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The development of ultrahigh field magnetic resonance (UHF-MR) is 

moving forward at an amazing speed that is breaking through technical barriers 

almost as fast as they appear. UHF-MR has become an engine for innovation in 

experimental and clinical research (1-11). With more than 35,000 MR 

examinations already performed at 7.0 Tesla, the reasons for moving UHF-MR 

into clinical applications are more compelling than ever. The value of high field MR 

has already proven itself many times over at lower field strengths; now 7.0 T has 

opened a window on tissues, organs, and (patho)physiological processes that 

have been largely inaccessible in the past. Images from these instruments have 

revealed new aspects of the anatomy, functions and physio-metabolic 

characteristics of the brain, heart, joints, kidneys, liver, eye, and other 

organs/tissues, at an unparalleled quality. 35,000 sounds like a large number, but 

in fact we have barely cracked open the door and have yet to truly assess what 

lies on the other side. 
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That makes this a perfect moment for a highly topical special issue of 

MAGMA: those of us who work in UHF-MR can see a clear route forward for 

resolving technological issues and can outline some of the new opportunities that 

will accompany even higher field strengths. The issue provides an overview of the 

state of the art and discusses the clinical relevance of what we have already 

observed and can clearly foresee. Articles are devoted to development of novel 

methodology (12-16) , safety topics (17-19), early multi-center trials (20) , 

frontier human studies (21-28), breakthrough clinical applications (30-36)  and 

future directions of UHF-MR (37,38). At the moment some of these new concepts 

and clinical applications are merely of proof-of-principle nature and visions, but 

they are compelling enough to drive the field forward. We hope to engage the 

interest of clinicians, basic scientists, engineers, translational researchers and 

applied scientists from many areas, and particularly to attract young scientists 

and new entrants into the field. In doing so, we hope to convince the MR imaging 

and spectroscopy communities to throw their weight into the task of solving 

technical problems and conceiving new clinical applications. UHF MR has a 

staggering number of potential uses in neuroscience, neurology, radiology, 

cardiology, internal medicine, oncology, nephrology, ophthalmology and other 

related clinical fields. As they are developed, we will push the boundaries of MR 

physics, biomedical engineering and biomedical sciences in many other ways. 

 

Another reason this special issue is timely is because physicists, engineers, 

and pioneers from related disciplines have already taken an even further step into 

the future, in their minds, with something they are calling Extreme Field MR (EF-

MR). This envisions human MR at 20 Tesla (37, 38), and it is an important leap of 

the imagination because it aims to fill a crucial "resolution gap" in our 

understanding of human biology (39, 40). While discoveries are pouring in on the 

molecular and cellular level every day, it is extremely difficult to integrate these 

findings into a coherent picture of the functions of tissues and pathological 

processes at a mesoscopic level above that of the cell. There is a wide gap 

between the view of biologists and clinicians that is begging to be filled. Extreme 

field MR is probably an ideal technology that will reach between these levels in 

vivo by bridging a crucial gap in resolution in space and time.  

 

Achieving this goal will certainly require extra resources – and the will to 

go there. While the first 20 Tesla class MR instruments will likely be devoted to 

discovery and to proof-of-principle, the findings will be crucial guides to making 

the best use of lower-resolution imaging techniques. The only thing that could 

keep the dream of human MR at 20 T from becoming reality would be a failure to 



 
 

follow the path and see what develops. Will the clinic eventually be able to follow 

us to even higher fields? It always does, if a whole community of experts devotes 

their creative efforts to the task. Currently we have only the roughest sense of 

what we will find. But even that glimpse has made some of us believers. We hope 

that this issue will convey the seeds of this vision and inspire you – as it has us – 

to become pioneers in these amazingly promising new areas of biomedical 

research: ultrahigh field and extreme field MR.   
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