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Abstract 

 

Object  

This work investigates electrodynamic constraints, explores RF antenna concepts and 

examines transmission fields (B1+) and RF power deposition of dipole antenna arrays for 

1H magnetic resonance of the human brain at 1GHz (23.5T). 

 

Materials and Methods  

Electromagnetic field simulations (EMF) are performed in phantoms with average tissue 

simulants for dipole antennae using discrete frequencies (300MHz (7.0T) to 3GHz (70.0T)). 

To advance to a human setup EMF simulations are conducted in anatomical human 

voxel models of the human head using a 20-element dipole array operating at 1 GHz. 

 

Results  

Our results demonstrate that transmission fields suitable for 1H MR of the human brain 

can be achieved at 1GHz. An increase in transmit channel density around the human 

head helps to enhance B1+ in the center of the brain. The calculated relative increase in 

specific absorption rate (SAR) at 23.5T vs. 7.0T was below 1.4 (in-phase phase setting) 

and 2.7 (circular polarized phase setting) for the dipole antennae array.  

 

Conclusion 

The benefits of multi-channel dipole antennae at higher frequencies render MR at 23.5T 

feasible from an electrodynamic standpoint. This very preliminary finding opens the door 

on further explorations that might be catalyzed into a 20 Tesla class human MR system.  
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Introduction 

 

While everyday clinical MR is generally carried out at 1.5 T, 3.0 T and 7.0 T machines 

have become mainstays of experimental and clinical research. More than 35.000 7.0 

Tesla MR research examinations (1) have already been performed globally, producing 

valuable data that indicate the value of ultrahigh fields (2-8). Even if these instruments 

do not become standard tools in the everyday clinical setting in the very near future, 

the invaluable new insights they are providing into (patho)physiological processes will 

be helpful to patients everywhere. This trend will continue as UHF-MR extends beyond 

7.0 T. 

The move to higher magnetic field strengths will directly depend on our ability to 

solve a number of technical and theoretical problems. Some of the benefits are already 

clear: we have already seen progress in remotely probing local concentrations of 

fluorine, sodium, potassium and chlorine in human tissues (9-14), in assessing 

bioenergetic conditions (15-17) and oxygen consumption (18) in vivo along with the 

advances in 9.4 T human MR (15,19-24). Pioneering reports on MR physics, radio-

frequency (RF) power deposition considerations and novel RF antenna designs (25,26) 

spurred the installation of a 10.5 T whole-body MR system at the Center for Magnetic 

Resonance Research, University of Minnesota, Minneapolis, USA (27). An 11.7 T brain MRI 

initiative is being spearheaded by the French Alternative Energies and Atomic Energy 

Commission (CEA, NeuroSpin, Gif/Yvette, France) and by the National Institutes of 

Health (NIH, Bethesda, USA). Recent numerical and experimental explorations up to 

14.0 T showed the potential of UHF-MR for imaging and targeting human tissue through 

focal radiofrequency (RF) induced heat deposition and very local manipulations of 

temperature (28). Magnetic field strengths as high as 20 Tesla were demonstrated to be 

conceptually appealing for offsetting the inherent spatial resolution constraints of 

positron emission tomography (29,30). Physical considerations and numerical simulations 

up to 23.5 T (1 GHz) manifest the potential of targeted RF heating for localized RF 
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hyperthermia of intracranial lesions as an adjunct cancer therapy and provided 

convincing reasons for thermal magnetic resonance (thermalMR) to study the role of 

temperature in biological systems and disease (31).  

Joint efforts of the nuclear magnetic resonance and biomedical magnetic resonance 

imaging communities identified the science drivers, technological challenges and 

prospects for achieving MRI at 20 Tesla (32,33). 

Although it is particularly timely to consider moving to a 20 Tesla class MR system 

the benefits and sensitivity gain of UHF-MR at B0 > 11.7 T are faced with a multitude of 

challenges. These include the need for innovations in magnet technology involving 

high-temperature superconductors. We must also gain a better understanding of 

electrodynamic constraints that arise through an increase in spin excitation frequency. 

There will be power losses as the conductive properties of tissues change in a 

frequency-dependent manner, and we will need to resolve a number of legitimate 

issues concerning RF power deposition restrictions, transmission field (B1+) efficiency 

constraints, depth penetration limitations and radiation losses. Due to wavelength 

shortening at frequencies in the 0.5 to 1 GHz range (e.g. ca. 5cm at 1 GHz) the imaging 

location transitions from the near field to the far field region of the RF antenna. 

 These challenges are motivating research into electrodynamics at ultrahigh 

fields and are catalysing innovations in RF antenna design, which must be specially 

tailored for very high frequencies. Here we elucidate the electrodynamic constraints for 

frequencies ranging from 300 MHz (7.0 T) up to 3 GHz (70.0 T) and explores the benefits 

of multi-element dipole antenna arrays at short RF wave lengths. To meet this goal 

electromagnetic field (EMF) simulations are conducted in phantoms and in human 

voxel models to detail transmission field and specific absorption rate (SAR) distributions 

of multi-element antenna arrays.  
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Materials and Methods 

 

Theory 

Increasing the frequency in MRI beyond today’s limits has a number of 

implications on electromagnetic field transmission and absorption as schematically 

outlined in Figure 1. These implications sometimes drive the notion that human UHF-MR 

at B0 > 11.7 T might be a limit per se. This judgement is premature in advance of a 

careful theoretical and practical study of electrodynamics at ultrahigh fields. Typical MR 

applications and RF coil designs at clinical field strengths (B0 = 1.5 T or B0 = 3.0 T) deal 

with the near field regime at frequencies of 64 MHz and 128 MHz, respectively. At 

300 MHz and higher frequencies the transition between the near and far field regime 

changes design considerations for RF coils, making it necessary to take into account 

wave propagation effects. At high frequencies the wavelength of the electromagnetic 

field in tissue generated by a transmit (TX) element starts to become similar or short 

compared to the size of the target anatomy (Figure 1). This leads to interferences which 

induce B1+ non-uniformities. To address this obstacle multi-element transceiver coil arrays 

have been developed. These developments took advantage of building blocks that 

include stripline elements (34-38), dielectric resonant antennae (39), loop elements (40-

46) and electrical dipoles (47-53).  

Electrical dipole antennae were reported to provide a valuable alternative to 

traditional loop coils or stripline elements (47). Dipole antennae exhibit a simple RF 

antenna design with good directivity where the Poynting vector is perpendicular to the 

dipole length. This trait is in particular useful at higher frequencies, where relevant 

imaging regions are outside the near field (e.g. ≈46mm at 1GHz) of the antenna (Figure 

2). Wave propagation patterns need to be considered when applying the advantages 

of multi-element arrays for B1+ focussing. The energy transmission of loop coils is not 

directed towards a single target (Figure 2a), which is also reflected in the B1+ pattern 

(Figure 2b). Here there is an advantage of dipoles or antennae with improved directivity 
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towards the imaging target, since a multi-antennae configuration permits a dedicated 

use of constructive interferences (Figure 2c&d) – in other words, making use of the 

interference to focus E- or H-field components of independent transmission elements to 

a single target. The E-field distribution along the main axis of a dipole can be 

approximated by a harmonic linear polarized plane wave propagating perpendicular 

to the long axis of the dipole (Figure 2c). With the simplification of the propagation 

along the z-direction and the polarization direction along the dipole length (y-direction) 

the Helmholtz equation becomes (54): 

𝝏𝟐𝑬𝒚

𝝏𝒛𝟐
− 𝜸𝟐𝑬𝒚 = 𝟎 

(1) 

with the complex E-field 𝐸𝑧. The solution is then:  

𝑬𝒚(𝒛) = 𝑨𝟏𝒆
−𝜸𝒛 + 𝑨𝟐𝒆

𝜸𝒛 (2) 

with the propagation constant 𝛾: 

𝜸² = (𝜶 + 𝒋𝜷)𝟐 = −𝝎𝟐𝜺𝝁 + 𝒋𝝎𝝁𝝈 (3) 

The angular frequency 𝜔, the permittivity 𝜀 = 𝜀0𝜀𝑟, the permeability 𝜇 = 𝜇0𝜇𝑟 and the 

electrical conductivity 𝜎 determine the attenuation constant 𝛼 and the phase constant 

𝛽: 

𝜶 = 𝝎√
𝝁𝜺

𝟐
[√𝟏 + (

𝝈

𝝎𝜺
)² − 𝟏] 

(4) 

𝜷 = 𝝎√
𝝁𝜺

𝟐
[√𝟏 + (

𝝈

𝝎𝜺
)² + 𝟏] 

(5) 

Equations 4 and 5 can be taken as a basis to derive the electrodynamic effects 

associated with an increase in MR transmission frequency (Figure 1). The wavelength 𝜆 

𝝀 =
𝟐𝝅

𝜷
 (6) 

 

of a lossy medium depends on the frequency, permittivity and electric conductivity 

(Equation 5). The relative permittivity has a strong influence on wavelength shortening 

by ~1/√εr (f = const) in the lossless case (σ = 0) when transitioning from air (εr≈1) to tissue 
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(εr≈44, white matter). This leads to pronounced B1+ field inhomogeneities across imaging 

volumes larger than the wavelength such as the human head or the human body if 

single element RF transmitters are used. When moving to higher magnetic fields 

(f ≠ const) the wavelength in tissue (e.g. at 3 GHz vs. 300 MHz in white matter) decreases 

further. This is a combined effect of decreasing relative permittivity (~25% from 300 MHz 

to 3 GHz for brain white matter (55)), increasing electrical conductivity (~370% from 

300 MHz to 3 GHz for brain white matter (55)) and increasing frequency with the latter 

being the dominant effect for further wavelength shortening (Equation 5 & Equation 6) 

(Figure 1).  

The aforementioned relative increase in conductivity leads to higher power 

losses 𝑃𝑙𝑜𝑠𝑠  (Figure 1) resulting in higher SAR: 

𝑺𝑨𝑹 =
𝑷𝒍𝒐𝒔𝒔

𝝆
=

𝝈|𝑬⃗⃗ |
𝟐

𝝆
 

(7) 

with the tissue density 𝜌 and 2|| E


 the amplitude of the electric field vector. At the same 

time these power losses lead to reduced B1+/√Pin amplitudes (Equation 4, Figure 1). This 

behaviour increases SAR if the same target flip angle is to be reached (Figure 1) while 

on the receive (RX) side reduced B1- decreases some of the SNR gains intrinsic to higher 

magnetic fields. These drawbacks can be offset to some extent by increasing the 

number of transmitter and receiver elements in multi-element RF antenna arrays.  

The merits of dipole antenna arrays are not limited to the transmission side. On 

the receiver side, ultimate intrinsic signal-to-noise ratio (UISNR) considerations reveal that 

current patterns are dominated by the linear (dipole type) curl-free current patterns for 

B0 ≥ 9.4 T (56,57), while at 7.0 T loop- and dipole current patterns contribute equally to 

UISNR (56,57). This observation opens an avenue to a more efficient use of electric 

dipole like receiver elements in UHF-MR (56).  

All these reasons render electrical dipole antennae legitimate candidates for 

implementation in transceiver arrays tailored for MR at ultrahigh and extreme magnetic 

field strengths that may help to relax challenges associated with RF power deposition 

constraints. The reduction in RF wavelength reduces the area of superficial SAR, which 

  

 

 

7



together with increased power losses leads to decreased coupling between antennae 

(Figure 1). This permits an increase in the number of transmitter/receiver elements 

positioned around an object (Figure 3) while element coupling is not enhanced. This 

improvement in coil density can be leveraged for enhancing B1+ homogeneity (58), SNR 

(59,60), parallel imaging capabilities (52,61,62), parallel transmit performance (58) and 

transmission efficiency (B1+/√Pin) at the imaging location where a constructive 

interference of all single waves can be accomplished. In addition, the dipole antenna 

length is reduced at higher RF frequencies (Figure 3), which decreases the field of view 

along the long axis of the antenna but also boosts B1+/√Pin for regions underneath the 

dipole due to higher current densities per input power. The reduced field of view can be 

compensated for by placing extra rings of antenna elements along the z-direction. 

 

Electromagnetic Field Simulations in Virtual Phantoms 

Electromagnetic field (EMF) simulations were performed using the finite 

integration technique of CST Microwave Studio 2012 (CST GmbH, Darmstadt, Germany) 

(63). For this purpose λ/2 dipole antennae were modelled in a cylindrical shape 

(diameter=4mm) as a perfect electrical conductor (PEC) and positioned at 1cm 

distance to a uniform cylindrical phantom (diameter = 180 mm, length = 600 mm) 

(Figure 3). Permittivity (εphantom) and conductivity (σphantom) of the phantom were 

frequency adjusted according to (64): 

𝜺𝒑𝒉𝒂𝒏𝒕𝒐𝒎(𝒇) = 𝟎. 𝟔 ∙ 𝜺𝒘𝒉𝒊𝒕𝒆 𝒎𝒂𝒕𝒕𝒆𝒓(𝒇) + 𝟎. 𝟒 ∙ 𝜺𝒈𝒓𝒆𝒚 𝒎𝒂𝒕𝒕𝒆𝒓(𝒇) (8) 

𝝈𝒑𝒉𝒂𝒏𝒕𝒐𝒎(𝒇) = 𝟎. 𝟔 ∙ 𝝈𝒘𝒉𝒊𝒕𝒆 𝒎𝒂𝒕𝒕𝒆𝒓(𝒇) + 𝟎. 𝟒 ∙ 𝝈𝒈𝒓𝒆𝒚 𝒎𝒂𝒕𝒕𝒆𝒓(𝒇) (9) 

B1+ and SAR distributions were evaluated for (i) a single dipole (Figure 3a), (ii) a 

symmetrical 8-element dipole array (Figure 3b) and (iii) a symmetrical max-element 

dipole antenna array (Figure 3c). For the max-element setup the number of transmit 

elements was governed by the condition that decoupling remains below 𝑆𝑥𝑦 = −13𝑑𝐵. 

The simulated RF frequencies were f=300,400,500,600,700,800,900,1000,1200, 

1400,1600,1800,2000 and 3000 MHz with the max-element setup being simulated at 

f = 300 MHz, 1000 MHz, 2000 MHz and 3000 MHz. The port impedance was set to 73 Ω. All 
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antennae were matched and tuned to S11 < -30dB. Dipole antenna length was adjusted 

to the given frequency as illustrated in Figure 3d-f and surveyed in Table I. All antenna 

array configurations were driven in circular polarized (CP) mode and in-phase (00) with 

0° phase shift between transmit elements. The inclusion of the bore (inner diameter = 

684mm) induces only a minor increase in B1+/√Pin amplitude (+4% (00) and 0% (CP) at 

300MHz vs. +6% (00) and 7% (CP) at 1GHz). With this finding the bore diameter was not 

modelled to save computational time. Local SAR (1 g average) was calculated for 1 W 

accepted input power at the port with a phantom density of ρ = 1041 kg/m³. Relative 

SAR increase was defined by: 

 

𝒓𝒆𝒍. 𝑺𝑨𝑹 𝒊𝒏𝒄𝒓𝒆𝒂𝒔𝒆 =
𝐦𝐚𝐱 𝑺𝑨𝑹𝟏𝒈(𝒇𝟐)

𝒎𝒂𝒙𝑺𝑨𝑹𝟏𝒈(𝒇𝟏 = 𝟑𝟎𝟎𝑴𝑯𝒛)
∙ (

𝒎𝒂𝒙𝑩𝟏,𝒄𝒆𝒏𝒕𝒆𝒓
+ (𝒇𝟏 = 𝟑𝟎𝟎𝑴𝑯𝒛)

𝒎𝒂𝒙𝑩𝟏,𝒄𝒆𝒏𝒕𝒆𝒓
+ (𝒇𝟐)

)

𝟐

  
(10) 

 

Maximum B1+/√Pin and maximum SAR1g obtained for the phantom were evaluated by 

using a circular region of interest (diameter = 90 mm) positioned in the center of the 

phantom as indicated in Figure 4e. 

 

Electromagnetic Field Simulations in Human Voxel Models 

To advance from phantom setups to a human setup EMF simulations were carried 

out using the finite integration of CST Microwave Studio 2012 (CST GmbH, Darmstadt, 

Germany) in two in vivo human voxel models (“Ella” and “Duke”) from the virtual family 

(65). For this purpose a 20-element dipole antenna array (inner radius = 128 mm) 

operating at 1 GHz was positioned around the head of the human voxel model using 

the frequency adjusted tissue parameters shown in Table II (65,66). For comparison an 8-

element bow tie electric dipole antenna array was positioned around Ella’s and Duke’s 

head using the same radius and a frequency of 300 MHz. The length of the 1 GHz dipole 

antenna building block (l = 142 mm) was approximated to the total length of the bow 

tie dipoles (l = 156 mm). Both configurations were driven in-phase (0° phase shift 

between transmit elements) and in a circularly polarized (CP) mode (phase shift 
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between transmit channels: 360°/number of elements). No RF shimming was performed. 

For both configurations B1+/√Pin and local SAR (Pin = 1W) averaged over 1g brain tissue 

(SAR1g) were calculated. The CST legacy SAR averaging algorithm (67) was employed 

to avoid artificially high SAR values near air interfaces (68). The algorithm increases the 

averaging cube at the boundary until a biological mass of 1g is reached. For RF power 

deposition assessment, averaging over 1g was chosen to detail and better capture SAR 

hotspots at higher RF frequencies, which would have been otherwise suppressed for 10g 

averaging volumes. A cylindrical phantom (diameter = 240 mm, length = 400mm) was 

positioned around the head of the human voxel model to keep the simulation setup as 

close as possible to the phantom simulation study. The phantom material (300 MHz: 

ε = 50.3, σ = 0.1 S/m, 1 GHz: ε = 44.1, σ = 0.1 S/m) ensures comparable wave 

propagation and high coupling efficiency into the head of the human voxel model. 
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Results 

 

Electromagnetic Field Simulations in Virtual Phantoms 

Higher RF frequencies reduce the dipole size significantly (Figure 3 d-f, Table I). 

While the dipole length is 41 cm at 300 MHz it is shortened to 14.2 cm at 1 GHz and to 

4.4 cm at 3 GHz. This behaviour affords larger densities for antenna arrays at higher RF 

frequencies. The results of the simulation study are displayed in Figure 4 and Figure 5. The 

transmission field B1+/√Pin decreases with frequency for the single element and 8-

element setup (Figure 5a-b). For the 8-element setup at 300 MHz maximum B1+/√Pin (CP) 

in the center of the phantom was found to be 18.3 µT/√kW (Figure 5a). For the same 

region maximum B1+/√Pin was reduced to 16.9 µT/√kW at 1000 MHz, 6.9 µT/√kW at 

2000 MHz and 1.3 µT/√kW at 3000 MHz (Figure 5a). Maximum SAR1g increased by more 

than 400% for a single element when moving from 300 MHz (SAR1gmax = 3.2W/kg) to 

1 GHz (SAR1gmax = 13W/kg). At 3 GHz peak SAR1g was 55.7W/kg for the single element 

configuration (Figure 5c-d). With the 8-element configuration peak SAR1g (CP) was 

reduced for the same input power to 0.22 W/kg (300 MHz), 1.53 W/kg (1 GHz) and 

7.1 W/kg (3 GHz). For the same configuration the B1+/√SAR1gmax ratio (CP) decreased 

from 1.23 µT/√(W/kg) (300 MHz) to 0.43 µT/√(W/kg) (1 GHz) as shown in Figure 5e. A 

B1+/√SAR1gmax ratio of 0.11 µT/√(W/kg) and 0.02 µT/√(W/kg) was observed at 2 GHz and 

at 3 GHz (Figure 5e).  

The max-element configuration improved B1+/√Pin and lowered SAR1gmax 

significantly. Placing 19 dipole elements (f = 1 GHz) equidistantly around the phantom 

yielded a B1+/√Pin of 19.3 µT/√kW (CP) in the center region of the phantom (Figure 4i and 

Figure 5a), which is superior to B1+/√Pin provided by the 8-element configuration at 

300 MHz (Figure 4f and Figure 5a). SAR1gmax was 0.7 W/kg for the 19-element setup (CP) 

at 1 GHz, which corresponds to ~45% SAR1gmax of the 8-element configuration at 1 GHz. 

In total the 19-element setup improved B1+/√SAR1gmax (CP) to 0.73 µT/√(W/kg) at 1 GHz 

as shown in Figure 5e.  
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A closer examination of the ratio between central SAR and surface SAR (Figure 

5f) revealed that central SAR was higher than surface SAR for frequencies up to 700 MHz 

when using the 8-element setup. Increasing the number of elements to 19 provided a 

center-to-surface SAR ratio of ~1.4 at 1 GHz. This improvement versus the 8-element 

configuration shows that energy can be transmitted efficiently to the center of the 

phantom by the max-element setup using superposition principles. These results also 

indicate that the application of thermal interventions (thermalMR) induced by 

controlled RF power deposition can be potentially performed at 1 GHz and above 

(28,31).  

The relative SAR increase induced by moving to f > 300 MHz is displayed in Figure 

5g-h. For the 8-element antenna setup the relative SAR increase at 1 GHz was found to 

be 3.8 (00) and 8.2 (CP) versus 300 MHz. Increasing the number of dipole elements to 19 

resulted in a relative SAR increase of only 1.8 (00) and 2.8 (CP) at 1 GHz versus 300 MHz.  

At 2 GHz and 3 GHz the maximum number of elements was 22, which presents a 

minor increase in element density versus 1 GHz (Table I). A saturation of the number of 

channels occurs for these frequencies, which is governed by meeting the condition of 

similar decoupling between elements at lower frequencies. Since the antenna distance 

to the object was not changed with increasing frequency, loading effects are less 

pronounced and have smaller influence on decoupling values. In an unloaded case 

(only air surrounding the antennae) and without any adjustments of the 

tuning/matching network, S11 increases from <-30 dB (loaded) to -1.8 dB (unloaded) at 

300 MHz. At 1 GHz unloaded S11 = -12.9 dB, showing still fairly good transmission 

properties with minor reflections. At 3 GHz unloaded S11 = -13.2 dB, which is only a slight 

improvement towards 1 GHz. 

In order to address the reduced imaging volume coverage of the single ring 

shorter dipole antennae at 1GHz, the number of dipole elements along the z-direction 

can be potentially increased (Figure 6). Under similar decoupling restrictions 

(decoupling ≤ -13dB) 57 elements were distributed around the phantom as depicted in 
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Figure 6. For this purpose three rings each accommodating 19 elements tuned to 1GHz 

were applied (Figure 6). This configuration exhibits the same spatial dimensions (inner 

diameter, outer diameter, RF antenna array length) as the 300 MHz 8-element array 

configuration. Driving all 57 elements simultaneously and each ring in CP-mode reduces 

B1+/√Pin by a factor ~√3 and SAR (Pin = 1W) by a factor of 3 versus transmission through 

the central ring only (Figure 6). This leads to overall similar relative SAR increase for both 

driving conditions (Figure 6).  

 

Electromagnetic Field Simulations in Human Voxel Models 

The results of the human voxel model simulations are summarized in Figure 7-10. 

Both antenna array configurations exhibit similar length (Figure 7a,b). The number of 

transmit elements can be increased from 8-elements at 300 MHz to 20-elements at 

1 GHz with a decoupling of Sxy < -14dB. B1+ field distributions for Ella and Duke (in-phase) 

are shown in Figure 7c and Figure 8c for 300 MHz and Figure 7d and Figure 8d for 1 GHz 

respectively. As a characteristic of the in-phase phase setting an E-field hotspot is 

generated in the center of the brain due to constructive interferences of the wave 

propagation. This leads to an H-field void and hence B1+ void at the center with circular 

H-field components around it showing a characteristic B1+ ring around the center with 

the ring size depending on the RF wavelength. Around the cancellation region a B1+/√Pin 

of 13.1 µT/√kW (Ella) and 12.5 µT/√kW (Duke) was obtained for 300 MHz. For the same 

region a B1+/√Pin of 12.3 µT/√kW (Ella) and 12.1 µT/√kW (Duke) was observed at 1 GHz. For 

the circular polarized mode (Figure 9 and Figure 10), constructive interference of B1+ 

occurred in the center of the head (Figure 9c and Figure 10c) along with the 

characteristic E-field or SAR ring pattern (Figure 9h and Figure 10h). At 300 MHz 

maximum B1+/√Pin in the center was 18.5 µT/√kW (Ella) and 20.1 µT/√kW (Duke). At 1 GHz 

a B1+/√Pin of 17.5 µT/√kW (Ella) and 17.6 µT/√kW (Duke) was observed. These findings 

demonstrate that even at higher RF frequencies, high B1+/√Pin is feasible in the center of 

the brain. 3D SAR1g distributions are depicted in Figure 7e-f (Ella) and Figure 8e-f (Duke) 
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for in-phase and Figure 9e-f (Ella) and Figure 10e-f (Duke) for CP-mode. At 300 MHz 

maximum SAR1g of 0.78 W/kg (Ella) and 0.71 W/kg (Duke) was found in the center of 

the brain for the in-phase mode (Figure 7g and Figure 8g). For the CP mode at 300 MHz 

maximum SAR1g of 0.49 W/kg (Ella) and 0.44 W/kg (Duke) was found in regions close to 

the surface of the head (Figure 9g and Figure 10g). At 1 GHz central SAR1g was 

0.76 W/kg (Ella) and 0.92 W/kg (Duke). Regions at the surface of the head showed a 

SAR1g of 0.88 W/kg (Ella) and 0.89 W/kg (Duke) for the in-phase mode and 0.96 W/kg 

(Ella) and 0.90 W/kg (Duke) for the CP mode (Figure 7-10g-h). The 20-element array 

enabled a more uniform surface SAR distribution due to the many element setup, which 

reduces SAR1g compared to an 8-element setup at 1GHz. Overall, the relative SAR 

increase for 1 GHz vs. 300 MHz for the in-phase mode was 1.3 (Ella) and 1.4 (Duke). In the 

CP mode the relative SAR increase was 2.2 (Ella) and 2.7 (Duke). Notwithstanding the B1+ 

voids and lower B1+ homogeneity at 1 GHz (e.g. Figure 7d), RF power can be efficiently 

focused to the center of the brain by the 20-element setup which results in high B1+/√Pin 

by means of constructive interference of the waves propagated. This behaviour relaxes 

the SAR penalties and allows B1+/√SAR1gmax properties similar to the 8-element 

configuration employed at 7.0 T. Loading conditions using the bow tie antennae at 

300MHz did not change significantly (S11 < -19.6 dB) when Ella was replaced with Duke 

(without alteration of the tuning/matching network).  

 

RF Power Loss Considerations 

Our investigations on transmit efficiency B1+/√Pin are referring to the accepted 

power at the antenna port. Eventually transmit efficiency will be defined by the RF 

power output of the RF power amplifier. In addition to the investigated power losses in 

tissue that mitigate transmit efficiency with increasing frequency, power losses increase 

in cables, RF antennae and RF components (e.g. capacitors) due to a reduced skin 

depth and an increase in dissipation factor (69). On top of these power losses it is 

expected that radiation losses will increase with increasing frequency (70,71). The 
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radiation power losses using the bow tie electric dipole antennae loaded with the voxel 

model Ella in full bore simulations were 8% (00) and 13% (CP) at 300 MHz and increased 

to 31% (00) and 29% (CP) for the max-element configuration at 1GHz (Figure 11). 
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Discussion 

Our analysis of the electrodynamics relative to human tissue properties and RF 

antennae configurations appropriate for very high MRI magnetic fields focused on 

frequencies ranging from 300 MHz (7.0 T) to 3 GHz (70.0 T). Our numerical 

electromagnetic field simulations add to the literature by detailing transmission field and 

specific absorption rate distributions of dipole and bow tie antenna arrays placed 

around phantoms and in vivo human voxel models. Our findings show that the 

combination of lower B1+/√Pin and increased local SAR at higher frequencies necessitate 

a higher RF power deposition to achieve the same flip angle at higher fields. Our 

simulations indicate that transmission fields suitable for 1H MRI of the human brain can 

be achieved at 1 GHz (23.5 T) from the theoretical point of view. Improved decoupling 

between elements at higher frequencies facilitates an enhanced transmit channel 

density around the human head. This approach affords more equally distributed RF 

power over the surface of the target while constructive summation of each propagated 

wave increases B1+/√Pin in the center of the human head. 

Another finding of our study is that if benchmarked against the 300 MHz baseline, 

the increase in RF power deposition per generated B1+ field is less than the traditionally 

cited SAR~B02 relationship (72). At 1 GHz a relative SAR increase of 3.8 (00) and 8.2 (CP) 

versus 300 MHz was obtained in the phantom for an 8-element antenna configuration. 

Enlarging the number of dipole elements placed around the same phantom resulted in 

a relative SAR increase of only 1.8 (00) and 2.8 (CP) at 1 GHz versus 300 MHz. In short, our 

results show that the SAR increase obtained for frequencies up to f = 1 GHz is even 

below a SAR~B0 relationship for dedicated RF antenna array designs. While keeping 

decoupling below -13dB the number of dipole antennae equally distributed in the x-y 

plane could be increased from eight elements at 300 MHz to nineteen elements at 

1 GHz. In a similar way dipole shortening at higher RF frequencies can be put to good 

use to place more elements along the z-direction. This approach supports the 
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distribution of 57 elements (3 rings each accommodating 19 elements tuned to 1 GHz) 

instead of 8-elements at 300 MHz (decoupling ≤ -13dB) while both array configurations 

exhibit similar volume coverage (same inner/outer radius and same total length of the 

antenna array).  

Our human voxel model studies confirmed that SAR penalties at higher frequencies 

can be offset by using a high density array of dipole antennae. This setup facilitated 

B1+/√SAR1gmax properties similar to an 8-element configuration employed at 7.0 T. The 

simulations revealed an increase in relative SAR of < 2 (00) and < 3 (CP) at 1 GHz vs. 

300 MHz. Our findings are in accordance with previous numerical simulations or 

experimental results obtained at 4 T, 7 T, 8 T and 11.7 T (58,73-75). For example EMF 

simulations in head models reported that the slope of absorbed RF power decreases 

with increasing frequency covering a range from 64 MHz (1.5 T) to 345 MHz (8.0 T) (75). 

Ultimate intrinsic SAR considerations showed SAR flattening or slight reduction with 

increasing frequencies ranging from 42 MHz (1.0 T) to 500 MHz (11.7 T) (58).  

Our voxel model simulations make use of a dielectric surrounding the imaging 

volume to allow for a fair comparison with the phantom simulation study. While the 

dielectric approach used in this study can be conveniently implemented for imaging of 

the extremities and other target regions outside of the head, minor adjustments to the 

geometry and shape of the dielectric need to be made for human head imaging to 

assure patient comfort. Of course, the proposed RF antenna array can be also 

operated without a dielectric which might influence B1+/√SAR. Another practical 

implication of eliminating the dielectric is an increase in RF antenna sensitivity to loading 

effects, which can be reduced by e.g. geometrically adjustable antennas (35,76). 

It is a recognized limitation that transmission field uniformity was not included within 

the scope of this study. Obviously, a broad spectrum of methodology has been 

established to mitigate transmission field non-uniformity including but not limited to 

static/dynamic B1+ shimming approaches (77-79), RF excitation using time interleaved 
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acquisition of modes (80), multi-spoke parallel transmission (81) or RF pulse design (82). 

This methodology is compatible with the RF coil configurations proposed in this study.  

The implications of our research into the electrodynamic constraints of high RF 

frequencies are not limited to MR. They are relevant to electron paramagnetic 

resonance (EPR) imaging which is considered to be a potential contributor to the 

understanding of the in vivo biochemistry particularly in the study of free radicals (83). 

On the clinical side tissue redox states could be examined in areas not explored 

heretofore (e.g. concussion, heart failure, cancer).  

The progress in this work provides encouragement for the MR physics, (biomedical) 

engineering and imaging communities on the road to a human 23.5 T MR system. 

Admittedly, a 23.5 T class human MR system is, for the moment, merely a vision. It is 

nonetheless a vision that should inspire basic research in several directions, including 

numerical simulations, as a way of preparing the ground for predictable future 

advances in MR technology. The problems raised so far have already motivated new 

research for improvements in RF coil concepts, and advances in superconductors. 

Apart from the technology developments, active research is required for understanding 

the physiological effects of very high magnetic fields including the need for detailing 

the field dependencies of magneto-hydrodynamic effects and forces on tissues with 

differing magnetic susceptibilities at B0>14.0 T.  

 

Conclusion 

While novel magnet technology will surely continue to develop in the future, its uses 

might well be constrained by technical challenges and practical obstacles. Here we 

show that MRI of the human brain is feasible from an electrodynamic and theoretical 

standpoint utilizing frequencies larger than 500 MHz, providing that multi-channel dipole 

antennae are arranged accordingly. This should render investigations with MRI at 23.5 T 

and EPR at 1 GHz possible. This very preliminary finding opens the door on further 

explorations that might be catalyzed into a 20 Tesla class human MR system.  
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Figure Captions 

 

Figure 1: Schematic of the influence of an increased RF frequency on physical and MR 

imaging parameters. Disadvantages like decreasing B1+/√Pin amplitude and B1+ 

homogeneity and increasing SAR can be offset by antenna array design using dipoles. 

 

Figure 2: Comparison of E- (left) and B1+-field (right) transmission patterns of a loop (top) 

and a dipole (bottom) antenna at 1 GHz in a rectangular phantom (εr = 44.1, 

σ = 0.1 S/m). To guide the eye near-field, transition and far-field zones are highlighted. 

The energy transmission of the loop element is not directed towards a single target (a), 

which is also reflected in the B1+ pattern (b). The E-field pattern of the dipole can be 

approximated by a harmonic linear polarized plane wave propagating perpendicular 

to the long axis of the dipole (c). Unlike the loop element the B1+ transmission pattern of 

the dipole shows good directivity with the Poynting vector being perpendicular to the 

main axis of the dipole. 

 

Figure 3: top: Schematic of the simulation setup of a (a) single element, (b) 8-element 

and (c) max-element dipole antenna array (exemplary shown for f = 1 GHz) positioned 

symmetrically around a phantom (length = 600 mm). bottom; Comparison of the dipole 

length for (d) 300 MHz (length = 410 mm), (e) 1 GHz (length = 142 mm) and (f) 3 GHz 

(length = 44 mm). 

 

Figure 4: Simulated (a-l) B1+ and (m-r) SAR distributions of a 1-element, 8-element and 

max-element dipole antenna array. At higher RF frequencies the size of the dipole 

antennae is reduced (a-c). The dipole shortening affords an increased current 

distribution per input power and higher B1+/√Pin per volume as demonstrated for an 8-

element dipole array at a) 300 MHz, b) 1 GHz and c) 3 GHz. B1+ distributions are shown 

for a central axial slice using 1-, 8- and max-element arrays (CP mode) at d-f) 300 MHz, 
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e-h) 1 GHz and i-k) 3 GHz. Comparison of the SAR (Pin=1W) distribution (in-phase mode) 

of m,p) 1-element, n,q) 8-element and o,r) max-element dipole antenna arrays at 

1 GHz. While surface SAR can be reduced significantly using a higher number of transmit 

elements under the condition < -13 dB, constructive interferences of the wave 

propagation in the phantom demonstrates that SAR/Pin and B1+/√Pin at the center can 

be increased. Maximum B1+/√Pin and maximum SAR/Pin for CP and in-phase mode for all 

frequencies were evaluated inside a circular region of interest (diameter = 90 mm) 

positioned in the center of the phantom as indicated by the dashed circle in e).  

 

Figure 5: EMF simulation results of the phantom study for discrete frequencies ranging 

from f = 300 to f =  3000 MHz. a) Maximum B1+/√Pin in a central region of the phantom, b) 

ratio B1+-center/B1+-surface, c-d) maximum SAR1g for an input power of Pin = 1 W, e) 

B1+/√SAR1gmax, f) center vs. surface SAR ratio and g-h) relative SAR increase vs. 300 MHz. 

 

Figure 6: Comparison of SAR (Pin = 1W) (top) and B1+/√Pin (bottom) obtained for an 8-

element dipole antenna array at 300 MHz (left) with a same sized (inner and outer 

diameter, RF antenna array length) 57-element dipole antenna array at 1 GHz (middle, 

right). (left) B1+ and SAR distribution (CP) of the 8-element array at 300 MHz, (middle) B1+ 

and SAR distribution (CP) of the 57-element array at 1 GHz transmitting through all 

elements and (right) B1+ and SAR distribution (CP) of the 57-element array at 1 GHz 

where transmission is constrained to the central ring consisting of 19 dipole antennae. 

Please note that decoupling for both antenna arrays is Sxy≤ -13dB. 

 

Figure 7: Comparison of an a) 8-element bow tie dipole and a b) 20-element dipole 

antenna array positioned around the voxel model “Ella”. An in-phase (0° phase shift 

between transmit elements) phase setting was employed. c-d) B1+ distributions in an 

axial slice of maximum central B1+. SAR1g distribution (Pin = 1W) at e-f) the surface of the 

voxel model and g-h) through the axial slice of maximum SAR1g. The circle in g-h) 
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illustrates the phantom material (Table II) positioned around Ella’s head. Please note 

that the shoulders of Ella were included in the EMF simulations.  

 

Figure 8: Comparison of an a) 8-element bow tie dipole and a b) 20-element dipole 

antenna array positioned around the voxel model “Duke”. An in-phase (0° phase shift 

between transmit elements) phase setting was employed. c-d) B1+ distributions in an 

axial slice of maximum central B1+. SAR1g distribution (Pin = 1W) at e-f) the surface of the 

voxel model and g-h) through the axial slice of maximum SAR1g. The circle in g-h) 

illustrates the phantom material (Table II) positioned around Duke’s head. Please note 

that the shoulders of Duke were included in the EMF simulations. 

 

Figure 9: Comparison of an a) 8-element bow tie dipole and a b) 20-element dipole 

antenna array positioned around the voxel model “Ella”. A circular polarized phase 

setting (phase shift between transmit channels: 360°/number of elements) was 

employed. c-d) B1+ distributions in an axial slice of maximum central B1+. SAR1g 

distribution (Pin = 1W) at e-f) the surface of the voxel model and g-h) through the axial 

slice of maximum SAR1g. The circle in g-h) illustrates the phantom material (Table II) 

positioned around Ella’s head. Please note that the shoulders of Ella were included in 

the EMF simulations. 

 

Figure 10: Comparison of an a) 8-element bow tie dipole and a b) 20-element dipole 

antenna array positioned around the voxel model “Duke”. A circular polarized (phase 

shift between transmit channels: 360°/number of elements) phase setting was 

employed. c-d) B1+ distributions in an axial slice of maximum central B1+. SAR1g 

distribution (Pin = 1W) at e-f) the surface of the voxel model and g-h) through the axial 

slice of maximum SAR1g. The circle in g-h) illustrates the phantom material (Table II) 

positioned around Duke’s head. Please note that the shoulders of Duke were included 

in the EMF simulations. 
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Figure 11: Comparison of EMF simulations obtained for the human voxel model Ella 

including or excluding the bore (inner diameter = 684mm) at 300 MHz and at 1 GHz. EMF 

simulations were performed for a a) 8-element bow tie dipole array at 300 MHz and b) 

the 20-element dipole array at 1 GHz. c-d) Absolute E-field distribution (CP) without the 

bore for 300 MHz and 1 GHz. e-f) Absolute E-field distribution (CP) with the bore present 

at 300 MHz and 1 GHz. Radiation losses increase from 13% (e) at 300 MHz to 29% at 

1 GHz (f). 
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Tables 

 

 

frequency 

[MHz] 

permittivity conductivity 

[S/m] 

antenna length 

[mm] 

max channels  

300 50.3 0.52 410 8 

400 48.2 0.57 290  

500 46.9 0.59 260  

600 46.1 0.61 220  

700 45.4 0.66 195  

800 44.9 0.70 172  

900 44.4 0.73 157  

1000 44.1 0.77 142 19 

1200 43.5 0.89 117  

1400 43 0.92 102  

1600 42.6 1.01 87  

1800 42.2 1.11 77  

2000 41.9 1.2 69 22 

3000 40.5 1.79 44 22 

 

Table I: Electromagnetic properties (permittivity and electrical conductivity) of the 

phantom used in the simulation study together with the total dipole antenna length. The 

electromagnetic properties were determined assuming a 60:40 white and grey matter 

ratio at the given frequencies (66). The inner diameter of all antenna arrays was 196mm.  
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Tissue permittivity electrical conductivity 

[S/m] 

density 

[kg/m³] 

300MHz 1GHz 300MHz 1GHz  

white matter 43.8 38.6 0.41 0.62 1041 

grey matter 60 52.3 0.69 0.99 1045 

blood 65.7 61.1 1.32 1.58 1060 

cerebrospinal fluid 72.7 68.4 2.22 2.46 1007 

skull 13.4 12.4 0.08 0.16 1908 

phantom 50.3 44.1 0.1 0.1 - 

 

Table II: Representative electromagnetic tissue properties used in the human voxel 

model simulations. All other parameters used for the voxel model Ella can be found in 

(66). 
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