Permanent LAD occlusion was performed at ZT13 followed by injection of isotype or Ly6G antibody 45 min after surgery and then every 24 h.
B Flow cytometric analysis of cardiac neutrophils 24 h after ZT13 MI. The dotted line indicates cardiac neutrophil counts 24 h after ZT5 MI, as shown in Fig 2A.

Student’s t-test; n = 3 mice for isotype and n = 5 for Ly6G injected mice; *P = 0.0004.
C Plasma TNF-a levels 24 h after ZT13 MI. Student’s t-test. n = 8 independent samples for isotype and n = 6 for Ly6G injected mice; *P = 0.0019.
D Infarct size relative to left ventricular area (LV) and plasma troponin I levels 24 h after ZT5 or ZT13 MI. Student’s t-test; for infarct size, n = 3 mice in both groups for

ZT5 and n = 4 mice for isotype and n = 3 mice for Ly6G at ZT13; isotype versus Ly6G: *P = 0.0158 (ZT13). For troponin levels, n = 8 mice for isotype and n = 6 mice
for Ly6G with ZT13 MI; *P = 0.0012.

E Masson’s trichrome staining of fibrosis (blue, collagen; red, vital myocardium) and quantification relative to total area of the LV (*P = 0.0084); morphometric
quantification of the LV anterior wall thickness (*P = 0.0027) 7 days after ZT13 MI. Student’s t-test; n = 5 mice for isotype and n = 4 mice for Ly6G.

F Analysis of collagen type I fibers within infarcts identified by Sirius Red staining 7 days after ZT13 MI. Student’s t-test; n = 5 mice for isotype and n = 4 mice for Ly6G;
*P = 0.0375.

G Echocardiographic measurement of ejection fraction (EF), end-systolic volume (ESV) and end-diastolic volume (EDV) before and after ZT13 MI. Two-way ANOVA; n = 6
mice for no MI in both groups, n = 9 for isotype and n = 5 for Ly6G at 72 h post-MI, and n = 8 for isotype and n = 4 for Ly6G at 7 days post-MI. Isotype versus Ly6G:
*P = 0.0001 (EF, 3 days), *P = 0.0227 (EF, 7 days); MI *P = 0.0133 (ESV, 3 days), *P = 0.0004 (ESV, 7 days); *P = 0.0017 (EDV, 7 days).

Data information: All data are expressed as mean � SEM.
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Figure 5. Antagonism or deficiency of CXCR2 inhibits enhanced cardiac neutrophil accumulation during active phase (ZT13).

A Representative flow cytometric analysis and quantification of CXCR2high neutrophils in the blood after ZT5 and ZT13 MI. Two-way ANOVA followed by Bonferroni
post hoc test; n = 4 mice for all time points in both groups; ZT5 versus ZT13: *P = 0.0001 (4 h), *P = 0.0001 (8 h), *P = 0.0447 (12 h).

B Percentage and mean fluorescence intensity (MFI) of CXCX2 expression by cardiac neutrophils 12 h post-MI after ZT5 and ZT13 MI. Student’s t-test; n = 4 mice in
both groups; *P = 0.0001.

C Percentage of CXCR2high neutrophils in the blood 24 h after ZT5 or ZT13 MI in mice receiving CXCR2 antagonist SB225002 or vehicle. Two-way ANOVA followed by
Bonferroni post hoc test; n = 4 mice in both groups; DMSO versus SB225002: *P = 0.0005 (ZT13).

D Flow cytometric quantification of neutrophils in hearts 24 h after ZT5 or ZT13 MI in mice receiving CXCR2 antagonist SB225002 or vehicle. Two-way ANOVA followed
by Bonferroni post hoc test; n = 4 mice in both groups; DMSO versus SB225002: *P = 0.0079 (ZT13).

E Flow cytometric quantification of neutrophils in bone marrow 24 h after ZT5 or ZT13 MI in mice receiving CXCR2 antagonist SB225002 or vehicle. Two-way ANOVA
followed by Bonferroni post hoc test; n = 4 mice in both groups; DMSO versus SB225002: *P = 0.0002 (ZT13).

F MFI of CXCR2 expression at ZT5 in the blood 24 h after MI in wild-type (WT) and CXCR2 KO mice. Student’s t-test. n = 6 mice in both groups; *P = 0.0001.
G Percentage of CXCR2hi blood neutrophils 24 h after ZT5 or ZT13 MI in WT and CXCR2 KO mice. Two-way ANOVA followed by Bonferroni post hoc test; for ZT5 n = 6

mice in both groups, for ZT13 n = 7 WT mice and n = 5 CXCR2 KO mice; WT versus CXCR2 KO: *P = 0.0001 (ZT13).
H Flow cytometric quantification of neutrophils in hearts 24 h after MI in ZT5 and ZT13-operated WT and CXCR2 KO mice. Two-way ANOVA followed by Bonferroni

post hoc test; for ZT5 n = 6 mice in both groups, for ZT13 n = 7 WT mice and n = 5 CXCR2 KO mice; WT versus CXCR2 KO: *P = 0.0461 (ZT13), ns = not significant.

Data information: All data are expressed as mean � SEM.
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first validated the knockdown of CXCR2 on neutrophils (Fig 5F) and

confirmed that increased numbers of CXCR2hi neutrophils at ZT13

were also found in control mice transplanted with wild-type CXCR2

bone marrow, assessed 24 h after MI (Fig 5G). In agreement with

the findings of pharmacological CXCR2 antagonism, neutrophil

CXCR2 deficiency blunted the time-of-day-dependent differences in

cardiac neutrophil counts after ZT5 and ZT13 MI (Fig 5H).

CXCR2 antagonism administered shortly before reperfusion
inhibits exaggerated cardiac neutrophil recruitment at ZT13

Finally, we aimed to validate the effect of CXCR2 blockade in a

clinically more relevant scenario and therefore subjected mice to

transient LAD occlusion (Fig 6A). Similar to the effects observed

in the permanent occlusion model, we found a higher percentage

of CXCR2hi blood neutrophils at ZT13 compared to ZT5, assessed

24 h after reperfusion (Fig 6B). Moreover, vehicle-treated mice

24 h after ZT13 MI had significantly higher neutrophil counts in

the myocardium than ZT5 infarcted mice, as well as enhanced

mobilization from the bone marrow (Fig 6C and D). Administra-

tion of the CXCR2 antagonist after LAD occlusion 5 min before

reopening the vessel prevented excessive neutrophil recruitment

at ZT13 (Fig 6C and D), suggesting a potential clinical benefit for

targeting this receptor.

Discussion

In this study, we provide evidence that the time-of-day determines

the severity of MI damage and outcome. This is due to oscillations

of cardiac neutrophil recruitment regulated by modulation of their

CXCR2 receptor expression levels. Our findings thereby reveal a

potential explanation for the poorer outcomes in subjects with MI in

the early morning hours.

Circadian oscillations of leukocytes between blood and periph-

eral tissue have been previously reported, peaking at ZT5 in the

blood of mice and at ZT13 in skeletal muscle (Scheiermann et al,

2013). As humans have an opposing sleep–wake cycle, the peak of

blood neutrophils is around 8:30 pm (Sennels et al, 2011). Here, we

extended these findings to the murine myocardium: At baseline, we

found twofold higher numbers of neutrophils in the heart at ZT13

compared with ZT5. This is facilitated by enhanced cardiac expres-

sion of adhesion molecules and neutrophil chemoattractants, that is,

CXCL1, CXCL2, CXCL5, CCL3, and CCL5 at this time point. Interest-

ingly, the circadian modulation of chemokine expression was only

detectable in the heart, but not systemically, suggesting a local clock

regulating chemokine expression in the myocardium. A similar

mechanism has been recently highlighted by Gibbs et al who identi-

fied a local pulmonary epithelial cell clock controlling neutrophil

recruitment to the lung under inflammatory conditions (Gibbs et al,

2014). Consequently, if an infarct occurs at ZT13, more leukocytes

are present in the heart to respond locally to the ischemic injury by

releasing pro-inflammatory mediators in order to attract more

inflammatory cells into the infarcted area. This might contribute to

the enhanced inflammatory response observed in ZT13 infarcts.

Blood neutrophils follow rhythmic cycles of release and migration

back to the bone marrow, maintained by circadian changes in bone

marrow stromal CXCL12 production and upregulation of CXCR4 by

aged neutrophils for their clearance (Casanova-Acebes et al, 2013).

These aged CXCR4hi neutrophils concomitantly decrease L-selectin

(CD62L) (Casanova-Acebes et al, 2013). Aged neutrophils are

thought to exhibit different migratory and pro-inflammatory pro-

perties (Whyte et al, 1993); however, more recent data reported

enhanced pro-inflammatory activity properties of in vivo aged

A B C D

Figure 6. Antagonism of CXCR2 inhibits enhanced cardiac neutrophil accumulation after ischemia/reperfusion during active phase (ZT13).

A Schematic representation of transient ischemia and reperfusion protocol, performed at ZT5 and ZT13. The CXCR2 antagonist SB225002 or vehicle was injected 5 min
before reopening the LAD.

B Percentage of CXCR2hi neutrophils in the blood 24 h after ZT5 or ZT13 MI in mice receiving CXCR2 antagonist SB225002 or vehicle. Two-way ANOVA followed by
Bonferroni post hoc test; n = 5 mice in both groups at ZT5, n = 5 mice for vehicle, and n = 6 mice for SB225002 at ZT13; DMSO versus SB225002: *P = 0.0046 (ZT13);
ZT5 versus ZT13: *P = 0.0153 (DMSO).

C Flow cytometric quantification of cardiac neutrophils 24 h after ZT5 or ZT13 MI in mice receiving CXCR2 antagonist SB225002 or vehicle. Two-way ANOVA; n = 5
mice in both groups at ZT5, n = 5 mice for vehicle, and n = 6 mice for SB225002 at ZT13; DMSO versus SB225002: *P = 0.0006 (ZT13); ZT5 versus ZT13: *P = 0.0001
(DMSO).

D Flow cytometric quantification of neutrophils in bone marrow 24 h after ZT5 or ZT13 MI in mice receiving CXCR2 antagonist SB225002 or vehicle. Two-way ANOVA
followed by Bonferroni post hoc test; n = 5 mice in both groups at ZT5, n = 5 mice for vehicle, and n = 6 mice for SB225002 at ZT13; DMSO versus SB225002:
*P = 0,0486 (ZT13).

Data information: All data are expressed as mean � SEM.
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neutrophils (Zhang et al, 2015). In support of reduced migratory

capacity of aged neutrophils, we found a low percentage of circulat-

ing CXCR2hi neutrophils at ZT5 at steady state, when high numbers

of aged CXCR4hi CD62Llo neutrophils are present in the circulation

(Casanova-Acebes et al, 2013). Conversely, circulating neutrophils

at ZT13 MI, the time point with lowest numbers of aged neutrophils

in the blood, were mostly CXCR2hi positive. Similar patterns were

observed after MI. Our blocking and genetic knockout experiments

demonstrated the requirement of CXCR2 for enhanced cardiac

neutrophil recruitment at the beginning of the active phase. Of note,

CXCR2 antagonism or neutrophil-specific knockout did not generally

block neutrophil recruitment at both time points, but only prevented

the accelerated infiltration into the myocardium at ZT13 compared

to ZT5. Accordingly, it was previously described that bone marrow

CXCR2 deficiency did not affect neutrophil infiltration after

ischemia/reperfusion (Liehn et al, 2013). Thus, additional neutrophil

chemoattractants and receptors seem to be involved in cardiac

neutrophil recruitment in a circadian-independent manner, whereas

the CXCR2 ligand/receptor axis follows rhythmic cycles of expression

levels in the myocardium or circulating neutrophils, respectively.

Under homeostatic conditions, we found that GMP numbers

increased in the bone marrow at ZT13, which is in agreement with

previous findings revealing a rhythmic modulation of the

hematopoietic niche (Smaaland et al, 1992; Mendez-Ferrer et al,

2008). Aged neutrophils return from the circulation back into the

bone marrow and are eliminated, thereby providing a signal for

regulating the homeostatic release of their own precursors

(Casanova-Acebes et al, 2013).

The retention and release of neutrophils is tightly regulated by

chemokines and their cognate receptors (Kolaczkowska & Kubes,

2013). Bone marrow stromal cells produce CXCL12, which provides

a retention signal for hematopoietic cells expressing high levels of

CXCR4. Circadian reductions in CXCL12 in the bone marrow corre-

late with oscillations of hematopoietic progenitor cells in the circula-

tion (Mendez-Ferrer et al, 2008). G-CSF, which is upregulated after

MI, is known to decrease CXCL12 in the bone marrow in order to

facilitate neutrophil mobilization. Surprisingly, there was no further

decrease in CXCL12 levels after ZT13 MI despite massive upregula-

tion of G-CSF. A possible explanation is that the CXCL12 levels

reach lowest levels at ZT13; thus, no additional decrease in a post-

MI inflammatory situation may occur. Instead, the massive release

of neutrophils from the bone marrow 24h after ZT13 MI might be

explained by the strong increase in chemokine levels in the plasma.

A well-balanced inflammatory response is needed, as dying

cardiomyocytes must be removed by phagocytes and replaced by

fibrous tissue, since mammals cannot regenerate cardiac tissue

(Frangogiannis, 2012). In addition to monocytes/macrophages

(Nahrendorf et al, 2010), a sufficient number of neutrophils is

certainly needed for favorable MI healing (Frangogiannis, 2012). In

support of this hypothesis, we have recently found that neutrophils

improve cardiac healing after MI by influencing macrophage polariza-

tion toward a “reparative” phenotype (Horckmans et al, 2016).

However, an exaggerated neutrophilic inflammation, as observed

after ZT13 MI, generates an environment in which a physiological

and beneficial wound healing is impaired. The consequence is an

insufficient stabilization of the infarct area by collagen fibers,

elevated risk for ventricular rupture and worsening of cardiac

function.

Finally, we may speculate that oscillations of pro-inflammatory

Ly6Chi monocytes (Nguyen et al, 2013) contribute to the enhanced

inflammatory response after ZT13 MI. Indeed, we found elevated

numbers of monocytes in the blood and heart at ZT13 compared to

ZT5 under homeostatic conditions; however, monocyte numbers

significantly increased only 3 days after MI (data not shown). Neutro-

phils represent the predominant innate immune cell population that

massively infiltrate the infarcted myocardium within the first hours,

and we found that limiting neutrophil influx with depleting antibody

was successful to prevent excessive cardiac damage at ZT13.

Our observations in this mouse model have certainly limitations as

permanent coronary ligation does not reflect the predominant situation

in acute MI patients, in which catheter treatment is the gold standard.

Therefore, we repeated a key experiment in the ischemia/reperfusion

model, thereby confirming a potential clinical relevance for targeting

CXCR2 in situations of exaggerated neutrophil infiltration. Our data

may provide an explanation for the worse outcomes found in patients

suffering an acute MI in the early morning hours.

In conclusion, our findings suggest that the time-of-day of ischemia

onset is a critical determinant when considering anti-inflammatory

treatments targeting neutrophils for improving MI outcome.

Materials and Methods

Animal model of myocardial infarction

Adult (8–10 week old) female C57BL/6J wild-type mice (Janvier

Labs, France) were housed for at least 2 weeks under controlled

conditions in a 12-h light/12-h dark cycle with lights on at 7:30 am

(ZT0) and lights off at 7:30 pm (ZT12). Littermates were randomized

and subjected to permanent ligation of the left anterior descending

coronary artery (LAD) at ZT5 (12:30 pm) or ZT13 (8:30 pm). Mice

were anesthetized with midazolam (5 mg/kg), medetomidine

(0.5 mg/kg), and fentanyl (0.05 mg/kg), intubated, and ventilated

with a MiniVent mouse ventilator (Harvard Apparatus). A left thora-

cotomy was performed in the 4th left intercostal space, and the peri-

cardium was incised. MI was induced by permanent ligation of the

LAD proximal to its bifurcation from the main stem with monofila-

ment nylon 8-0 sutures (Ethicon, Somerville, USA). The chest wall

and skin were closed with 5-0 nylon sutures (Ethicon). After surgery,

naloxone (1.2 mg/kg), flumazenil (0.5 mg/kg), and atipamezolhy-

drochlorid (2.5 mg/kg) were injected to reverse the effect of anesthe-

sia. Postoperative analgesia (buprenorphine, 0.1 mg/kg) was given

subcutaneously for the first 12 h after surgery. Sham-operated

animals were submitted to the same surgical protocol as described

but without LAD occlusion. For inducing changes in light regime,

mice were placed in a light cycler (Park Bioservices) for a minimum

of 2 weeks to completely establish a 12-h inverted light cycle. Under

these conditions, ZT5 corresponded to 8:30 pm and ZT13 to

12:30 pm. In additional experiments, mice subjected to MI at ZT13

were randomized in two groups to receive monoclonal neutrophil-

depleting antibody (clone 1A8; 50 lg; BioXcell) or isotype by

intraperitoneal (i.p.) injection 30 min after LAD occlusion and then

every 24 h for up to 7 days. In other experiments, mice received i.p.

injection of CXCR2 antagonist SB 225002 (Tocris, 1 mg/kg) or vehi-

cle 5 min before LAD occlusion. Further experiments were

performed in which mice were subjected to transient 45-min
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ischemia followed by 24 h of reperfusion. Five min before reopening

the occluded LAD, mice received an i.p. injection of SB 225002

(1 mg/kg) or vehicle. All animal experimental procedures were

performed in strict accordance with the Guide for the Care and Use

of Laboratory Animals published by the US National Institutes of

Health (NIH publication No. 85-23, revised 1996) and were approved

by the local ethnical committee (District Government of Upper

Bavaria).

Conditional inactivation of CXCR2 in mice and generation of bone
marrow chimeras

We induced homologous recombination in embryonic stem (ES)

cells using a construct containing 4.9 kb of gDNA, including exon 1

and part of intron 1–2, an IRES-LacZ cassette and Neo Cassette were

inserted in between Frt sites, a loxP-site was introduced in 50 direc-
tion to the Neo cassette, and 2.9 kb of gDNA, including CXCR2

exons 2 and 3, was flanked by loxP sites (floxed). The construct

was finished by introducing a 3.5-kb fragment of gDNA serving as 30

recombination arm (Appendix Fig S3). Correctly targeted ES cell

clones were injected into blastocysts to produce a chimeric mouse

that transmitted the modified allele through the germ line. A male

heterozygous for the targeted allele was bred with a female express-

ing ubiquitous Flippase (Flp) transgene to ultimately produce

animals that had deleted the IRES-LacZ and Neo cassettes, preserv-

ing the loxP sites flanking exons 2 and 3. Those homozygous

animals were bred with mice expressing a MRP8-Cre transgene

(Passegue et al, 2004) to ultimately produce animals that had

deleted CXCR2 coding exons into neutrophils.

C57BL/6J wild-type mice (Janvier) underwent lethally whole

body irradiation (2 × 5 Gy). Donor bone marrow cells were

obtained from Mrp8-CreCXCR2flox or CXCR2flox mice (litermates).

After flushing bones (femur, tibia, humerus), cells were washed, fil-

tered, and intravenously injected (4 × 106 cells/mouse) in sterile

saline into recipient mice 1 day after irradiation. Post-transplantation,

recipient mice were reconstituted for another 6 weeks before under-

going LAD occlusion surgical procedure.

Echocardiography

Transthoracic echocardiography was performed on mildly anes-

thetized spontaneously breathing mice (sedated by inhalation of 1%

isoflurane, 1 l/min oxygen), using a Vevo� 2100 High Resolution

Imaging system equipped with a 40-MHz transducer (VisualSonics,

Toronto, Canada). The mice were placed on a heated ECG platform.

Left parasternal long-axis view and left mid-papillary, apical and

basal short-axis views were acquired. End-diastolic volume, end-

systolic volume, and ejection fraction were evaluated on the left

parasternal long-axis and parasternal short-axis view in a blinded

manner.

Infarct size and cause of death

Hearts were perfused and harvested 24 h after LAD ligation and

sectioned into four equal transverse slices. The slices were incu-

bated in 2% triphenyltetrazolium chloride (TTC) solution (Sigma-

Aldrich) at 37°C for 15 min and fixed overnight in 4% formol at

4°C. For quantification of the area at risk, Evan’s blue was injected

into the left ventricle to distinguish between perfused cardiac tissue

stained blue and non-perfused area at risk 24 h after MI. The area at

risk was calculated as the percentage relative to the left ventricle

(Appendix Fig S4). Images were taken at 10× magnification, and

quantification of viable (red) and infarct areas (white) was

performed in a blinded manner with ImageJ software. Each mouse

which died after surgery prior to organ harvest underwent thoracot-

omy to investigate whether there was blood inside the pericardium

indicating cardiac rupture.

Histology

Four-micrometer paraffin sections were stained with Masson’s

trichrome (Sigma-Aldrich). Fibrosis was quantified as the relative

area of blue staining (collagen) compared to the left ventricle

surface, as an average of 3–4 sections per heart at the level of the

papillary muscle, using ImageJ software. The anterior wall thickness

of the left ventricle was measured on Masson’s trichome-stained

sections as an average of 3–4 sections per heart. For Sirius Red stain-

ing of collagen, 3–4 sections per heart were incubated with 0.1%

Sirius Red (Sigma-Aldrich). Sections were photographed with identi-

cal exposure settings under ordinary polychromatic or polarized light

microscopy. Total collagen content was evaluated under polychro-

matic light. Interstitial collagen subtypes were evaluated using polar-

ized light illumination; under this condition, thicker type I collagen

fibers appeared orange or red, whereas thinner type III collagen

fibers were yellow or green. Quantifications were performed with

LAS software (Leica). For quantification of myofibroblasts, sections

were stained with an antibody against smooth muscle actin (aSMA,

clone 1A4 Sigma-Aldrich, dilution 1/300). Myofibroblast density was

quantified using ImageJ software by examining 10 fields per section

at 20× magnification, in a blinded fashion.

Cytokine and chemokine analysis

Blood was harvested by cardiac puncture, and bone marrow super-

natant was obtained by flushing femurs three times with 2 ml of

saline. Troponin I levels were measured with a precoated enzyme-

linked immunosorbent assay (ELISA, Biotrend Chemicals). G-CSF,

CXCL5, and CXCL12 in plasma and bone marrow supernatant were

quantified with ELISA DuoSets from R&D systems. All other

pro-inflammatory markers were quantified with ProcartaPlexTM

Multiplex Immunoassay (eBioscience).

Blood counter

Freshly obtained EDTA blood harvested by cardiac puncture was

used to analyze leukocyte counts using an animal blood counter

(scil Vet ABC Hematology Analyzer).

Flow cytometry of heart and bone marrow

Hearts were harvested, perfused with saline to remove peripheral

cells, minced with fine scissors, and digested with collagenase I

(450 U/ml), collagenase XI (125 U/ml), hyaluronidase type I-s

(60 U/ml), and DNase (60 U/ml; Sigma-Aldrich and Worthington

Biochemical Corporation) at 37°C for 1 h. Bone marrow cells were

obtained by flushing femurs with 2 ml of saline and triturated
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through 70-lm nylon mesh strainer. The resulting single cell suspen-

sions were centrifuged, resuspended in PBS/BSA 1%, and incubated

with following monoclonal antibodies for 30 min at 4°C at 1/1,000

dilution: anti-CD45.2 (clone 104, BD Biosciences), anti-CD11b (clone

M1/70, BioLegend), anti-c-Kit (clone 2B8, BioLegend), anti-Sca-1

(clone E13-161.7, BioLegend), anti-CD16/32 (clone 93, BioLegend),

anti-CD34 (clone MEC14.7, BioLegend), anti-Ly6G (clone 1A8, BioLe-

gend), lineage cocktail (clone 17A2/RB6-8C5/RA3-6B2/Ter-119/

M1/70, BioLegend), and isotype controls (BioLegend). Anti-CD182

(CXCR2, PerCP/Cy5.5 labeled, clone TG11/CXCR2, BioLegend) was

used at 1/300 dilution. Viable cells were identified as unstained with

dead cell marker Zombie YellowTM (BioLegend) in a 1/100 dilution.

Data were acquired on a FACS Canto II (BD Biosciences), and

analysis was performed with FlowJo software (Ashland, USA).

Neutrophils were identified as CD45+, CD11b+, and Ly6G+; granulo-

cyte–monocyte progenitor cells (GMPs) were identified as lineage�,
Sca-1�, c-kit+, CD16/32+, and CD34+ (Fig 2); and dead cardiomy-

ocytes were identified as Zombie+, CD45�. Gating for CXCR2hi was

performed as shown in Appendix Fig S5.

Quantitative real-time PCR

Whole RNA from lysed hearts (TissueLyser LT, Qiagen) was

extracted (RNeasy mini kit, Qiagen) and reverse-transcribed (Prime-

ScriptTM RT reagent kit, Clontech). Real-time PCR was performed

with the 7900HT Sequence Detection System (Applied Biosystems)

using the KAPA PROBE FAST Universal qPCR kit (Peqlab) and

predesigned primer and probe mix (TaqMan� Gene Expression

Assays, Life Technologies). Messenger RNA expression of markers

of interest was normalized to HPRT, and the fold induction was

calculated by the comparative Ct method.

Statistical analysis

Sample size for in vivo experiments was calculated in order to

provide a statistical power > 85% for an a < 0.05 in detecting a

population effect size > 0.8. Comparisons between two groups of

normally distributed and not connected data were performed using

the unpaired Student’s t-test. Multiple group comparisons were

performed by one-way analyses of variance analyses (ANOVA, for

one independent variable) followed by Tukey’s multiple comparison

tests or two-way ANOVA (for two independent variables) followed

by Bonferroni post hoc test. Mortality was analyzed by log-rank test.

All results are expressed as mean � SEM. P < 0.05 was considered

significant.

Expanded View for this article is available online.
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