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Supplementary Note 1: Integrated Databases

The following paragraphs briefly describe the different databases integrated in this study. Additional information about each database such as version number and access date can be found in Supplemental Table 4.
eggNOG: evolutionary genealogy of genes - non-supervised Orthologous Groups
“eggNOG is a public resource that provides Orthologous Groups (OGs) of proteins at different taxonomic levels, each with integrated and summarized functional annotations.“ (Huerta-Cepas, et al. 2015) For the purpose of this study, we used 7,449,593 annotated proteins spanning 1,045,604 leaf level OGs. 
ARDB: Antibiotic Resistance Genes Database
“[ARDB is a] manually curated database [seeking to unify] most of the publicly available information on antibiotic resistance. Each gene and resistance type is annotated with information including resistance profile, mechanism of action, ontology, COG and CDD annotations […].” (Liu & Pop 2009) A sequence identity threshold is provided for each family for reliable identification of further models. The ARDB database we applied contains 25,360 proteins summarized into 129 resistance types.
CARD: The Comprehensive Antibiotic Resistance Database
“The CARD integrates disparate molecular and sequence data, providing a unique organizing principle in the form of the Antibiotic Resistance Ontology (ARO) […]. This unique platform provides an informatics tool that bridges antibiotic resistance concerns in health care, agriculture, and the environment.” (McArthur et al., 2013) 
The CARD database we used contains 2,820 proteins covering 2,074 AROs. 
The ARDB database was built to unify and curate the previously released ARGO and a version of the MvirDB database, as well as adding further antibiotic resistance gene families (Liu & Pop 2009) and significantly improving annotation. The CARD database in turn encompasses and updates the ARDB, and introduces the Antibiotic Resistance Ontology (ARO) for its annotation (McArthur et al., 2013). It is thus larger and more complete, but unlike the ARDB does not maintain family-specific sequence identity cutoffs for resistance gene recognition.
dbCAN: Carbohydrate-Active Enzyme database
“dbCAN is a web server and database for automated Carbohydrate-active enzyme [(CAZymes)] ANnnotation […].” (http://csbl.bmb.uga.edu/dbCAN/) The protein database we applied contains 333 HMMs. 
DBETH: Database of Bacterial Exotoxins for humans
“Database of Bacterial Exotoxins for humans for humans is a database of sequences, structures, interaction networks and analytical results for 229 exotoxins, from 26 different human pathogenic bacterial genera.” (http://www.hpppi.iicb.res.in/btox/) The DBETH database we applied contains 228 proteins. 
DrugBank
“The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) information. The database contains 8198 drug entries including 1,985 FDA-approved small molecule drugs, 204 FDA-approved biotech (protein/peptide) drugs, 93 nutraceuticals and over 6,000 experimental drugs.” (http://www.drugbank.ca/) From DrugBank we extracted 3,899 proteins (drug targets) with bacterial homologs.
ICEberg: Integrative and Conjugative Elements database
“Integrative and conjugative elements (ICEs) are a diverse group of mobile genetic elements found in both Gram-positive and Gram-negative bacteria. ICEs are self-transmissible elements that encode a full complement of machinery for conjugation as well as intricate regulatory systems to control excision from the chromosome and onward conjugative transfer […]. These multi-talented entities can promote their own mobilization and potentially that of other 'hitch-hiking' genetic elements and thus contribute to horizontal transfer of virulence determinants, antibiotic-resistance genes and other bacterial traits […].” (http://db-mml.sjtu.edu.cn/ICEberg) ICEberg groups 13,984 protein categories into 358 ICEs. 
KEGG: Kyoto Encyclopedia of Genes and Genomes
“KEGG is a database resource for understanding high-level functions and utilities of a biological system, such as the cell, the organism and the ecosystem, from genomic and molecular-level information. It is a computer representation of the biological system, consisting of molecular building blocks of genes and proteins (genomic information) and chemical substances (chemical information) that are integrated with the knowledge on molecular wiring diagrams of interaction, reaction and relation networks (systems information). It also contains disease and drug information (health information) as perturbations to the biological system.” (http://www.genome.jp/kegg/kegg1a.html)
Here, we used a KEGG database version with 7,423,864 proteins annotated to 18,202 KEGG orthologous groups (KOs).
MetaCyc: Metabolic Pathway Database
“MetaCyc is a curated database of experimentally elucidated metabolic pathways from all domains of life. MetaCyc contains 2,260 pathways […] involved in both primary and secondary metabolism, as well as associated metabolites, reactions, enzymes and genes [and aims to collect at least a] representative sample of each experimentally elucidated pathway.” (http://metacyc.org/) Our version of the MetaCyc database contains 388,782 proteins covering 1,057 pathways. 
MvirDB: Microbial Database of Protein Toxins, Virulence Factors and Antibiotic Resistance 
“MvriDB currently integrates DNA and protein sequence information from Tox-Prot, SCORPION, the PRINTS database of virulence factors, VFDB, TVFac, Islander, ARGO, CONUS, KNOTTIN, a subset of VIDA and sequences derived by means of literature research. Entries in MvirDB are hyperlinked back to their original sources. A blast tool allows the user to blast against all DNA or protein sequences in MvirDB, and a browser tool allows the user to search the database to retrieve virulence factor descriptions, sequences, and classifications […].” (http://mvirdb.llnl.gov/) The MvirDB we applied contains 29,357 proteins summarized into 10 categories. 
PATRIC: Pathosystems Resource Integration Center
“PATRIC is […] an information system designed to support the biomedical research community’s work on bacterial infectious diseases via integration of vital pathogen information with rich data and analysis tools.” (http://enews.patricbrc.org/wp-content/uploads/2011/11/PATRIC-brochure.pdf) The version of the PATRIC database we used contains 2,194,475 proteins.
Pfam: the protein families database
“The Pfam database is a large collection of protein families, each represented by multiple sequence alignments and hidden Markov models (HMM). […] Pfam also generates higher-level groupings of related entries, known as clans. A clan is a collection of Pfam entries which are related by similarity of sequence, structure or profile-HMM.” (http://pfam.xfam.org/) The Pfam version we used includes 16,230 HMMs.
Resfams
“Resfams is a curated database of protein families and associated profile hidden Markov models (HMMs), confirmed for antibiotic resistance function and organized by ontology. The core database of Resfams profile HMMs was trained using unique antibiotic resistance protein sequences from the Comprehensive Antibiotic Resistance Database (CARD) database, the Lactamase Engineering Database (LacED), and Jacoby and Bush’s collection of curated beta-lactamase proteins. The core database of Resfams profile HMMs was supplemented with addition profile HMMs from the Pfam and TIGRFam databases to generate the full Resfams profile HMM database.” (http://www.dantaslab.org/resfams) The Resfams version we applied contains 123 HMMs. 
SEED Subsystems
“[…] SEED […] was created to provide consistent and accurate genome annotations across thousands of genomes and as a platform for discovering and developing de novo annotations. The SEED is a constantly updated integration of genomic data with a genome database […]. The SEED also houses subsystems (collections of functionally related protein families) and their derived FIGfams (protein families), which represent the core of the RAST annotation engine (http://rast.nmpdr.org/). When a new genome is submitted to RAST, genes are called and their annotations are made by comparison to the FIGfam collection. If the genome is made public, it is then housed within the SEED and its proteins populate the FIGfam collection.” (Overbeek et al., 2014) The version of the SEED subsystems database we applied contains 4,247,700 proteins covering 16,196 enzymes. 
Superfamily
“SUPERFAMILY is a database of structural and functional annotation for all proteins and genomes. The SUPERFAMILY annotation is based on a collection of [HMMs], which represent structural protein domains at the SCOP superfamily level. A superfamily groups together domains which have an evolutionary relationship.” (http://supfam.org/SUPERFAMILY/description.html) The Superfamily database we applied consists of 15,438 HMMs. 
vFAM: Viral profile HMMs
“[vFam is a database of HMMs] from all the virally annotated proteins in RefSeq [that were integrated] in an automated fashion using a custom-built bioinformatics pipeline.” (Skewes-Cox et al, 2014) The vFAM database we used contains in total 29,655 proteins annotated to 5,585 virulence families. 
VFDB: virulence factor database
“[VFDB] is an integrated and comprehensive online resource for curating information about virulence factors of bacterial pathogens. […] VFDB has been dedicated to providing up-to-date knowledge of virulence factors from various medically significant bacterial pathogens.” (http://www.mgc.ac.cn/VFs/main.htm) The VFDB database used in this study contains 1,627,380 proteins. 
Victors: Virulence Factors
“Victors is a database comprised of genes experimentally observed to be necessary for virulence. Included are virulence factors for many different bacteria, viruses, parasites and fungi, which are pathogenic to animals and humans. Within Victors are virulence factors, as well as corresponding sequence information taken from NCBI when available.” (http://www.phidias.us/victors/intro.php) The Victors database version we used contains 3,329,893 proteins summarized into 3,587 virulence factors.
Supplementary Note 2: Database Download and Processing 
The integrated databases (Supplementary Table 4) were downloaded from each respective source and filtered to contain only sequences to which functional categories could be assigned. For some databases, for consistency and easy name parsing, sequence names and/or identifiers were renamed. 

A number of databases were further processed following download. ARDB was downloaded and processed as described in (Forslund et al., 2013). The VFDB and Victors databases were extracted via the PATRIC database, and protein sequences for all specialty gene family members in these categories were extracted, along with their associated descriptions and identifiers, from PATRIC. The XML file for DrugBank was downloaded and links were extracted between drugs, Anatomical Therapeutic Chemical (ATC) codes and the UniProt identifiers of known bacterial targets. Protein sequences for bacterial drug targets were then acquired from UniProt. mVirDB virulence factor sequences that were non-unique, removed from NCBI or did not correspond to a single gene (for example, pathogenicity islands) were excluded. The remaining set was associated to SEED FIGfams via UniProt ID, which allowed for summarizing mVirDB results at higher levels using the SEED Subsystems ontology.

Supplementary Note 3: Direct and Indirect Annotations of Gene Catalogs
For each protein sequence database, direct annotations of gene catalogs were generated by aligning the protein sequences from each of the gene catalogs to each database (selecting the best hit), using DIAMOND (Buchfink et al., 2014) in sensitive mode. Note that, though used as gold standard reference for the purpose of this study, these direct annotations may contain biological false positives. However, we used previously established bit score cutoffs and HMM gathering thresholds to ensure low number of biological false positives in the direct annotations. For example, matches below a 60-bitscore cutoff were removed for the KEGG (Arumugam et al., 2010) and SEED databases and we applied a more stringent 100-bit score cutoff, similar to the 1e-30 e-value requirement for the CARD database (McArthur et al., 2013) for the remaining protein databases. For the Resfams, Pfam, dbCAN and Superfamily databases, we used hmmsearch or hmmscan from the HMMER3 packages (Eddy, 2011). The Pfam, Resfams and superfamily databases have specific cutoffs provided. For the dbCAN HMM results, we applied a 1e-9 e-value cutoff.

‘Indirect’ annotations were generated by first aligning the protein sequences from the gene catalogs to eggNOG with a minimum bit score (as above), and a 60-bitscore cutoff in the case of the HMM-derived databases. Secondly, eggNOG proteins were aligned using the direct annotation approach to each of the databases. Finally, gene catalog proteins with overlapping eggNOG matches to the databases were assigned to the functional categories of each of the databases; a 90% overlap of the two alignments on the eggNOG protein was required.

The databases often contain more than one category, e.g., KEGG is divided into KEGG orthologous groups (KOs), module and pathways. The results in Table 1 were generally made using the highest order functional category, though MOCAT2 provides multiple categories for many databases (such as KO, module and pathway in the case of the KEGG database). The following categories were used:

· eggNOG: orthologous groups (OG)

· ARDB: superclass

· CARD: antibiotic resistance ontology (ARO)

· dbCAN: family level

· DBETH: mechanism 

· DrugBank: DrugBank identifier

· ICEberg: ICEberg

· KEGG: KEGG orthologous group (KO)

· MetaCyc: pathway level

· MvirDB: virulence category

· PATRIC: gene equivalent level

· Pfam: clan level

· Prophages: identifier

· Resfams: resfams identifier

· SEED: enzyme level

· Superfamily: family level

· vFam: virulence family

· VFDB: function equivalent level

· Victors: gene equivalent level
Comparison of annotations
We compared the precision and recall of indirect annotations to direct annotations. Cases where a gene had the same annotation using both methods were considered to be true positives. If a gene had a direct annotation and the functional category was different by indirect annotation, this was considered a false positive. If the indirect annotation did not have any functional assignment, but the direct did, this was considered a false negative. Each gene can have one or multiple functional assignments. We also report the fraction of genes with indirect annotation that did not have any direct annotation (new matches). The relatively high fraction of new matches for dbCAN and Resfams results from the DIAMOND alignments to eggNOG genes capturing shorter genes that are not annotated using HMMs (Supplementary Figure 1).

Comparing to COGNIZER and UProC
We executed COGNIZER and UProC with default settings and compared the respective annotations to the ‘direct’ annotations. The SEED annotations generated by COGNIZER could not be compared, as COGNIZER does not provide an annotation to the SEED database for each sequence (Supplementary Table 3).
Abundance comparisons
We compared the differences of functional profiles between groups of samples, summarized using either the direct or indirect annotation method, using Spearman rank correlations. The methodology was applied to a different dataset for each gene catalog. For the CRC dataset (Zeller, et al., 2014) we calculated functional abundances for 194 samples using a study specific gene catalog (CRC reference gene catalog). The integrated gene catalog (IGC) annotations were compared by calculating the functional profiles for 746 metagenomic human stool samples (Qin et al., 2010; Nielsen et al., 2014; Li et al., 2014). The ocean microbiome reference gene catalog (OM-RGC) annotations were compared using 243 publicly available metagenomic ocean samples (Sunagawa et al., 2015). The human skin annotations were compared using 74 samples from (Oh et al., 2014), and processed as described in (Zeller, et al., 2014). The mouse reference gene catalog (MRGC) annotations were assessed using the gene catalog and data from (Xiao et al., 2015); the functional profiles of 23 ‘high fat’ and 37 ‘low fat’ mouse metagenomes were compared (Supplementary Table 2).
Comparing differentially abundant functional features
To assess significantly differentially abundant functional features between the direct and indirect annotation methods, we applied the Wilcoxon signed-rank test to each of the datasets across all functional features. In the case of colorectal cancer, 53 samples were labeled as cancer and 88 as healthy. We selected a subset of the MetaHIT samples, 133 derived from lean and 204 from obese individuals, for analyses comparing the IGC annotations. The overlap of significantly differentially abundant functional features for the ocean microbiome reference gene catalog was calculated by comparing the functional composition of 200 surface water samples and 43 mesopelagic samples. In the case of the skin dataset, we used 43 and 31 samples collected from body sites labeled as moist and oily respectively (Supplementary Table 2).
Supplementary Note 4: MOCAT2 annotation speed
Using MOCAT2 to annotate a set of representative sequences, such as genes in a reference gene catalog, is 1,400x faster than a conventional BLAST-based approach, and 10x faster when compared to a DIAMOND-based approach. We compared the speed of annotating genes to only the eggNOG database (using BLAST and DIAMOND) and applying the pre-calculated annotations to the 18 integrated databases with a naïve approach annotating each gene to all databases (using BLAST and DIAMOND). Using DIAMOND, it took 2,400 CPU hours to align 40 M genes to the eggNOG database and an additional 14,100 CPU hours to annotate the genes to the other databases. BLAST was 330x slower than DIAMOND.
Supplementary Note 5: MOCAT2 Profiling: output files
MOCAT2 provides a number of different output formats when generating profiles. The three types of profiling options are: gene, taxonomic and functional. Each of these options generates similarly formatted output files, but summarized at different levels (either by gene, functional categories or taxonomic categories). Supplementary Table 5 describes, in brief, output files, folders and statistics from each processing step in MOCAT2.

Functional profiles
These are gene coverages summarized at a higher level, such as a KEGG KO, module or pathway level or eggNOG OGs. Genes are summarized at these categories based on a mapping file in the MOCAT/data folder (<DB>.functional.map). This means, that even though named ‘functional’ profiles, these can be summarized at other user-defined levels, such as species, genera or phyla or even function and taxonomic representation such as KO.species or KO.genus.
Taxonomic profiles
Taxonomic profiles come in two flavors: mOTU and NCBI. Each of these requires a specific set of mapping files and specific requirements for the database structure. The current version of MOCAT2 integrates databases for each of the two approaches: mOTU.v1 and RefMG.v1, respectively. These are described in detail in (Sunagawa et al. 2013).
mOTU profiles
These are generated by first mapping and filtering reads to the mOTU.v1 database and then in the profiling option selecting -mode mOTU. The abundances of 10 marker genes are summarized into (annotated) mOTU linkage groups (mOTU-LGs).
NCBI profiles
By mapping and filtering reads against the RefMG.v1 database, the profiling step with option -mode NCBI will summarize the gene abundances into NCBI taxa level coverages: phylum to species, including specI (Mende et al., 2013) coverages.
Different output formats
Both insert and base coverages are calculated in MOCAT2. An insert is defined as either a single read or a matching read-pair. Base counts are the total number of nucleotides from matching the reference. Furthermore, each of these two coverage types are calculated as raw counts, ‘gene’ length normalized coverages (norm), and scaled ‘gene’ length normalized coverages (scaled). Scaled files are ‘gene’ length normalized coverages (norm) multiplied by a scaling factor, enabling the use of the ‘-1’ fraction (unmapped reds).
Finally, as a third layer, bases and inserts from reads mapping to more than one ‘gene’ (i.e. multiple mappers) with the same alignment score are distributed evenly or according to the abundance of bases and insert mapping uniquely (mm.dist.among.unique) to the respective genes. MOCAT2 also saves the abundances of ‘genes’ based on reads mapping to only one unique location (only.unique).


Supplementary Tables
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Supplementary Table 4. Functional databases included in MOCAT2. The content of the databases is briefly described in Supplementary Note 1.
	Database
	Version
	Accessed
	Downloaded From
	Citation

	eggNOG
	4.5
	June 2015
	http://eggnogdb.embl.de/download/eggnog_4.5
	Huerta-Cepas, J., et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 2015. 10.1093/nar/gkv1248.

	ARDB
	1.1
	April 2015
	http://ardb.cbcb.umd.edu/
	Liu, B., et al. ARDB--Antibiotic Resistance Genes Database. Nucleic Acids Res 2009;37(Database issue):D443-447. 10.1093/nar/gkn656.

	CARD
	N/A
	August 2015
	http://arpcard.mcmaster.ca/?q=node/6626
	McArthur, A.G., et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 2013;57(7):3348-3357. 10.1128/AAC.00419-13.

	DBETH
	N/A
	August 2015
	http://www.hpppi.iicb.res.in/btox/
	Chakraborty, A., et al. DBETH: a Database of Bacterial Exotoxins for Human. Nucleic Acid Res. 2012;40 Database issue):D615-20 0.1093/nar/gkr942

	dbCAN
	3.0
	April 2015
	http://csbl.bmb.uga.edu/dbCAN/
	Yin, Y., et al. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2012;40(Web Server issue):W445-451. 10.1093/nar/gks479.

	DrugBank
	N/A
	May 2014
	http://www.drugbank.ca/
	Knox C., et al. DrugBank 3.0: a comprehensive resource for 'omics' research on drugs. Nucleic Acids Res 2011;39(Database issue):D1035-41. 10.1093/nar/gkq1126

	ICEberg
	N/A
	April 2015
	http://db-mml.sjtu.edu.cn/ICEberg/
	Bi D., et al. ICEberg: a web-based resource for integrative and conjugative elements found in Bacteria. Nucleic Acids Res. 2012 Jan;40(Database issue):D621-6. 10.1093/nar/gkr846.

	KEGG
	74 / 57
	June 2015
	Licensed FTP site
	Kanehisa, M., et al. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 2014;42(Database issue):D199-205. 10.1093/nar/gkt1076.

	MetaCyc
	N/A
	March 2015
	http://metacyc.org/
	Caspi, R., et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 2014. 10.1093/nar/gkv1164.

	MvirDB
	2012 Update
	Sept 2014
	http://mvirdb.llnl.gov/
	Zhou, C.E., et al. MvirDB--a microbial database of protein toxins, virulence factors and antibiotic resistance genes for bio-defence applications. Nucleic Acids Res 2007;35(Database issue):D391-394. 10.1093/nar/gkl791.

	PATRIC
	2
	August 2015
	ftp://ftp.patricbrc.org/patric2
	Mao, C., et al. Curation, integration and visualization of bacterial virulence factors in PATRIC. Bioinformatics 2015;31(2):252-258. 10.1093/bioinformatics/btu631.

	Pfam
	28
	June 2015
	ftp://ftp.ebi.ac.uk/pub/databases/Pfam
	Finn, R.D., et al. Pfam: the protein families database. Nucleic Acids Res 2014;42(Database issue):D222-230. 10.1093/nar/gkt1223.

	Prophages
	N/A
	June 2015
	From authors;
now published on the MOCAT homepage
	Waller, A.S., et al. Classification and quantification of bacteriophage taxa in human gut metagenomes. ISME J 2014;8(7):1391-1402. 10.1038/ismej.2014.30.

	Resfams
	1.2
	April 2015
	http://www.dantaslab.org/resfams
	Gibson, M.K., et al. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. ISME J 9(1). 10.1038/ismej.2014.106.

	SEED subsystems
	N/A
	October 2014
	ftp://ftp.theseed.org/
	Overbeek, R., et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014;42(Database issue):D206-214. 10.1093/nar/gkt1226.

	Superfamily
	2015-01-22
	June 2015
	http://supfam.org/SUPERFAMILY/
	Gough, J., et al. Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol 2001;313(4):903-919. 10.1006/jmbi.2001.5080.

	vFam
	2014 build
	April 2015
	http://derisilab.ucsf.edu/software/vFam/
	Skewes-Cox, P., et al. Profile hidden Markov models for the detection of viruses within metagenomic sequence data. PLoS One 2014;9(8):e105067. 10.1371/journal.pone.0105067.

	VFDB
	2012 Update
	August 2015
	http://www.mgc.ac.cn/VFs/main.htm & ftp://ftp.patricbrc.org/patric2
	Chen, L., et al. VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res 2012;40(Database issue):D641-645. 10.1093/nar/gkr989.

	Victors
	N/A
	August 2015
	http://www.phidias.us/victors & ftp://ftp.patricbrc.org/patric2
	Mao, C., et al. Curation, integration and visualization of bacterial virulence factors in PATRIC. Bioinformatics 2015;31(2):252-258. 10.1093/bioinformatics/btu631.



Supplementary Table 5. Output files, folders and statistics from each of the processing steps in MOCAT2.
	Processing step
	Output files
	Statistics

Files are saved in /stats folder for each sample.
	Output folder (or file) (assuming solexaqa option;

<> indicates variable section of folder name)

	Read Trim Filter
	Paired-end and single-end HQ reads
	Number of HQ reads, bases and inserts; maximum and average read length, estimated kmer
	reads.processed.solexaqa – FastQ files

	
	
	
	

	Screen Fasta File
	One set of paired-end and single-end reads files with reads matching the searched sequences; one set of files with reads not matching the sequences; original output and log files from Usearch; IDs of reads matching searched sequences
	Number of reads, bases and inserts remaining after removal of reads matching sequences; re-estimated maximum and average read length; re-estimated kmer; Number of total and unique reads matching fasta sequences; Number of reads matching each individual fasta sequence
	reads.mapped.<>.on.DB.solexaqa – alignments files

reads.screened.<>.on.DB.solexaqa – FastQ files; reads not matching DB

reads.extracted.<>.on.DB.solexaqa – FastQ files; reads matching DB



	
	
	
	

	Screen
	One set of paired-end and single-end reads files with reads matching the searched sequences; one set of files with reads not matching the sequences; SOAPaligner output file in SOAP and SAM format; IDs of reads matching searched database
	Number of reads, bases and inserts remaining after removal of reads matching sequences; re-estimated maximum and average read length; re-estimated kmer
	reads.mapped.<>.on.DB.solexaqa – alignments files

reads.screened.<>.on.DB.solexaqa – FastQ files; reads not matching DB

reads.extracted.<>.on.DB.solexaqa – FastQ files; reads matching DB

	
	
	
	

	Filter
	BAM or SOAP formatted file with reads matching a database with a length and percentage identity above set thresholds
	Number of reads, bases and inserts remaining after filtering
	reads.filtered.DB.solexaqa – alignment files

	
	
	
	

	Assembly
	Config file used to initiate SOAPdenovo; assembled contigs, scaffolds and scaftigs
	Estimated insert size; N50, N90, total length, longest sequence and number of sequences for contigs, scaffolds and scaftigs longer than 100, 200, 500, 1000 bp; detailed number of sequences, GC content, nucleotide content, median, mean, maximum and minimum length of scaffolds and contigs
	assembly.<>.solexaqa.K<> - contigs, scaffolds and scaftig files

	
	
	
	

	Assembly Revision
	Revised scaftigs
	Number of single base errors, number of small insertions, total length of insertions, number of small deletions, total length of deletions, number of chimeric-like regions, total length of chimeric-like regions
	assembly.revised.<>.solexaqa.K<> - scaftig files

	
	
	
	

	Gene Prediction
	Protein and DNA sequences of genes; Information on each gene in tabular format; original output file from either MetaGeneMark or Prodigal
	Contig ID of gene; gene start and stop; gene length; gene completeness; strand; total number of genes, complete genes and incomplete genes; Number of genes with start and stop codon; total gene length of all, complete and incomplete genes
	gene.prediction.assembly.<>.solexaqa.K<>.<> - gene prediction raw output files, gene faa and fna sequences

	
	
	
	

	Profiling
	Length normalized, non normalized and scaled base and insert coverage
	Total number of inserts and bases; Total number of mapped inserts and bases; fractions of mapped bases and inserts
	SAMPLE.<>.profile.<>.on.<>.solexaqa.<>.l<>.p<>.zip

./PROFILES/<>.profiles/SAMPLE_FILE

./OUTPUT (the most commonly used profiles files are linked here by default)

	
	
	
	

	Gene Catalog
	Clustered fna and faa sequences and padded fna sequences
	-
	./GENE_CATALOGS/SAMPLE_FILE

	Catalog annotation
	Tab-separated annotation file
	-
	./GENE_CATALOGANNOTATIONS/
SAMPLE_FILE

	
	
	
	

	Sample status
	Statistics, XLSX and sqlite3 files
	-
	./SUMMARIES/SAMPLE_FILE

	Supplementary Table 6. Speed and memory improvements in MOCAT2.
Required time and memory (RAM) to process a sample using MOCAT version 1.0 and 2.0. These tests have been conducted using one of the largest samples (MH0012) from Qin et al. (2010). *This is the total amount of RAM that would be used, unless a maximum amount of RAM allowed to be allocated by psort is set (psort is no longer utilized by MOCAT2).

	
	MOCAT
	MOCAT2

	Processing step
	Time
	Memory usage (RAM)*
	Time
	Memory usage (RAM)

	Read trim filter
	2 h 7 min
	0.1 GB
	20 min
	0.9 GB

	Filter
	1 h 29 min
	85 GB
	1 h 7 min
	6 GB

	Profiling
	3 h 50 min
	38 GB
	1 h 46 min
	16 GB

	Assembly
	8 h 13 min
	54 GB
	6 h 43 min
	54 GB
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