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Abstract 

Peripheral macrophages and resident microglia constitute the dominant glioma-infiltrating cells. 

The tumor induces an immunosuppressive and tumor supportive phenotype in these glioma 

associated microglia/brain macrophages (GAMs). A subpopulation of glioma cells has stem cell 

properties such as self-renewal, multipotency and act as glioma stem cells (GSCs). In the present 

study we explored the interaction between GSCs and GAMs. Using CD133 as a marker of 

stemness, we either enriched for or deprived the mouse glioma cell line GL261 of GSCs by 

FACS. Over the same period of time, 100 CD133+ GSCs had the capacity to form a tumor of 

comparable size to the ones formed by 10000 CD133- GL261 cells. In IL-6-/- mice, only tumors 

formed by CD133+ cells were smaller when compared to wild-type. After stimulation of primary 

cultured microglia with conditioned medium from CD133 enriched GL261 glioma cells, we 

observed an upregulation in microglial IL-6 secretion while medium from CD133 deprived 

gliomas did not trigger this release. This upregulation was selective for IL-6 as compared to a 

battery of other cytokines (e. g. TNF-α or IL-4). This upregulation depended on Toll-like 

receptor (TLR) 4, a pattern recognition receptor which can trigger pro-inflammatory cytokine 

release, since the effect was abolished in the TLR4-/- mouse, but not in other strains deficient for 

other TLRs. Our results show that GSCs, but not the bulk glioma cells, initiate microglial IL-6 

secretion via TLR4 signaling and that IL-6 regulates glioma growth by supporting GSCs. Using 

human glioma tissue we could confirm the finding that GAMs are the major source of IL-6 in the 

tumor context.  
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Introduction 

Glioblastoma (GBM) is the most common and most malignant primary brain tumor in adults with 

high recurrence rates even after a complete resection. New GBM therapeutic strategies are 

desperately needed, requiring insights into the biological and molecular mechanisms controlling 

glioma growth. GBMs are complex tumors that display cellular heterogeneity within the tumor 

mass. Several studies suggest that GBMs contain a subpopulation with tumorigenic potential and 

stem cell characteristics(1-5). These glioma stem cells (GSCs) play key roles in the growth, 

invasion, angiogenesis and immune evasion of glioma(6, 7). They have also been identified as the 

major cellular entity for conferring chemo- and radioresistance(3, 8, 9), and have thus emerged as 

a new therapeutic target. GSCs express neural stem cell markers such as nestin, SOX2, and 

Musashi-1(2). In addition, CD133 is an enrichment marker for GSCs, however several studies 

have demonstrated its limitations as a specific marker(10, 11). A functional feature of GSCs is 

their ability to form neurospheres in the culture medium containing B27 supplement and defined 

growth factors, such as epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). 

To identify GSCs, we tested for their ability to form neurospheres in combination with cell 

sorting using CD133.  

A perivascular niche has been proposed for GSC that determines the characteristics of GSCs and 

controls the malignant behaviour of tumor cells(12). However, there is only limited knowledge 

about the composition of the GSC niche. Inflammatory mediators and inflammatory cells are 

indispensable components of the neoplastic microenvironment(13). Glioma-associated microglia 

(GAMs), the brain-resident macrophages, together with blood-borne monocytes are the 

predominant cells, contributing up to 30% of the total tumor mass(14) and their abundance is 

positively correlated with glioma malignancy(15). Tumor secreted CXCL12 (stromal cell–

derived factor-1, SDF-1) is a potent microglia and macrophage recruiting molecule, especially for 
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attracting GAMs to hypoxic areas (16). Activation of SDF-1 and its receptor CXCR4 have been 

shown to promote macrophage mobilization and tumor revascularization (17). Despite their 

cytotoxic and phagocytic potential(18), these GAMs rather support tumor growth. Depletion of 

microglia reduced glioma invasion in organotypic brain slices(19) and also decreased glioma 

expansion in vivo(20). Microglia release many factors, including extracellular matrix proteases 

and cytokines, which directly or indirectly influence tumor migration and proliferation(21). We 

have previously shown that glioma-triggered microglial MT1-MMP and MMP9 expression via 

Toll like receptor (TLR)2 is one of the mechanisms for microglia-induced tumor expansion(20, 

22, 23). TLRs are the main members of the pattern recognition receptor (PRR) family that are 

necessary for the induction of an innate immune response to damage-associated molecular 

patterns (DAMPs) through the activation and maturation of macrophages and dendritic cells(24). 

Microglia have been reported to be the predominant TLR-expressing cell type in the normal 

CNS(25) as well as in the glioma tissue(23). Microglia/brain macrophages freshly isolated from 

human glioma tissue also express substantial levels of TLR2, TLR3 and especially TLR4(26). 

Interleukin (IL)-6 is a cytokine secreted after TLR activation and its expression has been shown 

to correlate with glioma invasiveness(27). It also plays a major role in the response to injury or 

infection and is involved in the immune response, inflammation, and hematopoiesis(28). Glioma 

cells have been reported to secrete IL-6(29, 30) and express IL-6 receptors(27). Glioma-derived 

IL-6, working together with other tumor-secreted factors such as TGF-ß and PGE2, polarize 

glioma-infiltrating microglia toward an anti-inflammatory phenotype(21) and microglia-derived 

IL-6 has been reported to induce glioma cell migration and invasiveness(30).   

In this research we have investigated the link between microglial IL-6 production, TLR 

expression and the potential of tumor stem cells to form glioma by utilizing two glioma murine 

models and human samples. 
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Materials and Methods 

 

Animals  

All experiments were carried out using C57BL/6J WT mice (Charles River Laboratories, 

Sulzfeld, Germany) or TLRs 2, 4, 7, 9 and MyD88-/- on a C57BL/6J background. The TLR 

knockout mice were generated by Dr. Shizuo Akira and colleagues from the Osaka University, 

Japan and obtained from Oriental BioServices Inc., Japan(22). The generation of IL-6 knockout 

mice (IL-6-/-) has been described in detail previously(31). Briefly, IL-6 deficient mice had been 

backcrossed on a C57BL/6J background for >10 generations(32). To broaden the relevance of 

our findings, we employed another murine model where the tumor is initiated by the 

overexpression of PDGFb in Nestin-expressing cells in vivo: Ntv-a/Ink4a-Arf-/- mice develop 

high-grade gliomas, which reflect features of the pro-neural subtype in human GBMs(33-35), 6 to 

8 weeks following intracranial injection of RCAS-PDGFb-producing DF-1 chicken fibroblast 

cells at 4.5 to 10 weeks of age(36, 37). The mice were bred and maintained in the animal housing 

facilities of the Max Delbrück Center for Molecular Medicine and Charité university hospital 

(Berlin, Germany) as per rules of the local governmental institutions (LaGeSo, G 0268/10, G 

0343/10, G 0438/12). The mice were housed with a 12 h/12 h light-dark cycle and received food 

and water ad libitum. 

 

Human materials 

All human glioma materials in this study were obtained from the Department of Neurosurgery at 

Charité University Hospital according to the rules of the Ethical Committee (Charité, 

EA4/098/11). 
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Cell culture  

The murine GL261 glioma cell line (which is isogenic to C57BL/6J mice; National Cancer 

Institute, Frederick, MD), rat glioma cell line C6 (American Type Culture Collection, ATCC, 

Teddington, UK) and human glioma cell line U87 (ATCC) were grown in DMEM with 10% 

FCS, 200 mM glutamine, 100 U/ml penicillin, and 100 ng/ml streptomycin (Invitrogen, 

Darmstadt, Germany). EGFP GL261 cells were generated as previously described(22). 

NCH421K is a primary human glioblastoma cell line, which is highly enriched in CD133+ 

GSCs(38). NCH421K cells (CLS Cell Lines Service GmbH, Eppelheim, Germany) were grown 

in stem cell medium consisting of Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12 

(DMEM / F-12; Invitrogen, Carlsbad, CA) containing supplement (2% B27; Invitrogen), growth 

factors (20ng/ml EGF and bFGF; from PeproTech, Hamburg, Germany) and additives (100 U/ml 

penicillin, and 100 mg/ml streptomycin; all from Invitrogen). Neonatal microglial cells were 

prepared from WT, MyD88-/- and TLRs 2, 4, 7 and 9-/- mice according to previously established 

protocols(22). Microglia were also cultured from adult mice (P49–P56) as previously described 

in detail(39). Briefly, cortical and midbrain tissue was freed of blood vessels and meninges in 

Hank’s balanced salt solution (HBSS), mechanically dissociated into 1-mm3 pieces and 

trypsinized in 1% trypsin and 0.05% deoxyribonuclease for 5 min at room temperature, as 

described for neonatal microglia. Digested tissue was dissociated using a fire-polished pipette and 

washed twice in HBSS. Cells were then plated on a confluent monolayer of P0 astrocytes in 75-

cm2 flasks. The feeder layer of astrocytes was depleted of neonatal microglial cells using 

clodronate (200 mg/ml) before the adult microglia were added. The adult mixed glial cultures 

received fresh complete DMEM medium every other day and were treated with 33% L929-

conditioned medium after 7 days or once cells became confluent. Microglia were shaken off 1 
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week later and were used for experiments within 1 day of plating. For analysis of the 

inflammatory response in vitro, microglia were plated at 3x104 cells/96-well. All cells were 

maintained in a 37°C incubator with a 5% CO2 humidified atmosphere. The TLR ligands 

lipopolysaccharide (LPS) and Poly I:C were obtained from Invivogen (San Diego, USA).  

 

Isolation and cell culture of glioma stem cells 

Mouse glioma stem cells were isolated from the GL261 cell line as previously described(40). In 

summary, bulk cultures of GL261 cells were grown in stem cell medium for at least 4-6 weeks. 

To broaden the relevance of our findings, we employed the RCAS-PDGFb murine tumor model. 

RCAS-PDGFb tumors were excised from tumor brains using a scalpel, minced, and incubated 

with Accutase (eBioscience, San Diego, CA, USA) for 15 minutes at 37°C. Tissue pieces were 

mechanically dissociated using a 1 ml pipette and washed in Dulbecco modified Eagle medium 

(DMEM; Sigma-Aldrich, St. Louis, MO, USA). Cells were passed through a 70 μm cell strainer 

and seeded into a T25 cell culture flask. Cells were grown in stem cell medium. Glioma stem 

cells were isolated by fluorescence-activated cell sorting (FACS) using Phycoerythrin (PE)-

conjugated anti-mouse CD133 antibody (Miltenyi Biotec, Bergisch Gladbach, Germany) and 

Allophycocyanin (APC)-conjugated anti-mouse CD133 (eBioscience,) or by magnetic activated 

cell sorting (MACS) using murine CD133 magnetic beads according to the manufacturer’s 

instructions (Miltenyi Biotec). CD133 expression level was analyzed by FACS and the 

percentage of CD133 cells in the CD133+ population was more than 90%, while in the CD133- 

population was less than 1% as previously described(40) (Supplemental Digital Content 1 and 2). 
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Preparation of glioma-conditioned medium  

Neurosphere/adhesive cultured GL261 cells or CD133+/CD133- FACS sorted GL261 and RCAS 

cells were seeded at a density of 0.5x106 cells in Greiner CELLSTAR® cell culture dishes (diam. 

× H 100 mm × 20 mm; Sigma-Aldrich, Munich, Germany). The stem cell culture medium was 

left on the cells for 16-18h after seeding before being harvested. The conditioned medium was 

collected, briefly centrifuged to remove cell debris and filtered using a 0.2 µm filter (Sartorius 

Stedim Biotech GmbH, Göttingen, Germany) and used for all further experiments. Protein 

concentrations were measured in the conditioned media using Pierce BCA protein assay kit 

(Thermo Scientific, Rockford, IL). The protein concentration in the conditioned medium was 

equal for all conditions (Supplemental Digital Content 3). 

 

Multiple analyte detection and ELISA 

Multiple analyte detection of cytokines and chemokines in supernatants was performed using 

FlowCytomix (Bender MedSytems, Burlingame, USA). The immunoassay is a bead-based 

method to detect the concentrations of up to 20 analytes in one sample using a flow cytometer. 

The mouse/rat basic kit was used in combination with mouse simplex kits. Inflammatory 

mediators analyzed by the FlowCytomix assay included IL-13, IL-22, IL-2, IL-5, IL-6, IL-1β, IL-

23, IFN-γ, TNF-α, GM-CSF, IL-4 and IL-17. Additionally IL-6, TNF-α and IL-1β concentrations 

in cell culture supernatants were measured by enzyme-linked immunosorbent assay (ELISA) 

using the BD OptEIA™ Set Mouse IL-6, TNF-α and IL-1β (BD Biosciences, San Diego, USA) 

according to the manufacturer’s manual. 
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TLR4 antibody treatment 

For the treatment with a TLR4 antibody, anti-mouse MTS510 or isotype control (both from 

eBioscience) was applied to the medium after seeding primary cultured neonatal microglia to 

incubate overnight, and new antibody or isotype was added when the medium was changed to 

stimulate with GCM. 

 

Magnetic cell separation of human brain tumor tissue 

Glioma associated brain microglia/macrophages were isolated from the human tumor resected 

tissues. Fresh tissue was dissociated immediately after resection using the neural tissue 

dissociation kit (MiltenyiBiotec, Bergisch Gladbach, Germany). Erythrocytes were lysed by 

adding 5 ml ammonium chloride solution for 10 min. Next, cells were resuspended in PBS 

containing 0.5% bovine serum albumin and 2mM ethylenediaminetetraacetic acid (EDTA). 

Magnetic sorting for CD11b+ cells was then performed using a CD11b MicroBead kit 

(MiltenyiBiotec) following the manufacturer’s instruction. Magnetic activated cell sorting 

(MACS) into CD11b- and CD11b+ enriched cell populations was carried out using several MACS 

columns in a series. Both CD11b- and CD11b+ fractions were collected. A purity check was 

performed after MACS separation by flow cytometry analysis of a small fraction of the sorted 

populations. 

 

Real-time qPCR 

Total RNA was isolated from microglia obtained from WT mice, as well as from CD133+ and 

CD133- FACS sorted GL261 cells and MACS purified microglia from human GBM tissue using 

Invitrap Spin Universal RNA mini kit (Invitek GmbH, Berlin, Germany). Quality and yield were 

determined by NanoDrop ND-1000 (Thermo Scientific, Schwerte, Germany). First strand cDNA 
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synthesis of RNA was done using the Superscript II (Invitrogen) reverse transcriptase according 

to the manufacturer’s instructions. For mRNA transcription, oligo-dT primers (Invitrogen) were 

used. Gene amplification was done in duplicates using SYBR Green PCR mix (Applied 

Biosystems, Foster City, USA) with the following PCR conditions: 95°C for 10 min, 95°C for 15 

sec, 60°C for 30 sec, 72°C for 15 sec for 40 cycles using the 7500 Fast Real-Time PCR System 

(Applied Biosystems). Sequences of primers used were: sense 5 ’ - 

GCTGGCAGCACCCTGAGACC-3’ , anti-sense 5’ -TCCAAGGAGTGCCCGTGACC-3’ 

(mouse IL-6R); sense 5 ′ - AGAAGGCCAGCAGCATCATT-3 ′ , anti-sense 5 ′ - 

TGACAGACCCAGAAACGAGC-3 ′  (mouse gp130); sense 5'-

CCCTGAAGTACCCCATTGAA-3', anti-sense 5'-GTGGACAGTGAGGCCAAGAT'-3’ (mouse 

β sactin); sense 5’-GTAGCCGCCCCACACAGA-3’, anti-sense 5’-

CATGTCTCCTTTCTCAGGGCTG3’ (human IL-6) and sense 5'-

CACCATTGGCAATGAGCGGTTC-3', anti-sense 5'-AGGTCTTTGCGGATGTCCACGT-3’ 

(human β-actin). Changes in human IL-6, mouse IL-6R and mouse gp130 gene expressions were 

analyzed by the comparative 2(-ΔΔCt) method relative to β-actin gene expression levels. For 

assessing CD133+-derived TLR4-ligands, gene amplification was performed in triplicates using 

SYBR Green PCR mix (Applied Biosystems, Foster City, USA) with the following PCR 

conditions: 50°C for 2min, 95°C for 10min, 95°C for 15 sec, 60-64°C for 30 sec, 72°C for 1min 

for 40 cycles using the 7500 Fast Real-Time PCR System (Applied Biosystems). Primer 

sequences: sense 5´- AGTACGTGGCCCAAGAGTTG-3´, anti-sense 5´- 

AGGGCATTTGTGGTTCCAGT-3´ (mouse fibrinogen α-chain); sense 5´- 

ATGACCATCCACAACGGCAT-3´, anti-sense 5´- GATCCGTAGTTACCCAGCCG-3´(mouse 

fibrinogen β -chain); sense 5´- CAACCCCCAAAGCCAGGTAT-3´, anti-sense 5´- 
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GCAGCGCTTCGTATTTCACA-3´(mouse fibrinogen γ –chain); sense 5`- 

GATGGTGAAGACGACACTGC-3´, anti-sense 5´- GAATGGCTGTGGACTGGATT-3´(mouse 

Fibronectin EDA); sense 5´- GGGAGCCTTGGAAAGTGTGT-3´, anti-sense 5´- 

GCTTCTCTTCATGTTTGCCTGA-3´(mouse Hsp22);sense 5´- 

AAACAAGCATCGGGATTCCAG-3´, anti-sense 5´- ACAATGCAGTCTTCCGTGGTG-

3´(mouse Lactotransferrin); sense 5´- ATTTCCGGTCAGTGCAGGTAGT-3´, anti-sense 5´- 

GGTCAAAGCCATTCTCGAAGAT-3´(mouse neutrophil elastase); sense 5´- 

GTAATTGTGTCCACCTTCCAC-3´, anti-sense 5´- AGT TGCTCATCACCTTCTGGA-

3´(mouse S100A4); sense 5´- CCGTCTTCAAGACATCGTTTGA-3´, anti-sense 5´- 

GTAGAGGGCATGGTGATTTCCT-3´ (mouse S100A8); sense 5´- 

CCCTGACACCCTGAGCAAGAAG-3´, anti-sense 5´- 

TTTCCCAGAACAAAGGCCATTGAG-3´ (mouse S100A9); sense 5´- 

GTTTGGAGACCGCAGAGAAGAA-3´, anti-sense 5´- TGTCCCCATATCTGCCCATCA-

3´(mouse tenascin-C);. Fold changes in CD133+ gene expression compared to respective CD133-

 samples were analyzed by the comparative 2(-ΔΔCt) method relative to β-actin gene expression 

levels.  

 

Flow cytometry 

Fluorescence-activated cell sorting (FACS) analysis was carried out on a LSR Fortessa 5Laser 

(BD Biosciences, Erembodegem, Belgium). Cell sorting was carried out using a FACS-Aria-II 

(BD Biosciences). Antibodies for fluorescein isothiocyanate (FITC)-conjugated anti-human 

CD11b, Allophycocyanin (APC)-conjugated anti-mouse CD133, eFluor® 660 conjugated anti-

human/mouse Sox2, Alexa Fluor® 488 conjugated anti-mouse Anti-Glial Fibrillary Acidic 
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Protein (GFAP), Phycoerythrin (PE) conjugated anti-mouse Notch1 and matched isotype controls 

were all from eBioscience, PE-conjugated anti-mouse CD133 and matched isotype control were 

from Miltenyi Biotech. Data were analyzed using FlowJo software (Treestar, Ashland, OR, 

USA). 

 

In vivo glioma implantation  

Wild type and IL-6-/- mice were used for the in vivo studies to investigate glioma expansion. To 

broaden the relevance of our findings, 4.5 to 10-week-old (Ntv-a/Ink4a-Arf-/- mice for DF-1 

RCAS-PDGFb injection) were used to culture RCAS GSCs. Surgical procedures were performed 

as described(41, 42). Briefly, mice were anesthetized, immobilized and mounted onto a 

stereotactic frame (David Kopf Instruments, Tujunga, USA) in the flat-skull position. After skin 

incision 1 mm anterior and 1.5 mm lateral to the bregma, the skull was carefully drilled with a 

dental drill or a 20G needle tip. A 1µl syringe with a blunt tip (Mikroliterspritze 7001N, 

Bonaduz, Switzerland) was inserted to a depth of 4 mm and retracted to a depth of 3 mm from the 

dural surface into the right caudate putamen. Over 2 minutes, 1 µl glioma cell suspension (2x104 

cells/µl of EGFP-GL261, 1x104 CD133- or 100 CD133+ GL261 cells, 4x104 transfected DF-1 

cells or 5x104 RCAS-PDGFb tumor cells) was slowly injected into the brain. Coordinates for 

injections of DF-1 cells and RCAS-PDGFb tumor cells into Ntva/Ink4a-Arf-/- mice, respectively 

were bregma 1.5 mm anterior, lateral 0.5 mm (right of midline), and a depth 2.0 mm from the 

dural surface. The needle was then carefully retracted from the injection canal and the skin was 

sutured with a surgical sewing cone (Johnson & Johnson International, Langhorne, USA). After 

surgery, the mice were kept warm until awake. Mice were monitored daily for the first two weeks 

and twice a day starting from day 15 post-injection for symptoms of tumor development 
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(lethargy, hydrocephalus, head tilting). The size of resulting tumors ranged from 1.5–2.5 mm 

(GL261 tumors) and 2.5–3.5 mm (RCAS-PDGFb tumors). 

 

Immunofluorescent staining and image processing 

Free-floating 40 µm thick brain sections from tumor-bearing mice were prepared as previously 

described(22). Nuclei were visualized using 4,6-diamidino-2-phenylindole (DAPI) from Sigma-

Aldrich. The GL261 glioma cells were identified by green fluorescence of the EGFP construct.  

 

Unbiased stereology for tumor volume estimation  

14 days (EGFP-GL261) or 21 days (CD133- and CD133+ GL261 cells) after tumor implantation 

mice were anesthetized with pentobarbital (Narcoren, Merial, Hallbergmoos, Germany), brains 

perfused and fixed, and resulting brain slices were subsequently used to analyze glioma 

expansion in vivo. The tumor volume in brain slices of glioma-bearing mice was quantified 

according to the Cavalieri principle by determining tumor area in every 12th 40-µm-thick brain 

slice and then multiplying this area by the factor 12 x 40 µm using the Stereoinvestigator 

software (MBF Bioscience, Williston, VT). Experimental groups were blinded to the investigator 

performing the analysis. 

 

Statistical analysis  

All data represent the average of at least 3 independent experiments. Datasets were analyzed 

statistically with SPSS11.5 software and tested for normality with the Shapiro-Wilks test. The 

Mann-Whitney U test was used for nonparametric analysis. Parametric testing was done with the 

Student t test. Comparisons between multiple groups were done using 1-way ANOVA with the 
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Scheffe´ post hoc test. Statistical significance was determined at P values <.05 (*) and <.01 (**) 

while “n.s.” implied a non significant P value. 

 

Results 

IL-6 deficient mice show reduced glioma growth 

To investigate whether ablation of the IL-6 gene locus in the host interfered with tumor 

expansion in vivo, we implanted EGFP-GL261 cells into WT and IL-6-/- mice and measured 

glioma volume by unbiased stereological estimation (Cavalieri method). After 2 weeks of 

implantation, the tumor volume in IL-6-/- mice was significantly smaller compared to the WT 

mice (WT 3.84±1.13 mm3, IL-6-/- 2.14±0.46 mm3, P=.0002 Fig. 1A). It has been shown by us and 

others that 100 CD133+ glioma cells have a similar tumor forming capacity as 10000 CD133- 

glioma cells(40). To see the impact of host IL-6 on CD133+ cells versus CD133- cells, we 

injected 100 CD133+ cells or 10,000 CD133- cells into the WT and IL-6-/- mice and analyzed 

tumor growth. After three weeks of tumor growth, we found that in WT mice, 100 CD133+ cells 

formed tumors of similar size as compared to the 10,000 CD133- cells (WT- CD133+: 5.06±0.69 

mm3, WT- CD133-:5.0±0.48 mm3, p=0.89, Fig. 1B). However, in IL-6-/- animals, inoculation of 

100 CD133+ GL261 cells induced significantly smaller tumors (IL-6-/--CD133+:2.65±0.38 mm3, 

p=0,004) as compared to wildtype. Injection of 10,000 CD133- cells into IL-6-/- mice also resulted 

in smaller tumors, but this decrease was not significant (IL-6-/--CD133-:3.94±0.31 mm3, p=0.09). 

These data indicate that IL-6 from the host cells supports tumor growth by GSCs, but not by bulk 

glioma cells. 
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Microglial IL-6 is upregulated by supernatant from glioma stem cells but not from bulk glioma 

cells  

To investigate the potential of GSCs versus bulk cells to induce microglial cytokine release, 

mouse primary neonatal microglia cultures were treated with control medium (stem cell culture 

medium) or supernatant medium from GL261 cells (GCM) either enriched for CD133 or 

deprived of CD133. After 24 hours of stimulation, cell supernatant was collected to measure 

expression levels of 12 cytokines. As shown in Fig. 2, the level of IL-6 in supernatant from 

microglial cells that were stimulated with CD133+ conditioned medium was higher than the 

levels in supernatant from microglial cells that were stimulated with CD133- conditioned medium 

(control: undetectable, CD133+: 6.28±1.16ng/ml, CD133-: 0.32±0.03ng/ml, p=0.004). However, 

levels of IL-1β, TNF-α, IL-13, IL-22, IL-2, IL-5, IL-23, IFN-γ, GM-CSF, IL-4 and IL-17 in 

supernatant from microglia did not change between treatment groups.  

 

Supernatant from glioma stem cells induced IL-6 release in both neonatal and adult microglia  

To further investigate the potential of GSCs versus bulk cells to induce cytokines, mouse primary 

neonatal and adult microglial cultures were treated with medium only (as controls) or GCM from 

CD133+, CD133-, neurosphere or adhesive GL261 cells. The percentage of CD133+ cells in 

neurosphere GL261 cells is 30.1% while in adhesive GL261 it is less than 1% as described 

elsewhere (43) (Supplemental Digital Content 1 and 2). Treatment with LPS served as a positive 

control. After 24 hours of treatment, cell supernatant was collected to perform ELISA for three 

pro-inflammatory cytokines: IL-6, TNF-α and IL-1β. As shown in Fig. 3, the level of IL-6 in 

supernatant from microglial cells that were stimulated with CD133+ or neurosphere GL261 

conditioned medium was higher than the levels in supernatant from microglial cells that were 

stimulated with CD133- or adhesive GL261 conditioned medium (control: 0.67±0.22ng/ml, 
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CD133+: 2.05±0.85ng/ml, CD133-: 0.34±0.11ng/ml, neurosphere GL261: 3.47±1.83ng/ml, 

adhesive GL261: 0.3±0.06ng/ml, p=0.04). The difference between CD133+ cell populations 

(enriched from NSGL261 cells) and NSGL261 cells in Fig. 3A was not significant: neonatal 

microglia (NS-GL261: 3.47±1.83, CD133+: 2.05±0.85, p= 0.27) and adult microglia (NS-GL261: 

2.95±1.28, CD133+: 1.35±0.29, p= 0.13).  However, when we analyzed TNF-α and IL-1β levels 

in microglia treated in different conditions, there was no significant difference. LPS always 

triggered an induction of these cytokines. IL-6, IL-1β and TNF-α were not detectable in GCM 

from all glioma cells. 

 

Factors released from glioma stem cells induced microglial IL-6 secretion through MyD88-

TLR4 signaling 

We have previously shown that glioma-released versican induced microglial MT1-MMP 

production through the TLR2 signaling pathway(23). We therefore tested whether IL-6 release is 

also regulated by TLR signaling. Since MyD88 is the adapter protein for all TLRs except 

TLR3(44), we stimulated microglia from MyD88-/- animals with GSC supernatant. The TLR3 

agonist Poly I:C was used as a positive control. As shown in Fig. 4A, in microglial cells deficient 

for MyD88, IL-6 induction was completely abolished, indicating that GSCs triggered microglial 

IL-6 induction through TLR signaling. We then screened GSC-triggered microglial IL-6 

induction in TLR2, TLR4, TLR7 and TLR9-/- animals. Interestingly, only the knockout of TLR4 

impaired microglial IL-6 induction (control: 0.2±0.08ng/ml, CD133+: 0.24±0.07ng/ml, 

neurosphere GL261: 0.23±0.04ng/ml, Fig. 4B) while IL-6 upregulation was similar to wild type 

levels in microglial cells from TLR2-, TLR7- or TLR9-deficient animals (Fig. 4D, 4E and 4F). 

The TLR4 monoclonal neutralizing antibody MTS510 has previously been shown to functionally 

block TLR4(45). We first verified that MTS510 blocks microglial TLR4 functionality in vitro. 
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MTS510 attenuated the TLR4 agonist LPS-induced microglial IL-6 induction (Fig. 4C). To test 

whether MTS510 impairs microglial IL-6 secretion induced by supernatant from GSCs, microglia 

were stimulated with either GSC supernatant in combination with MTS510 or GSC supernatant 

with isotype control antibody for 24 hours. GSC supernatant treatment with isotype control 

resulted in an increase (control: 0.64±0.27ng/ml, CD133+/Isotype: 2.78±0.4ng/ml, p=0.003 Fig. 

4C) of microglial IL-6 secretion compared to the untreated cells. Treatment with GSC 

supernatant in combination with MTS510 did not trigger IL-6 secretion (CD133+/Anti-TLR4: 

0.62±0.34ng/ml, p=0.004 Fig. 4C), which indicates that MTS510 blocked microglial TLR4 

signaling. These data indicate that induction of IL-6 by stimulation with GSCs conditioned-

medium was fully dependent on MyD88-TLR4 signaling but not on TLR2, TLR7 and TLR9. In 

an attempt to narrow down possible TLR4 specific ligands as candidate factors released by the 

glioma cells we compared the level of eleven TLR4 specific known endogenous ligands in 

CD133+ vs. CD133- cells (Supplemental Digital Content 5). Fibrinogen alpha, beta and gamma 

chain, Lactotransferrin, Neutrophil Elastase as well as the S100 proteins S100A8 and S100A9 are 

not expressed in neither cell population (respective controls with liver and bone marrow revealed 

primer specificity and validity, data not shown). EDA and HSP22 are expressed by both CD133+ 

and CD133- at the same level (fold change CD133+ vs. CD133- respectively 0.76 ± 0.35 

and 1.26 ± 0.66). The specific TLR4 ligand tenascin-C is in average 3.93 ± 2.06 fold significantly 

higher expressed in CD133+ compared to CD133- cells. Interestingly, we also identified S100A4 

as a TLR4 specific ligand that is significantly 64-fold (64.16 ± 20.71, data not shown) lower 

expressed in CD133+ vs. CD133-. However, from this data tenascin-C is the best candidate to be 

investigated further in order to verify its role in IL-6 upregulation after TLR4 stimulation in 

microglia cells by soluble factor derived from CD133+ cells (see scheme in Fig. 6). 
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GAMs are predominating IL-6 expressing population in gliomas 

To evaluate the potential contribution of IL-6 signaling to the glioma microenvironment, we 

measured IL-6 release in a series of glioma cell lines as well as mouse microglia and microglia 

stimulated from conditioned medium of CD133- and CD133+ GL261 cells. While some of the 

gliomas do secrete IL-6, both CD133- and CD133+ GL261 cells express very low level of IL-6 

compared to naïve microglia and microglia primed by CD133+ GL261 conditioned medium (Fig. 

5A). To broaden the relevance of our findings, we employed the RCAS-PDGFb murine tumor 

model. Both CD133- and CD133+ RCAS cells do secrete low level of IL-6 (CD133-: 

0.54±0.15ng/ml, CD133+: 0.9±0.41ng/ml) compared to microglia primed by CD133+ RCAS 

conditioned medium (Fig. 5A). To investigate the potential of GSCs versus bulk cells to induce 

microglial cytokine release in another murine tumor model, mouse primary neonatal microglia 

cultures were treated with control medium (stem cell medium) or supernatant medium from 

RCAS cells (GCM) either enriched for CD133 or deprived of CD133. After 24 hours of 

stimulation, cell supernatant was collected to measure expression levels of IL-6. As seen in Fig. 

5A, the level of IL-6 in supernatant from microglial cells that were stimulated with CD133+ 

RCAS conditioned medium was higher than the levels in supernatant from control microglial 

cells or microglial cells that were stimulated with CD133- conditioned medium (control: 

0.64±0.27ng/ml, CD133+: 3.28±0.5ng/ml, p=0.03). To verify that the IL-6 receptor is expressed 

on the target cell, we measured IL-6 receptor expression in primary cultured neonatal microglia 

and freshly FACS isolated CD133+ and CD133- GL261 cells by qRT-PCR (Fig. 5B). CD133+ 

cells expressed higher IL-6 receptor and gp130 mRNA levels than CD133- cells or microglial 

cells. These data demonstrate that the expression of IL-6 receptors was elevated on CD133+ in 

comparison to CD133- cells, and supports the concept of paracrine signaling between GSCs and 

microglia (Fig. 6). We also purified microglia/brain macrophages from human GBM tissue by 
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MACS (the purity of CD11b+ cells was described previously(46)) and tested for the expression of 

IL-6 by qRT-PCR. In 7 out of 8 samples, the CD11b+ cells (i.e. GAMs) expressed higher IL-6 

than the CD11b- cells (mainly tumor cells) (Fig. 5C). These data suggest that GAMs are the main 

source of IL-6 in gliomas.  

Discussion 

The interaction between tumor cells and their microenvironment has attracted increasing attention 

over the last few years. Microglia, as the immune competent cells of the brain, are the key 

resident cells interacting with glioma. We, along with others, have demonstrated that glioma 

attract microglia/macrophages and educate them to develop a tumor-supportive phenotype(20, 

23, 46-48). Glioma cells in the tumor tissue are a heterogeneous population containing different 

subgroups. Glioma stem cells (GSCs) are the minority among the glioma cells, but have a strong 

impact on the disease progression since they are believed to be responsible for glioma relapse and 

therapy resistance. So far there have only been a few studies addressing the crosstalk between 

GSCs and microglia/macrophages. GSCs recruit more GAMs than the bulk glioma cells (non 

GSCs) by releasing higher level of chemoattractants including CCL2 and VEGF-A. In both 

primary human gliomas and orthotopical transplanted syngeneic glioma, the density of GAMs at 

the invasive front is increased by the presence of CD133+ GSCs. The interdependence of these 

two cell types became evident since GAMs release TGF-ß1, which promotes the upregulation of 

MMP-9 in GSCs and thus tumor invasion(49). In the present study, we found that CD133+ GSCs 

trigger IL-6 release from microglia which promotes glioma growth. 

Microglia associated with glioma have been assigned the M2 phenotype, since they are tumor-

supportive and immune-suppressive(50). However, in a recent microarray study we demonstrated 

that GAMs share markers of both the M1 and M2 phenotype and thus the genetic profile defines 

them as a unique phenotype(36). The simple view of separation into the M1 and M2 category has 
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also recently been challenged for macrophages and a more differentiated scheme has been 

proposed(51). Indeed, IL-6, as a pro-inflammatory cytokine, is not upregulated in microglia 

associated with both mouse and human gliomas compared to naive microglia(26, 52). We 

confirmed this finding by stimulating primary microglia with conditioned medium from GL261 

cells, and we also did not detect any induction of pro-inflammatory cytokines. GSCs, however, 

lead to a selective upregulation of IL-6, but not of a battery of other cytokines including TNF-α. 

Thus, microglial cells associated with GSCs acquire a phenotype, which is distinct from other 

glioma-associated microglia. GAMs are thus a heterogeneous population imposed by glioma 

heterogeneity. Recently it was shown by a single cell sequencing approach, that glioma cells are 

heterogenic also with respect to the classical diagnostic categories(53). 

We found that TLR4 signaling in the microglia/macrophages is essential for IL-6 secretion since 

release was abolished in TLR4-deficient mice and in a mouse line deficient for the TLR-adaptor 

protein MyD88, which is an essential component for TLR signaling. Moreover, the anti-TLR4 

monoclonal antibody MTS510 inhibited GSC conditioned medium-driven microglial IL-6 

secretion. We thus propose that glioma cells release ligands that activate TLR4 signaling. We 

measured the levels of eleven TLR4 specific ligands in CD133+ and CD133- cells and identified 

tenascin-C (TNC) as a possible candidate mediating the IL-6 release in microglia via TLR4 

signaling. This is in line with recent findings where TNC was reported as a stem cell marker in 

human glioma samples(54). Whereas TNC is produced by stromal fibroblasts in the majority of 

solid tumors, brain tumor cells themselves are the main source of extracellular matrix TNC in 

glial malignancies(55, 56). The intensity of TNC expression is shown to correlate with glioma 

grade and patient prognosis(55, 57). Due to its expression in solid tumors, TNC has been used as 

a tumor-associated antigen to deliver antibody-conjugated radiotherapeutic agents to GBM(58). 

While the classic ligand for TLR4, LPS, triggers the release of several pro-inflammatory 
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cytokines including IL-6 and TNF-α, we thus assume that the ligand released from glioma 

CD133+ cells triggers a selective release of IL-6. It is possible that other factors such as 

epigenetic regulations like miRNA deregulation, histone modification or DNA methylation 

specifically suppress the transcription of other pro-inflammatory cytokines(59). Recently, it was 

shown that a miR-142-3p–driven autocrine and paracrine positive loop epigenetically regulates 

the progression and cancer stem-like property of glioblastoma by targeting the secretion of the 

pro-inflammatory cytokine IL-6(60). The exact mechanism of how tumor cells educate bulk cells 

in order to serve in favor of tumor growth and invasiveness remains to be elucidated. At this 

point we like to stress, that due to the global deletion of IL-6 in our mouse model we cannot 

exclude primary or secondary effects of IL-6 on tumor growth apart from the 

microglia/macrophage population. However, our in vitro data strongly support the importance of 

the CD133-TLR4 -IL6 pathway.  

Zhang et al. describe another mode of interaction between glioma and microglia mediated by IL-

6 independent of TLR4. They used human glioma lines and non-transformed human microglia 

isolated from surgically resected epileptic brain tissue and described that gliomas release the 

chemokine CCL2. Overexpression of CCL2 in the U87 glioma line stimulated microglia to 

release IL-6(30).  

Our results are in line with a study where it was demonstrated that interfering with IL-6 signaling 

in GSCs led to reduced growth and neurosphere formation capacity, and to an increase in the 

apoptosis rate(27). From a clinical perspective, the expression of IL-6 and its receptors in the 

human glioma tissues is inversely correlated to patient survival. The median survival times were 

16 months in patients with negative IL-6 expression and 7 months in those with positive IL-6 

expression(61). An IL-6 neutralizing antibody attenuated microglia-stimulated glioma 
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invasiveness and reduced glioma growth in vivo(27, 30). Our data further corroborates the 

important role of microglial IL-6 in glioma growth. Specifically, we propose that TLR4 signaling 

is an important component of GSC-microglia crosstalk and propose tenascin-C released by 

glioma CD133+ cells as a regulator of this pathway (Fig. 6).  
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Figure legends 

Fig. 1 Host IL-6 interferes with glioma expansion by influencing GSCs. (A) EGFP-GL261 

cells were intra-cerebrally implanted into WT and IL-6-/- mice, tumor volume in WT versus IL-6-

/- animals was evaluated based on unbiased stereology. (B) WT and IL-6-/- mice were intra-

cerebrally implanted with 100 CD133+ or 10000 CD133- GL261 cells and after 3 weeks tumor 

volume was evaluated based on unbiased stereology.  

 

Fig. 2 Cytokine release by multiple analyte detection in microglia stimulated with 

conditioned medium from GSCs and non-GSCs. Neonatal primary cultured microglia were 

stimulated with conditioned medium from CD133- and CD133+ GL261 cells for 24 hours and the 

release of the cytokines IL-13, IL-22, IL-2, IL-5, IL-6, IL-1β, IL-23, IFN-γ, TNF-α, GM-CSF, 

IL-4 and IL-17 were analyzed by FlowCytomix. We also measured the cytokine levels of the 

conditioned medium from CD133- and CD133+ GL261 before application to microglia. 

 

Fig. 3 Factors released from glioma stem cells induced IL-6 but not TNF-α and IL-1β 

secretion from both neonatal and adult primary microglia. (A) Neonatal and adult primary 

cultured microglia were stimulated with conditioned medium from adhesive (AC-), neurosphere 

(NS-), CD133- and CD133+ GL261 cells for 24 hours and IL-6 release was analyzed by ELISA. 

TNF-α (B) and IL-1β (C) were also analyzed in a similar way. LPS was used as a positive 

control. We also determined the cytokine levels of the conditioned media from different cells 

before application to microglia. 
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Fig. 4 IL-6 release induced by GCM in microglia from MyD88- and TLR-deficient mice. (A) 

Neonatal microglia from MyD88-/- mice were stimulated with conditioned medium from adhesive 

(AC-), neurosphere (NS-), CD133- and CD133+ GL261 cells for 24 hours and IL-6 release was 

analyzed by ELISA and compared to an un-stimulated control. Similarly, IL-6 release was 

analyzed in MyD88- (A), TLR4- (B), TLR2- (D), TLR7- (E) and TLR9-/- mice (F). For MyD88-/- 

and TLR4-/-, Poly I:C was used as a positive control while LPS was used as a positive control in 

other groups. (C) Monoclonal antibody MTS510 inhibited GSCs conditioned medium-driven 

microglial IL-6 secretion. Primary microglial cells were stimulated with CD133- and 

CD133+ conditioned medium together with 10 µg/mL isotype, and 10 µg/mL MTS510 for 24 

hours. We also determined the cytokine levels of the conditioned media from different cells 

before application to microglia.  

 

Fig. 5 IL-6 expression in GAMs and gliomas. (A) IL-6 release was analyzed in conditioned 

medium from U87, C6, NCH421K, AC-, NS-, CD133- and CD133+ from GL261 and RCAS 

cells, primary cultured microglia and microglia treated with GSCs conditioned medium were 

used as controls. (B) IL-6 receptor and gp130 expression were analyzed in microglia, FACS 

sorted CD133- and CD133+ cells from GL261 by qRT-PCR. (C) MACS freshly isolated CD11b+ 

cells and CD11b- (i.e. mainly glioma cells) from 8 human GBM (Supplemental Digital Content 

4) samples were analyzed for IL-6 by qRT-PCR. Dashed line represents IL-6 expression in 

CD11b+ cells in each sample, solid bars represent folder changes of IL-6 expression in flow 

through cells compared to CD11b+cells. 
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Fig. 6 Overview of the paracrine relationship between glioma stem cells and microglial cells 

GSCs, but not the bulk glioma cells, initiate microglial IL-6 secretion via TLR4 signaling and IL-

6 regulates glioma growth by supporting GSCs. 
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