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Abstract

Background: Recent large-scale studies revealed cell-type specific proteomes. However, protein complexes, the
basic functional modules of a cell, have been so far mostly considered as static entities with well-defined structures.
The co-expression of their members has not been systematically charted at the protein level.

Results: We used measurements of protein abundance across 11 cell types and five temporal states to analyze
the co-expression and the compositional variations of 182 well-characterized protein complexes. We show that
although the abundance of protein complex members is generally co-regulated, a considerable fraction of all
investigated protein complexes is subject to stoichiometric changes. Compositional variation is most frequently
seen in complexes involved in chromatin regulation and cellular transport, and often involves paralog switching
as a mechanism for the regulation of complex stoichiometry. We demonstrate that compositional signatures of
variable protein complexes have discriminative power beyond individual cell states and can distinguish cancer cells
from healthy ones.

Conclusions: Our work demonstrates that many protein complexes contain variable members that cause distinct
stoichometries and functionally fine-tune complexes spatiotemporally. Only a fraction of these compositional
variations is mediated by changes in transcription and other mechanisms regulating protein abundance contribute
to determine protein complex stoichiometries. Our work highlights the superior power of proteome profiles to
study protein complexes and their variants across cell states.
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Background
Recent large-scale proteomic efforts have identified
proteins corresponding to more than 80 % of the human
protein-coding genes, thousands of which have a
restricted tissue distribution [1, 2]. Elucidating the conse-
quences of tissue-specific protein expression is a key
challenge towards understanding how proteins modulate
phenotypic variation during differentiation and conduct
cell-type specific functions in various (patho-)physiological
settings. Protein complexes are the ultimate effectors of
many biological functions, their topology has been system-
atically charted in both lower and higher eukaryotes [3–6],
and the co-expression of their members has been

investigated during the cell cycle [7, 8] and across mutant
yeast strains [9] using gene expression data. However, how
protein complexes are modulated by cell-type specific
protein expression remains largely unknown [1]. Recently,
it has been shown that protein stoichiometry can vary
across cell types and temporal states, however, the limited
number of investigated complexes [10–12] or investigated
states [5] prompted for a more global study to generalize
these findings, show robustness, and derive mechanistic
insights.
Here, we globally analyze protein complex stoichiome-

tries in mammalian cells using two publicly available
large-scale proteomic datasets that resolve protein
expression in space and time. The first dataset contains
the proteome of 11 human cancer cell lines that repre-
sent stable differentiation states and cover the most
relevant cancer types such as carcinoma, leukemia,
sarcoma, and glioblastoma [13]. The second proteomic
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dataset covers the reprogramming of mouse embryonic
fibroblasts into induced pluripotent stem cells (iPSC)
and is temporally resolved over 15 days (five states in
total) following the induction of the transcription factors
Oct4, Klf4, Sox2, and c-Myc [12]. We found that in both
settings more than 50 % of the 182 well-characterized
protein complexes investigated here are subject to stoi-
chiometric variations, and that there is a considerable
overlap of complexes and complex members that are
variable in space and time. Strikingly, variations occur
most frequently in regulators of chromatin structure and
intracellular transporters suggesting that multi-cellular
organisms utilize stoichiometric fine-tuning of protein
complexes not only to reshape their epigenetic landscape
but also to modulate the distribution of molecules
between compartments in a cell-type specific manner.
We report several previously unknown paralog switches,
and demonstrate that the co-regulation of paralogous
proteins is a common phenomenon that requires the
integration of both transcriptional and post-transcriptional
mechanisms. Finally, we show that compositional signa-
tures of protein complexes can be used to discriminate
normal from cancer tissue and might hold diagnostic
potential in the future.

Results and discussion
Coordinated expression of protein complex members
across proteome profiles
To capture as many known large complexes as possible,
we generated a manually curated protein complex re-
source by integrating information from the following
sources: (i) a compilation of literature-curated complexes;
(ii) the CORUM, a comprehensive resource of manually
annotated complexes [14]; and (iii) the COMPLEAT
complex resource that was generated based on litera-
ture data and protein-protein interaction networks
[15]. After redundancy filtering, we defined 279 largely
non-overlapping protein complexes, each one composed
of at least five distinct proteins (Fig. 1a, Additional file 1:
Figure S1 and Additional file 2). In total, these complexes
cover 2048 unique proteins, corresponding to approxi-
mately one-fifth of the proteome generally expressed by
mammalian cells of a given cell type [16, 17].
Proteins belonging to the same complex tend to be

generally co-regulated and, therefore, their abundances
correlate across cell types. In agreement with a previous
study [11], we found that protein abundances of com-
plex members (Fig. 1b) correlate better with each other
than the corresponding transcript levels (Fig. 1c and
Additional file 3) indicating that other regulatory pro-
cesses, such as translation [18], also contribute to the
resulting protein complex stoichiometries. We next in-
vestigated whether protein complexes vary in their rela-
tive abundance across cell types, which was indeed what

we observed. We analyzed the co-expression of com-
plexes across the 11 cell lines dataset and we identified
clusters of correlated protein complexes (Additional file 1:
Figure S2). Strikingly, protein complexes belonging to
the same cellular compartment formed highly corre-
lated clusters (Additional file 1: Figure S2). This sug-
gests that variations in the relative abundance of protein
complexes derive, to a large extent, from morphological
differences between cell types that modify the pro-
portions between protein complexes belonging to dif-
ferent compartments.

Landscape of protein complex stoichiometry variation in
human cells
In order to study in greater detail the composition of
protein complexes and to identify complex members
that deviate from the general pattern of co-regulation,
differences in overall complex abundance across cell
types and states need to be normalized. For this purpose,
we improved a previous computational method that nor-
malizes the median complex abundance across samples
prior to differential expression analysis [10] (Methods)
and we applied it to globally investigate compositional
changes of protein complexes across the 11 cancer cell
lines and the reprogramming dataset. Of the 279 curated
complexes, 182 were detected in either the 11 cell lines
or the reprogramming dataset and 116 of them in both
(Fig. 2a). We found that in both datasets, 22 % of the
protein complex members were differentially expressed
(variable complex members) in at least one of the condi-
tions tested (adjusted p value <0.05) while the majority
(78 %) were core complex members that remained
invariant in their relative abundances (Fig. 2a and
Additional file 4). As expected, stable complex members
display higher correlation across proteome profiles than
variable one (Wilcoxon rank sum test: p value <2.2E-16,
Fig. 2c). To exclude potential technical biases in our
analysis, we generated a decoy set of protein complex
definitions by randomly assigning proteins to complexes
while preserving the pool of members and the size of
protein complexes. We found that while the number of
identified variable complex members saturates with real
complexes, it linearly increases with the number of
conditions analyzed in case of the decoy set (Additional
file 1: Figure S3). We thus conclude that our method
robustly identifies properties of the protein complexes
under investigation.
More than half of the quantified complexes had at

least 20 % of their members differentially expressed in
one of the investigated cell type or state, whereby half of
these were common to both datasets at the complex
level (Fisher’s exact test: p value 3.8E-4, odds ratio 3.9)
as well as at the complex member level (21 % overlap,
Fisher’s exact test: p value 1.7E-06, odds ratio 2.7,
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Fig. 2b). This indicates that the same complexes and
complex members have a tendency to be regulated both
in space and time, presumably because of their func-
tional role in regulating the cell state and structural re-
quirements for their assembly (for exceptions such as
complexes that change stoichiometry only during repro-
gramming see Additional file 1: Figure S4).

Transporters and chromatin regulating complexes are
highly variable while mitochondrial complexes are stable
In order to identify functional modules that are affected by
compositional changes of protein complexes, we analyzed
the ratio of core to variable members across functional

categories. We considered complexes as either stable or
variable based on the fraction of members that was ob-
served as differentially expressed, and we found that the
majority of the analyzed complexes (102 out of 182, 56 %)
were identified as variable (Fig. 2d and Additional file 4).
Since we used a conservative criterion to define complexes
as variable (see Methods for details) and only a limited set
of cell types and states was analyzed, we expect this fraction
to be possibly even larger if additional cell types and states
would be compared. Out of the 182 complexes, only 80
complexes (44 %) were identified as stable (Fig. 2d and
Additional file 4). Not unexpectedly, the stable complexes
are enriched for Gene Ontology terms related to
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Fig. 1 a Workflow used for the identification of protein complex variants from large-scale proteomics dataset. Protein complex definitions were assembled
from different resources and the literature (Additional file 2, Methods). Protein complex-based normalization [10] was used to investigate compositional
changes in two published datasets: a time course experiment of fibroblast reprogramming to induced pluripotent stem cells [12] and an 11 cancer
cell line dataset [13]. b The abundance of members of protein complexes is correlated across proteome profiles. A total of 824 proteins from 123
complexes were quantified in the 11 cell lines dataset [13]. Distributions of Pearson correlation coefficients were plotted for pairwise comparisons
between members of the same complex (light blue) and between proteins from different complexes (orange). c Similar to b, except co-expression
between members of protein complexes was calculated using gene expression profiles derived from 10 cancer cell lines (missing GAMG cell line from
Geiger et al. [13]). Co-expression analysis was limited to the set of proteins from b that were also quantified in the microarray experiment (HG-U133A,
Additional file 3). Pearson correlation coefficients were calculated between pairs of 796 proteins from 117 complexes. Members of protein complexes
show higher co-expression at the mRNA level, but to a much lesser extent than the protein co-expression
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housekeeping biological processes such as transcription,
RNA processing and translation, and energy production
(Additional file 5), including e.g., RNA polymerase I and
the exosome (Fig. 2e). Notably, for the cytosolic ribosome
we identified few variable complex members (only 8 out of
82 of the quantified ribosomal proteins), at least one of
these (RPL38) has been previously shown to have tissue-
specific expression and to be able to affect the translation
of specific transcript in a tissue-specific manner in mice
[19], and another (RPL22L) has been shown to be
differentially expressed across tissues in Drosophila
Melanogaster [20]. Mitochondrial protein complex stoichi-
ometries appear highly static: several components of the re-
spiratory chain including the cytochrome bc1 complex

(complex III), the cytochrome c oxidase (complex IV) and
the F0F1 ATP synthase (complex V) showed stable expres-
sion of their complex members across all the 16 conditions
tested (Additional file 4).
In contrast, the 102 variable complexes (Fig. 2d and

Additional file 4) are enriched for regulators of chroma-
tin structure and epigenetic modifications including, for
example, the well characterized BAF, NuRD, and INO80
complexes (Additional file 5). Strikingly, the functional
categories most enriched for variable complexes were re-
lated to intracellular transport of both protein and RNA
(Additional file 5), including the previously described
nuclear pore and TRanscription-Export (TREX) com-
plexes [10, 12, 21]. In addition to nuclear-cytoplasmic,
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also vesicular transport complexes appear to be largely
variable, exemplified by compositional rearrangements
in COPI and COPII, the adaptor-related protein com-
plex 3, retromer, exocyst, and SNARE complex (Fig. 2e).
We therefore conclude that cell-type specific alterations of
epigenetic regulators and transport systems are more fre-
quent as compared to other functional modules in the cell.

Both transcriptional and post-transcriptional mechanisms
regulate stoichiometric variation
We next asked whether the abundance of variable mem-
bers is transcriptionally or post-transcriptionally regulated.
We tackled this question using exclusively the reprogram-
ming dataset because mRNA and miRNA expression data
were available [22]. We observed an overall positive
correlation between changes in protein abundance and
transcript level (Pearson r = 0.5, Fig. 3a) indicating a

significant degree of transcriptional regulation of compos-
itional changes. We found that in 38 % of all variant cases
(84 out of 223 members analyzed) the protein and tran-
script abundance changed consistently, that is into the
same direction at the same time point (Fig. 3a and
Additional file 6). We define such changes of stoichiom-
etry as transcriptionally regulated. For 38 of these cases
(17 % in total), miRNA expression patterns might explain
the abundance variability of complex members (Fig. 3a
and Additional file 6). However, a direct causality needs to
be further explored. The transcriptionally regulated
changes of stoichiometry most often caused an increased
abundance of complex members (Fig. 3b). Vice versa,
non-transcriptionally regulated compositional variations
(139 cases, 62 %) most often resulted in decreased protein
abundance (Fig. 3b), suggesting the involvement of other
processes affecting protein turnover. Additionally, we
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found that variable members of protein complexes tend to
be more phosphorylated as compared to stable ones
(Wilcoxon rank sum test: p value 2.7E-9, Fig. 3c), suggest-
ing that also post-translational mechanisms might regulate
their protein levels. Taken together these findings indicate
that the regulation of protein complex stoichiometries
occur at multiple levels including transcription, transla-
tion, and protein turnover.
Mechanisms such as protein stabilization upon bind-

ing or competition for interfaces were previously shown
to influence protein complex stoichiometry [23, 24].
We therefore asked whether protein-protein interfaces
formed by variable complex members have distinct struc-
tural properties. For this purpose, we retrieved nearly 200
biological interfaces from the Protein Data Bank that
covered 28 of our complexes. To systematically assess the
mode of binding within these interfaces we applied estab-
lished energy and accessibility calculation protocols [25]
(Methods). We found that variable interfaces are signifi-
cantly less hydrophobic. The binding energy per apolar
surface area (kcal mol−1 Å−2) is smaller in core interfaces
as compared to the interfaces formed by regulated com-
plex members (Fig. 3d, f ). None of the other investigated
interface properties, namely van der Waals interaction
energy, electrostatic energy, and buried surface area size,
was found to significantly discriminate the two modes of
binding. We thus conclude that interfaces between stable
members have a tendency to be stabilized in a similar
manner to the hydrophobic core of protein domain folds,
while variable interfaces might be more easily accessible
to regulation, e.g. by protein degradation.

Paralog switching is a widespread mechanism that
modulates protein complex composition
With a large set of variable complexes and respective
protein members in hand, we sought to identify com-
mon patterns that facilitate stoichiometric variations of
complexes and might have been developed during the
evolution of multicellular organisms. We found that
complex members that have been duplicated during evo-
lution (paralogs) are significantly enriched among the
variable complex members (Fisher’s exact test: p values
of 9.0E-6 and 6.5E-3 for reprogramming and 11 cell lines
datasets, respectively). During reprogramming, we iden-
tified 23 paralogs pairs that were co-regulated at the
same time point, and 16 of these (70 %) showed similar
abundance differences into opposite directions (Fig. 4a
and Additional file 7). Those cases likely comprise para-
log switches involving mutually exclusive complex mem-
bers that are antagonistically incorporated into distinct
variants of the same complex [26].
Similar to other compositional changes, paralog

switches affect predominantly chromatin regulators and
protein complexes involved in transport systems. We

identified two paralog switches in the chromatin remod-
eling complex BAF involving the paralogs SMARCC1/
SMARCC2 and SMARCA1/SMARCA2 that co-occur
within the first 3 days of reprogramming (Fig. 4b). Add-
itionally, several switches that are induced concomitantly
at the beginning of reprogramming occur in complexes
involved in vesicular protein transport, including the
COPI, COPII, and SNARE complexes (Additional file 7).
In particular, COPII undergoes two co-occurring swit-
ches between the paralog pairs SEC23A/SEC23B and
SEC31A/SEC31B (Fig. 4b). Are these events required for
reprogramming to occur or are they just a consequence
of the phenotypic changes induced by reprogramming
itself? Interestingly, paralog switches affecting the same
members of the BAF complex were previously reported
to be required for maintaining pluripotency in embry-
onic stem cells (esBAF) [27] (Fig. 4b) and the depletion
of SMARCC2 was shown to promote reprogramming
[28], highlighting the central role of these proteins in
promoting and maintaining a “stem-like” state. Similarly,
SEC31B, but not its paralog SEC31A, was identified as a
barrier to reprogramming in a large-scale RNAi screen
[29]. The replacement of SEC31B with SEC31A that we
observed at the beginning of reprogramming might thus
represent a critical step toward the generation of iPSC.
In conclusion, our data suggest that variations in the
relative abundance of the two paralogs might alter the
equilibrium between variants of the same complex,
ultimately modulating its function, and that these
phenomena are required for the efficient reprogramming
of fibroblast to iPSC.
Next, we asked whether paralog switches are transcrip-

tionally driven. For the majority of the paralog switches
for which we had both proteomics and transcriptomics
data (6 out of 11), we observed that changes in tran-
script and protein abundance correlate only for one of
the two paralogs (Fig. 4c and Additional file 7). Only
one pair (SMARCD1 to SMARCD3 paralog switch in
BAF complex) displayed a consistent change of tran-
script and protein abundance for both paralogs (Fig. 4c
and Additional file 7). We thus hypothesize that positively
regulated paralogs might be stabilized by integration into
the relevant protein complex when the paralogous partner
is downregulated.
In order to experimentally validate this concept, we fo-

cused on the NuRD chromatin-remodeling complex as a
case in point. Our computational analysis suggested that
only a minority of 75 out of 1177 complex members in-
vestigated are differentially expressed between HeLa and
HEK293 cells. These results are consistent with a previ-
ous biochemical fractionation study that identified only
minor compositional variances across those two cell
types [5]. Among the variable complexes, we identified a
switch between the NuRD members MBD2 and MBD3
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(Fig. 5a) and confirmed the higher abundance of MBD3-
contaning NuRD complexes in HEK293 cells using bio-
chemical fractionation and targeted proteomics (Fig. 5b
and Additional file 1: Figure S5, Methods). Since this re-
sult obtained on isolated complexes exactly recapitulated
the data derived from total cell extracts, it demonstrates
that the majority of the expressed proteins are indeed com-
plex associated. We next artificially reverted the MBD2/

MBD3 paralog switch through inducible expression of a
synthetic miRNA that reduced the abundance of MBD3 on
both transcript and protein level (Fig. 5c and Methods). As
a consequence, MBD2 abundance was increased on
the protein but not the transcript level, while the ex-
pression of the other NuRD members remained stable
(Fig. 5c). Taken together these data show that the re-
sults of our large-scale analysis are consistent with

Fig. 4 Paralog switches often mediate protein complex composition during reprogramming. a Twenty-three paralog pairs were found to be
co-regulated at least at one time point. The majority of them had fold changes of opposite sign indicating paralog switches. Protein profiles across the
five time points of the reprogramming are shown for two representative examples. Dots indicate the average value of independent reprogramming
experiments performed in two replicates for protein profiles [12] and one to three replicates (per time point) for gene expression profiles [22]. Red dots
indicate significant cases (adjusted p value <0.05, see Methods for details). D indicates the number of days after the induction of the reprogramming
factors (D0). b The same paralog switches in the chromatin remodeling complex BAF that we identified during reprogramming were also found to be
affected during stem cell differentiation by Ho et al. [27]. We identified 14 additional paralog switches affecting among others the COPII complex.
Red and green colors indicate up- and downregulated complex members, respectively. c Protein abundance and mRNA expression changes were
compared for the co-regulated paralogs. Transcriptional regulation was inferred when both protein and mRNA were significantly regulated with a
consistent fold change at the same time point (see Methods for details). Protein and mRNA profiles are shown for two representative cases
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experimental validation on isolated protein complexes
and confirm that the abundance of paralog proteins
belonging to the same complex is often controlled by
a combination of different regulatory processes.

Protein complex composition is a signature of cell
identity
The analysis of 11 distinct cell lines revealed that stoichio-
metric variations of protein complexes occurred consist-
ently across human cancer cell types. Thus, we tested
whether the abundance of variable complex members can
be used to distinguish normal from cancer tissues. We
used the complex members that were identified as variable
in both the 11 cell lines and reprogramming dataset to
query an independent dataset of human tumorous and
non-tumorous colon tissue samples [30] (Methods). In-
deed, protein features derived from the intensity of variable
complex members robustly discriminated between samples
of normal colon mucosa and samples of colon adeno-
carcinomas (primary tumors or metastases) (Fig. 6a). This
very small pool of variable complex members had a com-
parable discriminative power as the whole proteome profil-
ing dataset containing 7576 proteins [30]. In contrast, the
same number of randomly selected protein features did
not have the same discriminative power (Fig. 6b) in colon
cancer. Exemplified by this highly prevalent tumor entity,
our results highlight that stoichiometric variations of pro-
tein complexes occur in the course of (early) tumorigenesis
and are maintained upon metastatic spreading.

Conclusions
Here, we have quantified the co-expression of mamma-
lian protein complex members across various cell types
and states in two large-scale quantitative proteomics
datasets. We selected these two datasets because they
both provided high proteome coverage (>6000 protein
groups) and they included multiple biological replicates
for the same cell type/state. Based on the high quality of
the analyzed data and the robust benchmarking of our
method, we suggest that spatiotemporal modulation of
molecular machines through stoichiometric variations is
the norm and not the exception across mammalian cell
types and states. We demonstrate that the majority of
the detected stoichiometric variations are not reflected
by changes in transcript levels, which might explain why
they have escaped previous high-throughput gene ex-
pression analyses.
Our analysis reveals a different degree of compos-

itional variations that segregate with the complex func-
tion. At one end, mitochondrial complexes involved in
energy production were found to be highly static.
Although many mitochondrial proteins are encoded in
the nucleus, their independent inheritance, long evolu-
tionary history, and their essential functional contribu-
tion to cellular homeostasis, might have prevented the
evolution of stoichiometric variations in this organelle.
At the other end, protein complexes involved in chro-
matin remodeling and cellular transport were found to
be among the most variable. Why chromatin regulators
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and transporters appear to be among the most variable
complexes? A simple explanation for this might be that
both sets of complexes control the expression or the
localization of a large number of molecules. Epigenetic
changes are known to occur across cell types and medi-
ate the activation of specific transcriptional programs
(involving hundreds of genes) that instruct cell fate [31].
Similarly, extensive changes in the composition of the
cell surface proteome have been described during differ-
entiation [32] and reprogramming [12]. Alterations of
the transport machineries could favor these remodeling
events by changing the specificity of the transport sys-
tems [33]. It is tempting to speculate that cells utilize
specific compositional changes of chromatin regulators
and transporters to induce broad downstream effects on
the proteome that are required to mediate phenotypic
changes.
We further demonstrate that a reoccurring pattern is

the utilization of paralogs that are mutually exclusive in
complexes. They frequently have different expression be-
havior across cell types and states and thus replace each
other in complexes. The usage of duplicated complex
members as a mean to fine-tune the function of mole-
cular machines has a long evolutionary history [34].
Already in yeast, non-redundant function and asymmet-
ric expression profiles have been described for multiple
duplicated yeast ribosomal subunits [35, 36]. The same
concept might apply to other functional modules of the
cell since an antagonistic expression of evolutionary re-
lated proteins was observed also for other cases during
reprogramming [12]. The abundance of paralogous com-
plex members appears to be linked, suggesting that it is
tightly controlled. Since this is often not reflected at the
transcriptional level, one might speculate about the ex-
istence of feedback mechanisms acting at the protein
level such as protein stabilization upon complex binding.

Finally, the set of detected complex stoichiometries
appears to imply higher order functionality as it is
sufficient to discriminate cancer cells from benign ones.
Signatures of protein complex stoichiometries may
therefore hold a great potential as diagnostic markers in
the future, e.g. to distinguish cancer (sub-) types or to de-
fine the tissue of origin in cancers of unknown primary.
More cell types and states need to be characterized to
decipher the mammalian complex landscape and might
reveal many other higher order characteristics that can be
predicted from a given set of complex stoichiometries.

Methods
Integration of a comprehensive resource of protein
complexes
To systematically examine the co-expression of protein
complex members, we first assembled an extensive dataset
of mammalian protein complexes by integrating various
large-scale resources. In order to gain sufficient statistical
power in the normalization procedure, our analysis was
carried out on protein complexes having at least five
members. Initially, a manually curated set of 57 large pro-
tein complexes was obtained from our previous publica-
tion [10]. These complexes were further revised and with
the inclusion of additional complexes, the in-house data-
set was increased to 64 manually curated complexes. Next,
we acquired 365 manually annotated protein complexes
from the core non-redundant set of the CORUM database
(downloaded from http://mips.helmholtz-muenchen.de/
genre/proj/corum/) [14]. Last, the COMPLEAT protein
complex resource (http://www.flyrnai.org/compleat/) was
included in this study [15]. The latter resource contains
9703 human protein complexes that were either derived
from literature or predicted from protein-protein inter-
action networks. Here, we only retained 332 reliable large
complexes (> = 5 members) based on literature evidences
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derived from “PINdb” [37] and “CYC2008” (except
“predicted”) [38] while discarding the rest. To eliminate
redundant complexes in the combined dataset, we
employed an iterative procedure as similarly described
[15] (Additional file 1: Figures S1A and B). At the first
stage, the complexes were ranked according to their
source in the following order: manually curated complexes
from Ori et al., COMPLEAT, and CORUM. Then, the
complexes were sorted within each group according to
the number of their members from largest to smallest. In
a sequential order starting from first to last, we selected
the highest-ranked complex as the representative and re-
moved all complexes that shared 50 % and more of their
members with this representative complex. This proced-
ure was iteratively run till the end of the list. In total, 279
non-redundant protein complexes, having 2010 distinct
members, were obtained for further analysis (Additional
file 1: Figures S1C, S1D and Additional file 2). The filter-
ing procedure used here did not take into account the
proteomic data analyzed. We decided to define protein
complexes a priori in order to be able to directly compare
the co-expression of protein complex members across the
two datasets analyzed (see below).

Large-scale proteomic dataset
Two large-scale shotgun proteomic datasets were used in
this study. The first dataset was taken from Hansson et al.,
a time series proteomic experiment (referred to as
“reprogramming” dataset) that profiles the proteomic
changes occurring through the reprogramming of mouse
embryonic fibroblasts to iPSCs [12]. The reprogramming
dataset contains expression changes for 5451 proteins
measured between six consecutive time points (day 0 –
fibroblast – to day 15 – iPSCs, profiled at 3-day intervals)
in two replicates. For our analysis, we used the expression
changes that were reported as protein ratios between two
consecutive time points in the original publication [12].
The second dataset consists of the proteomic profiles of
11 human cell lines generated by Geiger et al. [13] (re-
ferred to as “11 cell lines” dataset). From this dataset, we
retained only the 3250 proteins that were quantified in at
least two out of three replicates for all the 11 cell lines and
the rest was discarded. For all the cell lines we retained all
the three replicates with the exception of A549 and K562,
for which single replicates were identified as outlier by
hierarchical clustering and excluded. For our analysis, we
used the estimated protein abundances that were reported
as intensity Based Absolute Quantification (iBAQ) scores
in the original publication [13]. In the next step, we
checked which protein complexes were represented in
either of the proteomic datasets by having at least five
quantified members. For reprogramming datasets, protein
complexes were mapped to mouse orthologs using the
Ensembl orthology data [39, 40] using the R biomart

package [41]. In the end, the analysis was performed on
175 complexes, comprising 1129 proteins from repro-
gramming dataset, and on 123 complexes, comprising 824
proteins from 11 cell lines dataset (Fig. 2a).

Gene expression dataset
The cell line annotation from Gene Expression Atlas
[42] was used to select three replicate microarrays
(except Jurkat with two replicates) for 10 cell lines (as
used in Geiger et al. [13] but missing GAMG cell line).
In addition, manual annotation was performed to
include data for the cell lines with no available micro-
array experiment [43]. Randomly selected microarray
experiments (listed in Additional file 3) were pre-
processed using RMA normalization [44].

Identification of differentially expressed protein complex
members
To investigate compositional rearrangements of protein
complexes rather than changes in overall complex abun-
dance, we adapted a two-step normalization method that
we described previously [10]. For both the reprogram-
ming and 11 cell lines datasets, the same analysis was
separately carried out as follows: individual proteome-
wide profiles were median-centered, followed by outlier
removal as detailed above. Subsequently, the proteomic
profiles were restricted to the proteins annotated to be
part of protein complexes. In agreement with our previ-
ous work [10], we found that complex members were
globally co-expressed across samples (Fig. 1b). There-
fore, in case of a general change in complex abundance,
the comparison between samples would reveal all mem-
bers to be differentially expressed (e.g. as described in
[12]). In order to reveal compositional changes rather
than overall complex variations, we performed an add-
itional complex-wise normalization procedure [10]. First,
relative abundances of proteins were calculated with re-
spect to their trimmed mean across all conditions. As a
next step, the abundance value of each protein was cor-
rected by subtracting the mean relative abundance of
the rest of the complex members. In case of proteins in-
volved in multiple complexes, the average value from all
the corresponding complexes was taken into consider-
ation. After complex-wise normalization, each condition
(reprogramming time point or cancer cell line) was
compared with the rest of experimental conditions to
identify differentially expressed complex members by
LIMMA (LInear Models for Microarray data Analysis)
[45]. p values were adjusted for each experimental con-
dition using false discovery rate (FDR) as described by
Benjamini and Hochberg [46] and members were con-
sidered as differentially expressed if the adjusted p value
was less than 0.05 in at least one of the conditions
tested. Protein complexes were considered as “variable”
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or “stable” depending on the fraction of members that
was observed as differentially expressed relatively to the
other members. To avoid an inflation of variable com-
plexes by experimental noise, we employed a stringent
threshold that requires a complex to contain at least
20 % of differentially expressed members in order to be
considered as “variable complex.” Fisher’s exact test was
used to assess the significance of the overlap of both
variable complex members and complexes between the
datasets of reprogramming and 11 cell lines (Fig. 2b).

Analysis of protein-protein interfaces
Retrieval of protein-protein interfaces from the Protein
Data Bank
The Protein Data Bank (PDB) structures of 281 protein-
protein interfaces involving members of protein com-
plexes included in our resource were derived using the
UniProt annotation of the complexes members. All the
interfaces structures were checked for quality controls:
(i) the interacting proteins must be part of the biological
assembly associated to the protein complex in the PDB
structure; (ii) the interaction surface must be larger than
400 Å (buried surface area), this value was selected since
it represents a valid lower-threshold for the association
of biologically meaningful protein assemblies [47] (see
below for the method used to calculate buried surface
area); (iii) the proteins in the structures must be long, at
least 20 amino acids. Since the protein-protein inter-
action can be represented by multiple PDB structures,
the representative PDB entry was chosen as the one with
the highest buried surface area. The final dataset com-
posed of 184 protein-protein interfaces was analyzed as
described below.

Buried surface area calculations
NACCESS 2.1.1 was used for accessibility calculations
(http://www.bioinf.manchester.ac.uk/naccess/). In de-
tail, we calculated the atomic accessible surface defined
by rolling a probe of 1.4 Å size around the van der
Waals surface of the binary protein complex [48]. We
also applied the same to the separate components and
then calculated differences in accessibility from the
unbound to the bound state. The surface was defined
by default van der Waals radii [49]. We calculated the
apolar and polar buried surface areas, defined by the
sum of surface accessibilities from N, O and C, S
atoms, respectively. We then defined core and variable
interfaces as follows:

� Variable are interfaces in which at least one partner
has been shown to be differentially expressed in at
least one of the condition tested;

� Core are interfaces in which both partners have
been shown to be stably expressed.

Given the aforementioned conditions, we concluded
that 184 complexes are suitable for subsequent energy
calculations and proper analysis of the core and variable
classes.

Energy calculations
In order to ensure that all potentially missing side-
chains were properly built and the interface optimized,
the HADDOCK webserver refinement protocol was used
[50], first described by Kastritis and Bonvin [51]. We
used the OPLS force field [52]. Non-bonded interactions
were calculated using a cutoff of 8.5 Å. A shift function
was applied for calculating Electrostatic energy (Eelec),
while a switching function (between 6.5 and 8.5 Å) was
applied for the calculation of van der Waals interaction
energy (Evdw). Implementation of empirical atomic
solvation parameters were used for Desolvation energy
calculation (Edesolv) using parameters from Fernandez-
Recio et al. [53]). This procedure generated 50 refined
protein-protein interfaces per complex, starting from
different random velocities. As is default in the HAD-
DOCK protocol, the average score of the top four
models was evaluated. All calculations were performed
with HADDOCK version 2.1/CNS version 1.2 [54]
through the refinement interface of the HADDOCK web
server (http://haddock.science.uu.nl/). Details on the
protocol have been previously described and can be
found in [51] and [55].

Regulation of protein complex stoichiometry
For the reprogramming dataset, mRNA and miRNA
expression profiles performed on the same time course
experiment as the proteomics data were retrieved from
Polo et al. [22]. These datasets were downloaded from the
GEO database with the accession number GSE42478.
Relevant gene expression profiles were normalized
with RMA procedure and LIMMA analysis was used
for the comparison of consecutive time points in
order to identify differentially expressed probe sets
(FDR adjusted p value <0.05 and absolute log2 fold
change >0.5). The comparison between “day12” (GEO
accession: GSM1038611) and “day9” (GEO accession:
GSM1038607) could not be undertaken because both
these time points had only single replicates (in order to
generate the graphs displayed in Fig. 4c we therefore
assigned a fold change with value 0 to this time point). In
total, 9183 out of 22,716 probe sets were found to be sig-
nificant in at least one of the time points. Only the probe
set with highest variance was selected to avoid bias to-
wards genes represented by multiple probe sets. Next, we
compared the protein abundance profiles to changes in
transcript expression across the time course experiment
for differentially expressed complex members (Additional
file 6). For 71 out of 223 analyzed cases for which we had
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complete data, we found significant and consistent (same
sign) changes at both the protein and mRNA level that
were co-occurring at the same time point during repro-
gramming (indicated as “TRUE” in Additional file 6). For
additional 13 cases, the protein change was accompanied
by a consistent trend at the mRNA level (absolute log2
fold change >0.5, FDR adjusted p value >0.05, indicated as
“TREND” in Additional file 6). We interpreted both such
cases as evidence that the abundance of complex member
is regulated at the transcriptional level (Fig. 3a and b).
Additionally, we retrieved the predicted mRNA targets of
significantly regulated miRNAs (LIMMA, FDR adjusted
p value <0.01) from targetscan database [56], as
similarly done in Polo et al. [22]. Finally, differentially
co-expressed mRNA/proteins were linked with in-
versely expressed miRNAs and these cases were indi-
cated as potentially mediated by miRNAs (Fig. 3b).

Analysis of NuRD composition in HeLa and HEK293
nuclear extracts
Nuclei were isolated from HeLa and HEK293 cells as de-
scribed in [57]. All the following steps were performed at
4 °C, unless otherwise stated. Nuclei were resuspended at
concentration between 1.5e8/mL and 3.0e8/mL in digestion
buffer A (0.1 mM MgCl2, 1 mM DTT, 10 μg/mL aprotinin,
5 μg/mL leupeptin) supplemented with DNaseI (Roche,
cat.n: 104145) and RNAseA (Sigma, R4642), and immedi-
ately diluted with 4 volumes of digestion buffer B (5 % (v/v)
glycerol, 20 mM Tris–HCl pH 8.5, 0.1 mM MgCl2, 1 mM
DTT, 10 μg/mL aprotinin, 5 μg/mL leupeptin). DNA and
RNA digestion was allowed to proceed for 15 min at room
temperature. Nuclei were then diluted by addition of 2
volumes of lysis buffer (5 % (v/v) glycerol, 40 mM Tris–
HCl pH 7.5, 300 mM KCl, 0.4 mM MgCl2, 2 mM DTT,
4 mM Na3VO4, 10 μg/mL aprotinin, 5 μg/mL leupeptin)
and sonicated 4× 30 s; each sonication cycle was followed
by 30 s incubation on ice. Lysate was clarified by centrifu-
gation at 14,000× g for 10 min, and the resulting super-
natant was further centrifuged at 100,000× g for 30 min.
High molecular weight protein complexes were concen-
trated using a spin filter concentrator (100,000 MWCO) to
reach a protein concentration of approximately 20 mg/mL.
A total of 80 μL of this solution was separated using by
size-exclusion chromatography (SEC) using a 600 ×
7.8 mm BioSep4000 column (Phenomenex, Inc.) operated
at 250 μL/min in SEC buffer (5 % (v/v) glycerol, 30 mM
Tris–HCl pH 8, 200 mM KCl, 0.3 mM MgCl2, 1.7 mM
DTT) on a ÄKTA Micro FPLC system (GE). Forty-three
fractions (250 μL each) were collect across the column
separation range, estimated to be in the range of 2–
200 kDa. Urea was added to each fraction to a final
concentration of 4 M, and protein were digested by
addition of LysC (Wako) (1:100, 4 h at 37 °C) and trypsin
(Promega) (1:50, 16 h at 37 °C), following dilution of urea

to 2 M. Digestion was stopped by adding TFA to a final
concentration of 0.5 % (v/v). Digested peptides were
desalted using OASIS C18 96-well plates (Waters) accord-
ing to manufacturer’s instructions.
Targeted proteomics assays for NuRD members

(MBD2, MBD3, MTA1/2/3, and CHD3/4) were devel-
oped as described in [57] (Additional file 8). Isotopically
labeled peptides corresponding to the selected endogen-
ous peptides (Spike Tides L, JPT) were spiked into each
SEC fraction and used as internal standard for quantifi-
cation. For each fraction, the light-to-heavy ratio of each
peptide was normalized to the median ratio of all the
NuRD members’ peptides. Normalized ratios were then
averaged for each complex member to derive normalized
protein intensities that were used for comparison across
cell lines (Fig. 5b).

Induction of an artificial paralog switch in the NuRD
complex by silencing MBD3
Generation of MBD3 knockdown cell line
Modified human embryonic kidney cells 293 (HEK
Flp-In™ T-REx™ 293 cell line, Life Technologies) were
grown in Delbecco’s modified Eagle medium (DMEM) con-
taining 5 g/L glucose supplemented with 10 % heat inacti-
vated fetal bovine serum (FBS), blasticidin (15 μg/mL), and
zeocin (100 μg/mL). Cell were grown in 37 °C in 5 %
CO2. HEK Flp-In™ T-REx™ 293 cells encoding micro-RNA
against MBD3 gene were genetically engineered using
miRNA BLOCK-iT system from Life Technologies (target:
AGATGCTGATGAGCAAGATGA). For stable transfec-
tion 200,000 cells were seeded in DMEM with no antibi-
otics. After 24 h, 100 μL of DMEM (without antibiotics
and FBS) with 3 μL X-tremeGENE9 DNA Transfection
Reagent (Roche), 100 ng of miRNA containing vector and
pOG44 plasmid (Life Technologies) were mixed, incu-
bated 15 min at room temperature and added to cells.
Transfected cells were selected by addition of blasticidin
(15 μg/mL) and hygromycinB (100 μg/mL). Expression of
miRNA was induced for 96 h with 1 mg/mL tetracycline.

Quantification of transcript levels by qPCR analysis
Total RNA was isolate with RNAEasy Mini Kit (Qiagen).
A total of 500 ng of RNA was reversely transcribed using
QuantiTect Reverse Transcription Kit (Qiagen) following
the manufacturer protocol. cDNA was diluted 10-fold in
water and used as a template for qPCR with Sybr Green
PCR Mater Mix. qPCR reaction was performed according
to the following protocol: 1× 95 °C – 10 min (DNA de-
naturation and polymerase activation); 40× 95 °C −15 s
(melting), 60 °C – 1 min (annealing/extension). Gene ex-
pression was normalized to a glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) gene. Selected primers: MBD2
For: AGCCTCAGTTGGCAAGGTAC Rev: GAGGATC
GTTTCGCAGTCTC; MBD3 For: CAGCCGGTGACC
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AAGATTAC Rev: CATGGTCTTGACCAGCTCCT; GAP
DH For:GGTCTCCTCTGACTTCAACA Rev: AGCCAA
ATTCGTTGTCATAC.

Quantification of protein abundance changes by targeted
proteomics
Changes in NuRD member protein abundances were
assessed by targeted proteomics. Nuclei were isolated
and processed as described in [57]. Isotopically labeled
peptides were spiked-in and used as internal standard
for relative quantification between cell lines transfected
with miRNA against MBD3 and a scrambled miRNA
control (Life Technologies), as described in [10]. For this
experiment, additional assays for lamin A/C, lamin B1,
and lamin B2 were included in the panel and used for
normalization (Additional file 8).

Classification of normal and colorectal cancer tissues
using variable complex members
We obtained large-scale proteomic dataset from tissue
samples of normal mucosa, primary colorectal car-
cinoma, and nodal metastases from Wiśniewski et al.
[30]. From the provided MaxQuant output table, we
extracted protein intensities used for label-free quan-
tification (LFQ intensities) and retained proteins that
were identified by at least two unique peptides. The
original dataset contained eight, eight, and seven
samples for normal, carcinoma, and metastasis tissue,
respectively. We filtered out proteins that were quan-
tified in less than four samples per group. The inten-
sities from the remaining 6148 protein groups were
log2 transformed and normalized by quantile nor-
malization. We used the nearest-centroid approach to
classify cancer versus normal tissues using their
proteomic profiles [58]. For the classification purpose,
protein features were pre-selected from the list of 53
“variable complex members” that were found to be
variable in both reprogramming and 11 cell lines
dataset (Additional file 6). Using the leave-one-out
method, we evaluated the performance of variable
complex members in comparison to random proteins.
Variable complex members and random proteins were
sampled to generate feature sets while the number of
features was in the range of 4–28 in increments of 4.
For each size, average accuracy was calculated from
100 sampled features. On average, 20 features from
variable complex members were sufficient to classify
all the cancer versus normal samples correctly. To
highlight the discriminative power of variable complex
members in comparison to random (n = 20 features),
selected examples were visualized as dendrograms
using average linkage hierarchical clustering with
Euclidean distance as the similarity measure (Fig. 6b).

Availability of data and materials
The source codes used are available at http://www.bork.
embl.de/Docu/variable_complexes/ under the GNU Gen-
eral Public License v3.0.
The list of the protein complex interfaces with calcu-

lated buried surface area accessibilities and HADDOCK/
CNS energies and full simulations are available at http://
www.bork.embl.de/Docu/variable_complexes/.
The targeted proteomics data for the analysis of

NuRD composition in HeLa and HEK293 nuclear ex-
tracts and upon MBD3 knockdown are available at http://
www.peptideatlas.org/PASS/PASS00792 and http://www.
peptideatlas.org/PASS/PASS00793, respectively.
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